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Kernel methods

In the previous chapter, we have seen that the “kernel trick” makes it
possible to define new features implicitly using a kernel function,
which computes a dot product in a transformed feature space H.
A SVM then performs linear classification in H.
The same “kernel trick” can be applied to any learning method
(supervised or unsupervised), which uses only dot products between
training vectors.
In this chapter, we will see two applications of this principle:

1 Support-Vector regression (SVR)
2 Kernel Principal Component Analysis (KPCA)
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Support Vector Regression Loss function

From classification to regression

SVMs were first developed for classification.
As described in the previous chapter, they represent the decision
boundary in terms of a typically small subset of all training examples –
the Support Vectors.
To generalize the SV algorithm to regression, we need to find a way of
retaining this feature. This can be achieved using the ε-insensitive loss
function

|f (x)− y |ε = max(0, |f (x)− y | − ε)

=

{
0 if |f (x)− y | ≤ ε,
|f (x)− y | − ε otherwise.
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Support Vector Regression Loss function

ε-insensitive loss function

The ε-insensitive loss function does not penalize errors below some ε,
chosen a priori. The ε-insensitive zone is sometimes referred to as the
ε-tube.
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Support Vector Regression Loss function

Basic approach

The regression algorithm is then developed in close analogy to the
case of classification.
Again, we estimate linear functions, use a ‖β‖2 regularizer, and rewrite
everything in terms of dot products to generalize to the nonlinear case.
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Support Vector Regression Formalization

Problem formulation

We search for the linear function f (x) = βT x + β0 minimizing the
following criterion:

1
2
‖β‖2 + C

n∑
i=1

|f (xi )− yi |ε.

The first term is a regularization term, which penalizes more complex
functions f .
The second term is the empirical loss (training error).
C is a hyperparameter, which balances training error and model
complexity.
To solve this problem, we transform it into an equivalent constrained
optimization problem.
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Support Vector Regression Formalization

Reformulation as a constrained optimization problem

We want most observations yi to be in the tube.
We introduce slack variables ξ+i = [yi − (βT xi + β0 + ε)]+ and
ξ−i = [βT xi + β0 − ε− yi ]+, i = 1, . . . , n.

x	

y	

ξ+>0	
ξ-=0	

ξ->0	
ξ+=0	

ε

ξ+=ξ-=0	

y=βTx+β0	
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Support Vector Regression Formalization

Primal objective function

Using the slack variables, the previous problem can be reformulated as a
quadratic optimization problem:

min
β,β0,ξ−,ξ+

1
2
‖β‖2 + C

n∑
i=1

(ξ−i + ξ+i )

subject to:

ξ+i ≥ yi − βT xi − β0 − ε
ξ+i ≥ 0

ξ−i ≥ β
T xi + β0 − yi − ε

ξ−i ≥ 0

for i = 1, . . . , n.
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Support Vector Regression Formalization

Lagrange function

The Lagrange function is

LP(β, β0, α
−
i , α

+
i , η

−
i , η

+
i ) =

1
2
‖β‖2 + C

n∑
i=1

(ξ−i + ξ+i )

−
n∑

i=1

(η−i ξ
−
i + η+i ξ

+
i )−

n∑
i=1

α−i (ε+ ξ−i + yi − βT xi − β0)

−
n∑

i=1

α+
i (ε+ ξ+i − yi + βT xi + β0),

where α−i , α
+
i , η

−
i , η

+
i are Lagrange multipliers.
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Support Vector Regression Formalization

Derivatives of the Lagrange function

Setting the derivatives to zero, we obtain:

∂LP
∂β

= β −
n∑

i=1

(α+
i − α

−
i )xi = 0,

∂LP
∂β0

=
n∑

i=1

(α−i − α
+
i ) = 0,

∂LP

∂ξ−i
= C − α−i − η

−
i = 0, i = 1, . . . , n

∂LP

∂ξ+i
= C − α+

i − η
+
i = 0, i = 1, . . . , n.
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Support Vector Regression Formalization

Dual problem

Using these relations, we get the following Wolfe dual function:

LD(α−i , α
+
i ) = −1

2

∑
i ,j

(α+
i − α

−
i )(α+

j − α
−
j )xTi xj

− ε
n∑

i=1

(α+
i + α−i ) +

n∑
i=1

yi (α
+
i − α

−
i ),

to be maximized subject to

n∑
i=1

(α+
i − α

−
i ) = 0

0 ≤ α−i ≤ C , i = 1, . . . , n,

0 ≤ α+
i ≤ C , i = 1, . . . , n.
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Support Vector Regression Solution and interpretation

Support vectors

As in the case of SVMs, the dual problem can be solved using any
quadratic programming solver.
Let α−∗i , α+∗

i , i = 1, . . . , n be the solution.
The learning vectors xi such that α−∗i > 0 or α+∗

i > 0 are called the
support vectors. They lie outside the tube (or at the border).
Let S be the set of support vectors. We have

β∗ =
∑
i∈S

(α+∗
i − α

−∗
i )xi

and
f ∗(x) =

∑
i∈S

(α+∗
i − α

−∗
i )xTi x + β∗0
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Support Vector Regression Solution and interpretation

Sparsity of the SV expansion

We have a sparse expansion of β in terms of xi (we do not need all xi
to describe β).
The points inside the tube (i.e., which are not support vectors) do not
contribute to the solution: we could remove any one of them, and still
obtain the same solution.
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Support Vector Regression Solution and interpretation

Karush-Kuhn-Tucker conditions

The solution α−∗i , α+∗
i , i = 1, . . . , n must satisfy the KKT conditions

α−∗i (ε+ ξ−∗i + yi − β∗T xi − β∗0) = 0 (1a)

α+∗
i (ε+ ξ+∗i − yi + β∗T xi + β∗0) = 0 (1b)

(C − α−∗i )ξ−∗i = 0, (C − α+∗
i )ξ+∗i = 0 (1c)

Consequences:
Only examples (xi , yi ) with corresponding α−∗

i = C or α+∗
i = C can lie

outside the tube (i.e., ξ−∗
i > 0 or ξ+∗

i > 0).
For α+/−∗

i ∈ (0,C ) we have ξ+/−∗
i = 0. The corresponding SVs lie at

the border of the tube.
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Support Vector Regression Solution and interpretation

Calculation of β0

β∗0 can be calculated from (1a) or (1b) as follows

β∗0 =

{
ε+ yi − β∗T xi for α−∗i ∈ (0,C )

yi − β∗T xi − ε for α+∗
i ∈ (0,C )

Theoretically, it suffices to use any Lagrange multiplier in (0,C ).
If given the choice between several such multipliers (usually there are
many multipliers which are not ‘at bound’, meaning that they do not
equal 0 or C ), it is safest to use one that is not too close to 0 or C .
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Support Vector Regression Solution and interpretation

Parameter tuning

The solution depends on two parameters, ε and C . These play different
roles:

Parameter ε in the loss function specifies the desired accuracy of the
approximation. If we scale our response, then we might consider using
preset values for ε.
The quantity C is a more traditional regularization parameter. It can
be estimated, for example, by cross-validation.
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Support Vector Regression Solution and interpretation

Nonlinear extension

As in the classification case, the complete algorithm can be described
in terms of dot products between the data.
This makes it possible to formulate a nonlinear extension using
kernels, replacing dot products xTi xj in X with dot products

〈Φ(xi ),Φ(xj)〉 = K(xi , xj)

in H.
Additional kernel parameters may be determined by cross-validation.
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Support Vector Regression SVR in R
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Support Vector Regression SVR in R

Application in R

library(’kernlab’)
library(’MASS’)
mcycle.data<-data.frame(mcycle)
mcycle.data$accel<-scale(mcycle.data$accel)
t<- seq(min(mcycle.data$times),max(mcycle.data$times),0.5)
testdat<-data.frame(times=t)

svmfit<-ksvm(accel˜.,data=mcycle.data,scaled=TRUE,type="eps-svr",
kernel="rbfdot",C=100,epsilon=0.1,kpar=list(sigma=1))

yhat<-predict(svmfit,newdata=testdat)
plot(mcycle.data$times,mcycle.data$accel)
lines(t,yhat)
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Support Vector Regression SVR in R

Result
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Kernel Principal Component Analysis
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Kernel Principal Component Analysis

Kernel-based feature extraction

The idea of implicitly mapping the data into a high-dimensional
feature space has been very fruitful in the context of supervised
leaning (SVM and SVR). Thus, it is natural to ask whether the same
idea might prove useful in other domains of learning.
The present section describes a kernel-based method for performing a
nonlinear form of Principal Component Analysis, called Kernel PCA.
We show that through the use of positive definite kernels, we can
efficiently compute principal components in high-dimensional feature
spaces, which are related to the input space by some nonlinear map.
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Kernel Principal Component Analysis

Principle of KPCA
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Kernel Principal Component Analysis Reminder on standard PCA

PCA (reminder)

Principal Component Analysis (PCA) is a powerful technique for
extracting structure from possibly high-dimensional data sets. It is
readily performed by solving an eigenvalue problem.
PCA is an orthogonal transformation (= transformation that preserves
lengths of vectors and angles between them) of the coordinate system
in which we describe our data.
The new coordinate system is obtained by projection onto the
so-called principal axes of the data. The new variables are called
principal components or features.
A small number of principal components is often sufficient to account
for most of the structure in the data.
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Kernel Principal Component Analysis Reminder on standard PCA

Covariance matrix

Given a set of observations {xi}ni=1, xi ∈ Rp, which are centered,

n∑
i=1

xi = 0,

PCA finds the principal axes by diagonalizing the sample covariance
matrix,

C =
1
n

n∑
i=1

xix
T
i . (2)

Matrix C is positive definite, and can thus be diagonalized with
nonnegative eigenvalues.
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Kernel Principal Component Analysis Reminder on standard PCA

Diagonalizing C

To diagonalize C, we solve the eigenvalue equation,

λu = Cu

for eigenvalues λ ≥ 0 and nonzero eigenvectors u ∈ Rp \ {0}.
Substituting (2) into this expression,

λu = Cu =
1
n

n∑
i=1

xix
T
i u =

1
n

n∑
i=1

(xTi u)xi

Hence, every eigenvector u with λ 6= 0 can be written as some linear
combination of the data vectors xi (it lies in the span of x1, . . . , xn).
Instead of the eigenvalue equation λu = Cu we may consider the n
projected equations

λxTi u = xTi Cu, i = 1, . . . , n.
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Kernel Principal Component Analysis Kernel PCA
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Kernel Principal Component Analysis Kernel PCA

Feature space

We now study PCA in the case where we are not interested in
principal components in input space, but rather principal components
of features that are nonlinearly related to the input variables.
Let us consider a feature space H, related to the input domain X (for
instance, Rp) by a map Φ : X → H, which is possibly nonlinear.
The feature space could have an arbitrarily large, and possibly infinite,
dimension.
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Kernel Principal Component Analysis Kernel PCA

Covariance matrix in H

Again, we assume that we are dealing with centered data,

n∑
i=1

Φ(xi ) = 0.

In H, the covariance matrix takes the form

C =
1
n

n∑
j=1

Φ(xj)Φ(xj)
T .

(If H is infinite-dimensional, we may think of Φ(xj)Φ(xj)
T as a linear

operator on H, mapping x 7→ Φ(xj)〈Φ(xj), x〉).
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Kernel Principal Component Analysis Kernel PCA

Eigenvalue problem in H

We now have to find eigenvalues λ ≥ 0 and nonzero eigenvectors
u ∈ H \ {0} satisfying

λu = Cu.

Again, all solutions u with λ 6= 0 lie in the span of Φ(x1), . . . ,Φ(xn).
Consequently,

1 We may instead consider the set of equations

λ〈Φ(xk), u〉 = 〈Φ(xk),Cu〉, k = 1, . . . , n, (3)

2 There exist coefficients αi , i = 1, . . . , n such that

u =
n∑

i=1

αiΦ(xi ). (4)
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Kernel Principal Component Analysis Kernel PCA

Dual eigenvector representation

Using the bilinearity of the dot product and combining (3) and (4), we get

λ

n∑
i=1

αi 〈Φ(xk),Φ(xi )〉 =

〈
Φ(xk),

n∑
i=1

αiCΦ(xi )

〉
(5a)

=
1
n

n∑
i=1

αi

〈
Φ(xk),

n∑
j=1

Φ(xj)〈Φ(xj),Φ(xi )〉

〉
(5b)

for k = 1, . . . , n.
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Kernel Principal Component Analysis Kernel PCA

Dual eigenvector representation (continued)

Let K be the n × n Gram matrix with general term
Kij = 〈Φ(xi ),Φ(xj)〉.
Eqs (5a) can be written as

nλKα = K2α. (6)

Proof:

(Kα)k =
∑
i

Kkiαi =
∑
i

αi 〈Φ(xk),Φ(xi )〉

(K2α)k =
∑
i

(K 2)kiαi =
∑
i

αi

∑
j

KkjKji

=
∑
i

αi

∑
j

〈Φ(xk),Φ(xj)〉〈Φ(xj),Φ(xi )〉

=
n∑

i=1

αi

〈
Φ(xk),

∑
j

Φ(xj)〈Φ(xj),Φ(xi )〉

〉
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Kernel Principal Component Analysis Kernel PCA

Dual eigenvector representation (continued)

To find the solutions of (6) we solve the eigenvalue problem

nλα = Kα (7)

Let λ1 ≥ . . . ≥ λn denote the eigenvalues of K (the values nλ in (7)),
and α1, . . . , αn the corresponding eigenvectors.
Let λq be the last nonzero eigenvalue.
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Kernel Principal Component Analysis Kernel PCA

Normalization of eigenvectors

We normalize α1, . . . , αq by requiring that the corresponding vectors
in H be normalized:

〈um, um〉 = ‖um‖2 = 1, m = 1, . . . , q.

Using (4) and (7), this translates to

1 =

〈
n∑

i=1

αm
i Φ(xi ),

n∑
j=1

αm
j Φ(xj)

〉
=

∑
i ,j

αm
i α

m
j 〈Φ(xi ),Φ(xj)〉

=
∑
i ,j

αm
i α

m
j Kij = 〈αm,Kαm〉 = λm〈αm, αm〉

We thus normalize the αm by

αm ← αm

‖αm‖
√
λm
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Kernel Principal Component Analysis Kernel PCA

Feature extraction

For feature extraction, we need to compute the projections onto the
eigenvectors um in H.
Let x be a test vector. The m-th feature is

zm = 〈um,Φ(x)〉 =

〈
n∑

i=1

αm
i Φ(xi ),Φ(x)

〉

=
n∑

i=1

αm
i 〈Φ(xi ),Φ(x)〉 =

n∑
i=1

αm
i K(xi , x).
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Kernel Principal Component Analysis Kernel PCA

Feature extractor constructed using Kernel PCA

In the first layer, the input vector is compared to the sample via a kernel
function, chosen a priori (e.g. polynomial, Gaussian, or sigmoid). The
outputs are then linearly combined using weights, which are found by
solving an eigenvector problem
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Kernel Principal Component Analysis Kernel PCA

Summary of KPCA

1 Compute the Gram matrix K = (K(xi , xj)).
2 Diagonalize K, and normalize the eigenvector expansion coefficients
αm by requiring λm〈αm, αm〉 = 1.

3 To extract the principal components of a test point x, compute
projections onto the eigenvectors by

zm =
n∑

i=1

αm
i K(xi , x), m = 1, . . . , q.
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Kernel Principal Component Analysis Kernel PCA

Centering

Until now, we have made the assumption that the observations are
centered. This is easy to achieve in input space, but more difficult in
H, as we cannot explicitly compute the mean of the mapped
observations.
There is a way to do it, however, and this leads to slightly modified
equations for kernel PCA.
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Kernel Principal Component Analysis Kernel PCA

Centering (continued)

Let us assume that the Φ(xi ) are not centered.
The Gram matrix in terms of the centered features is then

K̃ij =

〈
Φ(xi )−

1
n

n∑
k=1

Φ(xk),Φ(xj)−
1
n

n∑
`=1

Φ(x`)

〉

It can be written as

K̃ = K− 1nK−K1n + 1nK1n,

where 1n is the n × n matrix with general term (1n)ij = 1/n.
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Kernel Principal Component Analysis Kernel PCA

Centering (continued)

To project a new test vector, we compute〈
um,Φ(x)− 1

n

n∑
j=1

Φ(xj)

〉
=

n∑
i=1

αm
i

〈
Φ(xi )−

1
n

n∑
j=1

Φ(xj),Φ(x)− 1
n

n∑
j=1

Φ(xj)

〉
=

n∑
i=1

αm
i K̃(xi , x)

with

K̃(xi , x) = K(xi , x)− 1
n

n∑
k=1

K(xk , x)

− 1
n

n∑
k=1

K(xi , xk) +
1
n2

n∑
k,`

K(xk , x`).
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Kernel Principal Component Analysis Examples

Two-dimensional toy example with polynomial kernel

From left to right, the polynomial degree in the kernel increases from 1 to
4; from top to bottom, the first 3 eigenvectors are shown, in order of
decreasing eigenvalue size (eigenvalues are normalized to sum to 1).
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Kernel Principal Component Analysis Examples

Example with 3 clusters and radial kernel (γ = 0.1)
First 16 nonlinear principal components
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Kernel Principal Component Analysis Examples

Example with 3 clusters and radial kernel (γ = 0.1)
Plot in the space of the first two principal components
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Kernel Principal Component Analysis Examples

Handwritten character recognition

US postal service database: 9298 examples of dimensionality 256, of
which 2007 make up the test set.
For computational reasons, a subset of 3000 training examples was
used to compute the matrix K.
Polynomial Kernel PCA was then used to extract nonlinear principal
components from the training and test set.
To assess the utility of the components (or features), a linear SVM
was trained on the classification task.
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Kernel Principal Component Analysis Examples

Result

The case of degree 1 corresponds to standard PCA, with the number of
nonzero eigenvalues being at most the dimensionality of the space (256).
Clearly, nonlinear principal components afford test error rates which are
lower than in the linear case (degree 1).
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Kernel Principal Component Analysis Examples

KPCA in R

library(kernlab)

spiral<-read.table(file=’spiral.txt’)
x<-as.matrix(spiral[,1:2])
y<-spiral[,3]
plot(x,col=y,pch=y)

kpc <- kpca(x,kernel="rbfdot",kpar=list(sigma=0.3))
plot(rotated(kpc)[,1:2,col=y,pch=y,xlab="1st Principal Component",
ylab="2nd Principal Component")
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Kernel Principal Component Analysis Examples

Spirals data
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Kernel Principal Component Analysis Examples

First two principal components
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Kernel Principal Component Analysis Examples

First four principal components
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Kernel Principal Component Analysis Examples

Cumulated variance
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