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Limitations of SVM

Support vector machines have been used in a variety of classification
and regression applications.
Nevertheless, they suffer from a number of limitations:

The outputs of an SVM represent decisions (classification) or point
predictions. They are not probabilistic.
There is a complexity parameter C (as well as a parameter ε in the
case of regression), which must be found by cross-validation.
Predictions are expressed as linear combinations of kernel functions
that are centered on training data points and that are required to be
positive definite.
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Relevance Vector Machines

The relevance vector machine or RVM (Tipping, 2001) is a Bayesian
sparse kernel technique for regression and classification that shares
many of the characteristics of the SVM whilst avoiding its principal
limitations.
Additionally, it typically leads to much sparser models resulting in
correspondingly faster performance on test data whilst maintaining
comparable generalization error.
I will present RVM for regression, but the method can be transposed
to classification.
Source:

Tipping, M. E.
Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research 1, 211–244
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Model

Model

The RVM for regression is a Bayesian linear regression method, with a
modified prior that results in sparse solutions.
The model defines a conditional distribution for a real-valued target
variable Y , given an input vector x , which takes the form

Y ∼ N (f (x), β−1)

where β = σ−2 is the noise precision, and

f (x) =
M∑
j=1

wjΦj(x) = wTΦ(x)

with fixed nonlinear basis functions Φj(x), which typically include 1 so
that the corresponding weight parameter represents the constant term.

Thierry Denœux ACE - Relevance Vector Machines July-August 2019 5 / 37



Model

Choice of basis functions

The RVM is a specific instance of this model, which is intended to
mirror the structure of the support vector machine.
In particular, the basis functions are given by kernels, with one kernel
associated with each of the data points from the training set:

f (x) =
n∑

i=1

wiK(x , xi ) + b,

where K is a kernel function and b is a constant. We then have
M = n + 1 parameters.
However, the subsequent analysis is valid for arbitrary choices of basis
functions, and for generality we shall work with the general form.
In contrast to the SVM, there is no restriction to positive-definite
kernels, nor are the basis functions tied in either number or location to
the training data points.
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Model

Likelihood

Let X be the matrix with i-th row xTi , y = (y1, . . . , yn)T the vector of
target values, and Φ the n ×M matrix with i-th row Φ(xi )

T .
The (conditional) likelihood is

p(y | X ,w , β) =
n∏

i=1

p(yi | xi ,w , β)

= N (y | Φw , β−1I n)
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Model

Prior on w

Next we introduce a prior distribution over the parameter vector w .
As in standard Bayesian linear regression, we shall consider a
zero-mean Gaussian prior.
However, the key difference in the RVM is that we introduce a
separate hyperparameter αi for each of the weight parameters wi

instead of a single shared hyperparameter:

p(w | α) =
M∏
j=1

N (wj | 0, α−1
j ),

where α = (α1, . . . , αM).
We shall see that, when we learn these hyperparameters from the
data, a significant proportion of them go to infinity. The
corresponding weight parameters have posterior distributions that are
concentrated at zero, resulting in a sparse model.
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Exploitation of the model Posterior distribution of w

Posterior distribution of w

If we know α and β, we can compute the posterior distribution of w as

p(w | y ,X ,α, β) ∝ p(y | X ,w , β)p(w | α)

with
p(y | X ,w , β) = N (y | Φw , β−1I n)

and
p(w | α) = N (w | 0,A−1),

where A = diag(α).
It can be shown that the posterior distribution of w is Gaussian, with
parameters that can be computed using the following proposition.
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Exploitation of the model Posterior distribution of w

Posterior distribution of w (continued)

Proposition

Given p(x) = N (x | µ,Λ−1) and p(y | x) = N (y | Bx + b,L−1), we have

p(y) = N (y | Bµ+ b,L−1 + BΛ−1BT ) (1)

p(x | y) = N (x | Σ
{
BTL(y − b) + Λµ

}
,Σ) (2)

with Σ = (Λ + BTLB)−1.

Using (2) with x = w , y = y , B = Φ, b = 0, L = βI n, µ = 0, Λ = A, we
get p(w | y ,X ,α, β) = N (w | m,Σ) with

Σ = (A + βΦTΦ)−1

m = βΣΦTy
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Exploitation of the model Posterior distribution of w

Remarks

1 With infinitely broad priors, αi → 0, Σ→ β−1(ΦTΦ)−1 = Var(ŵ),
and

m→ (ΦTΦ)−1ΦTy = ŵ ,

where ŵ is the LS estimate of w .
2 We can write

− log p(w | y ,X ,α, β) =
β

2

n∑
i=1

(yi − wTΦ(xi ))2 +
1
2

M∑
j=1

αjw
2
j

The mode m of the posterior distribution of w is thus the solution of a
penalized least-squares problem (similar to ridge regression, but with
one penalization coefficient for each component of w).
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Exploitation of the model Posterior distribution of w

Illustration of Bayesian learning (f (x) = w0+w1x , α0 = α1)
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Exploitation of the model Predictive distribution of y

Predictive distribution of y

In practice, we are mainly interested in making predictions of y for
new values of x .
Given α and β, the predictive distribution of y is

p(y | x ,X , y ,α, β) =

∫
p(y | x ,w , β)︸ ︷︷ ︸
N (Φ(x)Tw ,β−1I n)

p(w | y ,X ,α, β)︸ ︷︷ ︸
N (m;Σ)

dw

Again, this is a Gaussian distribution, whose parameters can be
obtained from (1) with y = y , x = w , B = Φ(x)T , b = 0, L = βI n,
µ = m and Λ−1 = Σ. We get

p(y | x ,X , y ,α, β) = N (y | Φ(x)Tm, σ2
n(x))

with
σ2
n(x) =

1
β

+ Φ(x)TΣΦ(x)
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Exploitation of the model Predictive distribution of y

Remark

In the expression of the variance

σ2
n(x) =

1
β

+ Φ(x)TΣΦ(x),

the first term represents the noise on the data whereas the second
term reflects the uncertainty associated with the parameters w .
As additional data points are observed, the posterior distribution
becomes narrower. As a consequence it can be shown that

σ2
n+1(x) ≤ σ2

n(x)

and
lim
n→∞

σ2
n(x) =

1
β
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Exploitation of the model Predictive distribution of y

Example

Examples of predictive distribution for a model with 9 Gaussian basis functions.
The green curves correspond to the function sin(2πx) with Gaussian noise. The
red curve shows the mean of the corresponding Gaussian predictive distribution,
and the red shaded region spans one standard deviation either side of the mean.
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Exploitation of the model Predictive distribution of y

Example (continued)

In order to gain insight into the covariance between the predictions at different
values of x , we can draw samples from the posterior distribution over w , and then
plot the corresponding functions f (x ,w).
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Evidence approximation Principle

Integrating out α and β

Until now, we have assumed that hyperparameters α and β are known.
In a fully Bayesian treatment of the linear basis function model, we
would introduce prior distributions over α and β and make predictions
by marginalizing with respect to these hyperparameters as well as with
respect to the parameters w :

p(y | x ,X , y) =

∫∫∫
p(y | x ,w , β)

p(w | X , y ,α, β)p(α, β | X , y)dw dα dβ

However, although we can integrate analytically over either w or over
the hyperparameters, the complete marginalization over all of these
variables is analytically intractable.
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Evidence approximation Principle

Approximation

As an approximation, we can set the hyperparameters to specific
values determined by maximizing the marginal likelihood function
obtained by first integrating over the parameters w.
This framework is known as

Empirical Bayes or generalized maximum likelihood in the statistics
literature
Evidence approximation in the machine learning literature.

In this approach, the hyperparameters are determined directly from the
data: we do not need to tune them by cross-validation, as for the
SVMs.
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Evidence approximation Principle

Evidence approximation

If the posterior distribution p(α, β | X , y) is sharply peaked around
values α∗ and β∗, then the predictive distribution is obtained simply
by marginalizing over w in which α and β are fixed to the values α∗

and β∗, so that

p(y | x ,X , y) ≈ p(y | x ,X , y ,α∗, β∗) =∫
p(y | x ,w , β∗)p(w | X , y ,α∗, β∗)dw

We choose as α∗ and β∗ the values that maximize

p(α, β | X , y) ∝ p(y | X ,α, β)p(α, β)

If the prior is relatively flat, then the values α∗ and β∗ are obtained by
maximizing the marginal likelihood function p(y | X ,α, β) called the
evidence function.
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Evidence approximation Calculation and maximization of the evidence function
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Evidence approximation Calculation and maximization of the evidence function

Expression of the evidence function

We have

p(y | X ,α, β) =

∫
p(y | X ,w , β)p(w | α)dw

Once again, we can use Eq. (1) to compute this integral, with y = y ,
x = w , B = Φ, L = βI n, Λ = A, µ = 0. We get

p(y | X ,α, β) = N (y | 0,C )

where C is the n × n matrix

C = β−1I n + ΦA−1ΦT .
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Evidence approximation Calculation and maximization of the evidence function

Maximization of the evidence function

The log-likelihood is

log p(y | X ,α, β) = −1
2

(
n log(2π) + log |C |+ yTC−1y

)
To maximize log p(y | X ,α, β) we compute the derivatives with
respect to the hyperparameters α and β.
After some tedious calculation, we find

∂ log p(y | X ,α, β)

∂αj
= −1

2

(
1
αj
− Σjj −m2

j

)
∂ log p(y | X ,α, β)

∂β
=

1
2

(
n

β
− ‖y −Φm‖2 − 1

β
trace(IM − AΣ)

)
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Evidence approximation Calculation and maximization of the evidence function

Maximization of the evidence function (continued)

Setting these derivatives to zero, we get update equations for α and β:

1
αj
− Σjj −m2

j ⇔ αj =
γi
m2

j

,

with γj = 1− αjΣjj .

n

β
− ‖y −Φm‖2 − 1

β
trace(IM − AΣ)︸ ︷︷ ︸∑M

j=1 γj

= 0⇔ β =
n −

∑M
j=1 γj

‖y −Φm‖2
.

Remark: these equations are implicit, because both γj and m depend
on α and β.
Algorithm: initialize α and β, compute m and Σ, update α and β,
and iterate until convergence.
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Evidence approximation Calculation and maximization of the evidence function

Interpretation of the γi

Each γj can be interpreted as a measure of how “well-determined” its
corresponding parameter wj is by the data.
For αj large, wj is highly constrained by the prior, Σjj ≈ α−1

j and
γj ≈ 0.
Conversely, when αj is small and wj fits the data, γj ≈ 1.
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Evidence approximation Calculation and maximization of the evidence function

Sparsity

As a result of the optimization, we find that a proportion of the
hyperparameters αj are driven to large (in principle infinite) values, and
so the weight parameters wj corresponding to these hyperparameters
have posterior distributions with mean and variance both zero.
Thus those parameters, and the corresponding basis functions Φj(x),
are removed from the model and play no role in making predictions for
new inputs.
In the case of models of the form Φi (x) = K(x , xi ), the inputs xi
corresponding to the remaining nonzero weights are called relevance
vectors, because they are identified through the mechanism of
automatic relevance determination, and are analogous to the support
vectors of an SVM.
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Evidence approximation Calculation and maximization of the evidence function

Example

The mean of the predictive distribution for the RVM is shown by the red line, and
the one standard- deviation predictive distribution is shown by the shaded region.
Also, the data points are shown in green, and the relevance vectors are indicated
by blue circles.
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Evidence approximation Calculation and maximization of the evidence function

Summary of the Algorithm

1 Select a suitable kernel function for the data set and relevant
parameters. Create the design matrix Φ.

2 Set thresholds εα, εβ and τ
3 Choose starting values for α and β.
4 Calculate

Σ = (A + βΦTΦ)−1 and m = βΣΦTy .

5 Update

αnew
j =

γj
m2

j

and βnew =
n −

∑M
j=1 γj

‖y −Φm‖2

6 Prune the basis functions Φj(x) for all j such that αj > τ .
7 Repeat (4) to (6) until |βnew − βold | < εβ and ‖αnew

j − αold
j ‖ < εα.
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Evidence approximation Calculation and maximization of the evidence function

Complexity

The principal disadvantage of the RVM compared to the SVM is that
training involves optimizing a nonconvex function, and training times
can be longer than for a comparable SVM.
For a model with M basis functions, the RVM requires inversion of a
matrix of size M ×M, which in general requires O(M3) computation.
In the specific case of the SVM-like model, we have M = n + 1. In
contrast, there are techniques for training SVMs whose cost is roughly
quadratic in n. However:

In the case of the RVM we can start with a smaller number of basis
functions than n + 1.
In the RVM the parameters governing complexity and noise variance
are determined automatically from a single training run, whereas in the
support vector machine the parameters C and ε are generally found
using cross-validation, which involves multiple training runs.
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RVM in R
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RVM in R

Application in R

>library(’kernlab’)
>library(’MASS’)

>fit<-rvm(accel ˜ times,data=mcycle,kernel="rbfdot",kpar=list(sigma=0.1))

> fit
Relevance Vector Machine object of class "rvm"
Problem type: regression

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.1

Number of Relevance Vectors : 5
Variance : 497.0264
Training error : 483.173922435
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RVM in R

Application in R (continued)

> alpha(fit)
-113.70005 38.65428 -109.91277 22.32886 22.32418
> RVindex(fit)
58 64 66 94 95

mcycle.test<-data.frame(times=seq(0,60,0.1))
ytest <- predict(fit, newdata=mcycle.test)

plot(mcycle$times, mcycle$accel, type ="p",
xlab=’time’,ylab=’acceleration’)
lines(mcycle.test$times, ytest, col="red",lwd=2)
points(mcycle$times[RVindex(fit)], mcycle$accel[RVindex(fit)],pch=16)
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RVM in R

Result
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