Statistics and Machine Learning using belief functions

Lecture 1 - Representation and Combination of Evidence

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253)
https://www.hds.utc.fr/~tdenoeux
Beijing University of Technology
May 2017

Topic of this seminar

(This course is about the theory of belief functions and its applications to Statistics and Machine Learning.
(2) What is the Theory of Belief Functions?

- A formal framework for reasoning and making decisions under uncertainty.
- Originates from Arthur Dempster's seminal work on statistical inference with lower and upper probabilities.
- It was then further developed by Glenn Shafer who showed that belief functions can be used as a general framework for representing and reasoning with uncertain information.
- Also known as Evidence theory or Dempster-Shafer theory.
(3) Many applications in several fields such as artificial intelligence, information fusion, pattern recognition, etc.
(9) Recently, there has been a revived interested in its application to Statistical Inference and Machine Learning (classification, clustering).

Outline of the seminar

(1) Representation and combination of evidence

Constructing Belief Functions from Sample Data Using Multinomial Confidence Regions. International Journal of Approximate Reasoning 42(3):228-252, 2006.
(2) Decision-making and classification

Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognition 30(7):1095-1107, 1997.
(3) Clustering

Evidential clustering of large dissimilarity data. Knowledge-Based Systems 106:179-195, 2016.
(9) Learning from uncertain data

Maximum likelihood estimation from Uncertain Data in the Belief Function Framework. IEEE Trans. on Knowledge and Data Eng. 25(1):119-130, 2013.
(6) Estimation and prediction

Prediction of future observations using belief functions: a likelihood-based approach. International Journal of Approximate Reasoning 72:71-94, 2016.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4. Predictive belief functions

- Formalization
- Method
- Ordered data

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4. Predictive belief functions

- Formalization
- Method
- Ordered data

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment)
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every A of Ω such that $m(A)>0$ is a focal set of m
- m is said to be normalized if $m(\emptyset)=0$. This property will be assumed hereafter, unless otherwise specified

Example: the broken sensor

- Let X be some physical quantity (e.g., a temperature), talking values in Ω.
- A sensor returns a set of values $A \subset \Omega$, for instance, $A=[20,22]$.
- However, the sensor may be broken, in which case the value it returns is completely arbitrary.
- There is a probability $p=0.1$ that the sensor is broken.
- What can we say about X ? How to represent the available information (evidence)?

Analysis

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in A$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function m on Ω, such that

$$
m(A)=0.9, \quad m(\Omega)=0.1
$$

Source

- A mass function m on Ω may be viewed as arising from
- A set $S=\left\{s_{1}, \ldots, s_{r}\right\}$ of states (interpretations)
- A probability measure P on S
- A multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega}$
- The four-tuple $\left(S, 2^{S}, P, \Gamma\right)$ is called a source for m
- Meaning: under interpretation s_{i}, the evidence tells us that $X \in \Gamma\left(s_{i}\right)$, and nothing more. The probability $P\left(\left\{s_{i}\right\}\right)$ is transferred to $A_{i}=\Gamma\left(s_{i}\right)$
- $m(A)$ is the probability of knowing that $X \in A$, and nothing more, given the available evidence

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_{A} such that $m_{A}(A)=1$
- m_{A} is equivalent to A
- Special case: $m_{\text {? }}$, the vacuous mass function, represents total ignorance
- If each interpretation s_{i} of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
- a generalized set
- a generalized probability distribution
- Total ignorance is represented by the vacuous mass function $m_{\text {? }}$ such that $m_{?}(\Omega)=1$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4 Predictive belief functions

- Formalization
- Method
- Ordered data

Degrees of support and consistency

- Let m be a normalized mass function on Ω induced by a source $\left(S, 2^{S}, P, \Gamma\right)$.
- Let A be a subset of Ω.
- One may ask:
(1) To what extent does the evidence support the proposition $\omega \in A$?
(2) To what extent is the evidence consistent with this proposition?

Belief function

Definition and interpretation

- For any $A \subseteq \Omega$, the probability that the evidence implies (supports) the proposition $X \in A$ is

$$
\operatorname{Be}\left((A)=P(\{s \in S \mid \Gamma(s) \subseteq A\})=\sum_{B \subseteq A} m(B) .\right.
$$

- The function $\mathrm{Bel}: A \rightarrow \operatorname{Bel}(A)$ is called a belief function.

Plausibility function

- The probability that the evidence is consistent with (does not contradict) the proposition $X \in A$

$$
P l(A)=P(\{s \in S \mid \Gamma(s) \cap A \neq \emptyset\})=1-\operatorname{Bel}(\bar{A})
$$

- The function $P I: A \rightarrow P I(A)$ is called a plausibility function.
- The function $p l: \omega \rightarrow P l(\{\omega\})$ is called a contour function.

Two-dimensional representation

- The uncertainty about a proposition A is represented by two numbers: $\operatorname{Bel}(A)$ and $P l(A)$, with $\operatorname{Bel}(A) \leq P I(A)$
- The intervals $[\operatorname{Bel}(A), P l(A)]$ have maximum length when $m=m_{?}$ is vacuous: then, $\operatorname{Bel}(A)=0$ for all $A \neq \Omega$, and $P l(A)=1$ for all $A \neq \emptyset$.
- The intervals $[\operatorname{Bel}(A), P I(A)]$ have minimum length when m is Bayesian. Then, $\operatorname{Bel}(A)=P l(A)$ for all A, and $B e l$ is a probability measure.

Broken sensor example

- From

$$
m(A)=0.9, \quad m(\Omega)=0.1
$$

we get

$$
\begin{gathered}
\operatorname{Bel}(A)=m(A)=0.9, \quad P l(A)=m(A)+m(\Omega)=1 \\
\operatorname{Bel}(\bar{A})=0, \quad P l(\bar{A})=m(\Omega)=0.1 \\
\operatorname{Bel}(\Omega)=P I(\Omega)=1
\end{gathered}
$$

- We observe that

$$
\begin{gathered}
\operatorname{Bel}(A \cup \bar{A}) \geq \operatorname{Bel}(A)+\operatorname{Bel}(\bar{A}) \\
P l(A \cup \bar{A}) \leq P I(A)+P l(\bar{A})
\end{gathered}
$$

- Bel and $P l$ are non additive measures.

Characterization of belief functions

- Function $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is a completely monotone capacity: it verifies $\operatorname{Be}(\emptyset)=0, \operatorname{Be}(\Omega)=1$ and

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} B e l\left(\bigcap_{i \in I} A_{i}\right) .
$$

for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω}.

- Conversely, to any completely monotone capacity Bel corresponds a unique mass function m such that:

$$
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} B e l(B), \quad \forall A \subseteq \Omega .
$$

Relations between $m, B e l$ et $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions
- For all $A \subseteq \Omega$,

$$
\begin{gathered}
B e l(A)=1-P l(\bar{A}) \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|+1} P l(\bar{B})
\end{gathered}
$$

- $m, B e l$ et $P l$ are thus three equivalent representations of
- a piece of evidence or, equivalently
- a state of belief induced by this evidence

Least Commitment Principle

- It is sometimes interesting to compare two mass functions with respect to their information content.
- Let m_{1} and m_{2} be two mass functions on Ω. We say that m_{1} is less committed than m_{2} (noted $m_{1} \sqsupseteq m_{2}$) if

$$
B e l_{1}(A) \leq B e l_{2}(A), \quad \forall A \subseteq \Omega
$$

or, equivalently,

$$
P l_{1}(A) \geq P l_{2}(A), \quad \forall A \subseteq \Omega
$$

- Interpretation: m_{1} and m_{2} are consistent, but m_{1} contains less information than m_{2}.
- Least Commitment Principle: when several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4 Predictive belief functions

- Formalization
- Method
- Ordered data

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Predictive belief functions

- Formalization
- Method
- Ordered data

Consonant belief function

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant
- The following relations then hold, for all $A, B \subseteq \Omega$,

$$
\begin{gathered}
P l(A \cup B)=\max (P l(A), P l(B)) \\
B e l(A \cap B)=\min (\operatorname{Bel}(A), B e l(B))
\end{gathered}
$$

- $P /$ is this a possibility measure, and $B e l$ is the dual necessity measure

Contour function

- The contour function of a belief function Bel is defined by

$$
p l(\omega)=P l(\{\omega\}), \quad \forall \omega \in \Omega
$$

- When Bel is consonant, it can be recovered from its contour function,

$$
P I(A)=\max _{\omega \in A} p l(\omega) .
$$

- The contour function is then a possibility distribution
- The theory of belief function can thus be considered as more expressive than possibility theory

From the contour function to the mass function

- Let $p /$ be a contour on the frame $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, with elements arranged by decreasing order of plausibility, i.e.,

$$
1=p \prime\left(\omega_{1}\right) \geq p \prime\left(\omega_{2}\right) \geq \ldots \geq p \prime\left(\omega_{n}\right)
$$

and let A_{i} denote the set $\left\{\omega_{1}, \ldots, \omega_{i}\right\}$, for $1 \leq i \leq n$.

- Then, the corresponding mass function m is

$$
\begin{aligned}
m\left(A_{i}\right) & =p l\left(\omega_{i}\right)-p l\left(\omega_{i+1}\right), \quad 1 \leq i \leq n-1, \\
m(\Omega) & =p l\left(\omega_{n}\right) .
\end{aligned}
$$

Example

- Consider, for instance, the following contour distribution defined on the frame $\Omega=\{a, b, c, d\}$:

ω	a	b	c	d
$p /(\omega)$	0.3	0.5	1	0.7

- The corresponding mass function is

$$
\begin{aligned}
m(\{c\}) & =1-0.7=0.3 \\
m(\{c, d\}) & =0.7-0.5=0.2 \\
m(\{c, d, b\}) & =0.5-0.3=0.2 \\
m(\{c, d, b, a\}) & =0.3
\end{aligned}
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Predictive belief functions

- Formalization
- Method
- Ordered data

Credal set

- A probability measure P on Ω is said to be compatible with $B e /$ if

$$
\operatorname{Bel}(A) \leq P(A)
$$

for all $A \subseteq \Omega$

- Equivalently, $P(A) \leq P I(A)$ for all $A \subseteq \Omega$
- The set $\mathcal{P}(m)$ of probability measures compatible with m is called the credal set of m

$$
\mathcal{P}(B e l)=\{P: \forall A \subseteq \Omega, \operatorname{Be} l(A) \leq P(A))\}
$$

Construction of $\mathcal{P}(\mathrm{Be} /)$

- An arbitrary element of $\mathcal{P}(\mathrm{Bel})$ can be obtained by distributing each mass $m(A)$ among the elements of A.
- More precisely, let $\alpha(\omega, \boldsymbol{A})$ be the fraction of $m(\boldsymbol{A})$ allocated to the element ω. We have

$$
\sum_{\omega \in A} \alpha(\omega, \boldsymbol{A})=m(\boldsymbol{A})
$$

- By summing up the numbers $\alpha(\omega, \boldsymbol{A})$ for each ω, we get a probability mass function on Ω,

$$
p_{\alpha}(\omega)=\sum_{A \ni \omega} \alpha(\omega, A) .
$$

- It can be verified that

$$
P_{\alpha}(A)=\sum_{\omega \in A} p_{\alpha}(\omega) \geq \operatorname{Bel}(A)
$$

for all $A \subseteq \Omega$.

Belief functions are coherent lower probabilities

- It can be shown (Dempster, 1967) that any element of the credal set $\mathcal{P}(\mathrm{Be})$ can be obtained in that way.
- Furthermore, the bounds in the inequalities $\operatorname{Bel}(A) \leq P(A)$ and $P(A) \leq P I(A)$ are attained. We thus have, for all $A \subseteq \Omega$,

$$
\begin{aligned}
B e l(A) & =\min _{P \in \mathcal{P}(B e l)} P(A) \\
P l(A) & =\max _{P \in \mathcal{P}(B e l)} P(A)
\end{aligned}
$$

- We say that $B e l$ is a coherent lower probability.
- Not all lower envelopes of sets of probability measures are belief functions!

A counterexample

- Suppose a fair coin is tossed twice, in such a way that the outcome of the second toss may depend on the outcome of the first toss.
- The outcome of the experiment can be denoted by $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$.
- Let $H_{1}=\{(H, H),(H, T)\}$ and $H_{2}=\{(H, H),(T, H)\}$ the events that we get Heads in the first and second toss, respectively.
- Let \mathcal{P} be the set of probability measures on Ω which assign $P\left(H_{1}\right)=P\left(H_{2}\right)=1 / 2$ and have an arbitrary degree of dependence between tosses.
- Let P_{*} be the lower envelope of \mathcal{P}.

A counterexample - continued

- It is clear that $P_{*}\left(H_{1}\right)=1 / 2, P_{*}\left(H_{2}\right)=1 / 2$ and $P_{*}\left(H_{1} \cap H_{2}\right)=0$ (as the occurrence Heads in the first toss may never lead to getting Heads in the second toss).
- Now, in the case of complete positive dependence, $P\left(H_{1} \cup H_{2}\right)=P\left(H_{1}\right)=1 / 2$, hence $P_{*}\left(H_{1} \cup H_{2}\right) \leq 1 / 2$.
- We thus have

$$
P_{*}\left(H_{1} \cup H_{2}\right)<P_{*}\left(H_{1}\right)+P_{*}\left(H_{2}\right)-P_{*}\left(H_{1} \cap H_{2}\right),
$$

which violates the complete monotonicity condition for $k=2$.

Two different theories

- Mathematically, the notion of coherent lower probability is thus more general than that of belief function.
- However, the definition of the credal set associated with a belief function is purely formal, as these probabilities have no particular interpretation in our framework.
- The theory of belief functions is not a theory of imprecise probabilities.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule
(4) Predictive belief functions
- Formalization
- Method
- Ordered data

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4 Predictive belief functions

- Formalization
- Method
- Ordered data

Broken sensor example continued

- The first item of evidence gave us: $m_{1}(A)=0.9, m_{1}(\Omega)=0.1$.
- Another sensor returns another set of values B, and it is in working condition with probability 0.8 .
- This second piece if evidence can be represented by the mass function: $m_{2}(B)=0.8, m_{2}(\Omega)=0.2$
- How to combine these two pieces of evidence?

Analysis

- If interpretations $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ both hold, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
- If the two pieces of evidence are independent, then the probability that s_{1} and s_{2} both hold is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$

Computation

	S_{2} working (0.8)	S_{2} broken (0.2)
S_{1} working (0.9)	$A \cap B, 0.72$	$A, 0.18$
S_{1} broken (0.1)	$B, 0.08$	$\Omega, 0.02$

We then get the following combined mass function,

$$
\begin{aligned}
m(A \cap B) & =0.72 \\
m(A) & =0.18 \\
m(B) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that s_{1} and s_{2} cannot hold simultaneously
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs

Computation

	S_{2} working (0.8)	S_{2} broken (0.2)
S_{1} working (0.9)	$\emptyset, 0.72$	$A, 0.18$
S_{1} broken (0.1)	$B, 0.08$	$\Omega, 0.02$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(A) & =0.18 / 0.28 \approx 0.64 \\
m(B) & =0.08 / 0.28 \approx 0.29 \\
m(\Omega) & =0.02 / 0.28 \approx 0.07
\end{aligned}
$$

Dempster's rule

- Let m_{1} and m_{2} be two mass functions and

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict

- If $\kappa<1$, then m_{1} and m_{2} can be combined as

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset
$$

and $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$

Another example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\emptyset, 0.05$	$\{b\}, 0.2$	$\emptyset, 0.25$
	$\{a, 0.2$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\emptyset, 0.1$
	$\{a, c\}, 0.3$	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$

The degree of conflict is $\kappa=0.05+0.25+0.1=0.4$. The combined mass function is

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a\}) & =(0.02+0.03+0.12) / 0.6=0.17 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{b\}) & =0.2 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{a, b\}) & =0.08 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{c\}) & =0.15 / 0.6 .
\end{aligned}
$$

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: $m_{\text {? }}$
- Generalization of intersection: if m_{A} and m_{B} are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{A} \oplus m_{B}=m_{A \cap B}
$$

- If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function m_{A}. Notation:

$$
m \oplus m_{A}=m(\cdot \mid A)
$$

- It can be shown that

$$
P I(B \mid A)=\frac{P I(A \cap B)}{P I(A)} .
$$

- Generalization of Bayes' conditioning: if m is a Bayesian mass function and m_{A} is a logical mass function, then $m \oplus m_{A}$ is a Bayesian mass function corresponding to the conditioning of m by A

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Q is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let $Q_{1} \oplus Q_{2}$ be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have

$$
\begin{gathered}
\left(Q_{1} \oplus Q_{2}\right)(A)=\frac{1}{1-\kappa} Q_{1}(A) \cdot Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

- In particular, $p l(\omega)=Q(\{\omega\})$. Consequently,

$$
p l_{1} \oplus p l_{2} \propto(1-\kappa)^{-1} p l_{1} p l_{2} .
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Predictive belief functions

- Formalization
- Method
- Ordered data

Disjunctive rule

Definition and justification

- Let $\left(S_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(S_{2}, P_{2}, \Gamma_{2}\right)$ be sources associated to two pieces of evidence
- If interpretation $s_{k} \in S_{k}$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_{k}\left(s_{k}\right)$
- If interpretation $s \in S_{1}$ and $s_{2} \in S_{2}$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_{1}\left(s_{1}\right) \cup \Gamma_{2}\left(s_{2}\right)$
- This leads to the TBM disjunctive rule:

$$
\left(m_{1} \cup m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega
$$

Disjunctive rule

Example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}			
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$	
m_{1}	$\{b\}, 0.5$	$\{a, b\}, 0.05$	$\{a, b\}, 0.2$	$\{b, c\}, 0.25$	
	$\{a, c\}, 0.3$	$\{a, b\}, 0.02$	$\{a, b\}, 0.08$	$\{a, b, c\}, 0.1$	
	$\{a, c\}, 0.03$	$\{a, b, c\}, 0.12$	$\{a, c\}, 0.15$		

The resulting mass function is

$$
\begin{aligned}
& \left(m_{1} \cup m_{2}\right)(\{a, b\})=0.05+0.2+0.02+0.08=0.35 \\
& \left(m_{1} \cup m_{2}\right)(\{b, c\})=0.25 \\
& \left(m_{1} \cup m_{2}\right)(\{a, c\})=0.03+0.15=0.18 \\
& \quad\left(m_{1} \cup m_{2}\right)(\Omega)=0.1+0.12=0.22
\end{aligned}
$$

Disjunctive rule

- Commutativity, associativity.
- No neutral element.
- $m_{\text {? }}$ is an absorbing element.
- Expression using belief functions:

$$
B e l_{1} \cup B e l_{2}=B e l_{1} \cdot B e l_{2}
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule
(4) Predictive belief functions
- Formalization
- Method
- Ordered data

Definition

- In general, the disjunctive rule may be preferred in case of heavy conflict between the different pieces of evidence.
- An alternative rule, which is somehow intermediate between the disjunctive and conjunctive rules, has been proposed by Dubois and Prade (1988). It is defined as follows:

$$
\left(m_{1} \uplus m_{2}\right)(A)=\sum_{B \cap C=A} m_{1}(B) m_{2}(C)+\sum_{\{B \cap C=\emptyset, B \cup C=A\}} m_{1}(B) m_{2}(C),
$$

for all $A \subseteq \Omega, A \neq \emptyset$, and $\left(m_{1} \uplus m_{2}\right)(\emptyset)=0$.

Example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\{a, b\}, 0.05$	$\{b\}, 0.2$	$\{b, c\}, 0.25$
	$\{a, c\}, 0.3$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\{a, b, c\}, 0.1$
	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$	

$$
\begin{aligned}
\left(m_{1} \uplus m_{2}\right)(\{a, b\}) & =0.05+0.08=0.13 \\
\left(m_{1} \uplus m_{2}\right)(\{b\}) & =0.2 \\
\left(m_{1} \uplus m_{2}\right)(\{b, c\}) & =0.25 \\
\left(m_{1} \uplus m_{2}\right)(\{a\}) & =0.02+0.03+0.12=0.17 \\
\left(m_{1} \uplus m_{2}\right)(\{c\}) & =0.15 \\
\left(m_{1} \uplus m_{2}\right)(\Omega) & =0.1 .
\end{aligned}
$$

Properties

- The DP rule boils down to the conjunctive and disjunctive rules when, respectively, the degree of conflict is equal to zero and one.
- In other cases, it has some intermediate behavior.
- It is not associative. If several pieces of evidence are available, they should be combined at once using an obvious n-ary extension of the above formula.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4 Predictive belief functions

- Formalization
- Method
- Ordered data

Introductory example

- Consider an urn with white $\left(\xi_{1}\right)$, red $\left(\xi_{2}\right)$ and black $\left(\xi_{3}\right)$ balls in proportions p_{1}, p_{2} and p_{3}.
- Let $X \in \mathcal{X}=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ be the color of a ball that will be drawn from the urn: belief on X ?
- Two cases:
(1) We know the proportions p_{k} : then $\operatorname{be}{ }^{\mathcal{X}}\left(\left\{\xi_{k}\right\}\right)=p_{k}$ (Hacking's Principle);
(2) We have observed the result of n drawings from the urn with replacement, e.g. 5 white balls, 3 red balls and 2 black balls.
- How to build a belief function from data in the 2nd case ?
- A solution was described in
T. Denoeux. Constructing Belief Functions from Sample Data Using Multinomial Confidence Regions. International Journal of Approximate Reasoning 42(3):228-252, 2006.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4. Predictive belief functions

- Formalization
- Method
- Ordered data

Formalization

- Discrete variable $X \in \mathcal{X}=\left\{\xi_{1}, \ldots, \xi_{K}\right\}$ defined as the result of a random experiment.
- X is characterized by an unknown frequency (probability) distribution \mathbb{P}_{X}.
- $\mathbb{P}_{X}(A)$: limit frequency of the event $A \subseteq \mathcal{X}$ in an infinite sequence of trials.
- We have observed a realization \mathbf{x}_{n} of an iid random sample $X_{n}=\left(X_{1}, \ldots, X_{n}\right)$ with parent distribution \mathbb{P}_{X}.
- Problem: build a belief function be $l^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ with well-defined properties with respect to the unknown frequency distribution $\mathbb{P}_{X} \rightarrow$ predictive belief function.

Approach

- Let bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ be the BF on X after observing a realization \mathbf{x}_{n} of random sample $\mathbf{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$.
- Which properties should bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ verify with respect to \mathbb{P}_{X} ?
- Hacking's principle (1965): if \mathbb{P}_{X} is know, then bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]=\mathbb{P}_{X}$.
- Weak version:

$$
\forall A \subseteq \mathcal{X}, \quad \text { be } I^{\mathcal{X}}\left[\mathbf{X}_{n}\right](A) \xrightarrow{P} \mathbb{P}_{X}(A), \text { as } n \rightarrow \infty .
$$

(Requirement R_{1})

Approach (continued)

- Least Commitment Principle: for fixed n, bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ should be less informative that \mathbb{P}_{X} :

$$
\text { bel }{ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right](A) \leq \mathbb{P}_{X}(A), \quad \forall A \subseteq \mathcal{X} .
$$

- This condition is too restrictive (it leads to the vacuous BF).
- Weaker condition ((Requirement R_{2}):

$$
\mathbb{P}\left(\text { bel }{ }^{\mathcal{X}}\left[\mathbf{X}_{n}\right] \leq \mathbb{P}_{X}\right) \geq 1-\alpha,
$$

for some $\alpha \in(0,1)$.

Meaning of Requirement R_{2}

$$
\begin{aligned}
& \mathbf{x}_{n}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}\right] \\
& \mathbf{x}_{n}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}^{\prime}\right] \\
& \mathbf{x}_{n}^{\prime \prime}=\left(x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}^{\prime \prime}\right]
\end{aligned}
$$

- As the number of realizations of the random sample tends to ∞, the proportion of belief functions less committed than \mathbb{P}_{X} should tend to $1-\alpha$.
- To achieve this property: use of a multinomial confidence region.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4. Predictive belief functions

- Formalization
- Method
- Ordered data

Multinomial Confidence Region

- Let $N_{k}=\#\left\{i \mid X_{i}=\xi_{k}\right\}$. Vector $\mathbf{N}=\left(N_{1}, \ldots, N_{K}\right)$ has a multinomial distribution $\mathcal{M}\left(n, p_{1}, \ldots, p_{K}\right)$, with $p_{k}=\mathbb{P}_{X}\left(\left\{\xi_{k}\right\}\right)$.
- Let $\mathcal{S}(\mathbf{N}) \subseteq[0,1]^{K}$ a random region of $[0,1]^{K}$. It is a confidence region for \mathbf{p} at level $1-\alpha$ if

$$
\mathbb{P}(\mathcal{S}(\mathbf{N}) \ni \mathbf{p}) \geq 1-\alpha
$$

- $\mathcal{S}(\mathbf{N})$ is an asymptotic confidence region if the above inequality holds in the limit as $n \rightarrow \infty$.
- Simultaneous confidence intervals: $\mathcal{S}(\mathbf{N})=\left[P_{1}^{-}, P_{1}^{+}\right] \times \ldots \times\left[P_{K}^{-}, P_{K}^{+}\right]$

Multinomial Conf. Region (cont.)

- Goodman's simultaneous confidence intervals:

$$
\begin{array}{r}
P_{k}^{-}=\frac{b+2 N_{k}-\sqrt{\Delta_{k}}}{2(n+b)}, \\
P_{k}^{+}=\frac{b+2 N_{k}+\sqrt{\Delta_{k}}}{2(n+b)}, \\
\text { with } b=\chi_{1 ; 1-\alpha / K}^{2} \text { and } \Delta_{k}=b\left(b+\frac{4 N_{k}\left(n-N_{k}\right)}{n}\right) .
\end{array}
$$

Example

- 220 psychiatric patients categorized as either neurotic, depressed, schizophrenic or having a personality disorder.
- Observed counts: $\mathbf{n}=(91,49,37,43)$.
- Goodman' confidence intervals at confidence level $1-\alpha=0.95$:

Diagnosis	N_{k} / n	P_{k}^{-}	P_{k}^{+}
Neurotic	0.41	0.33	0.50
Depressed	0.22	0.16	0.30
Schizophrenic	0.17	0.11	0.24
Personality disorder	0.20	0.14	0.27

From Conf. Regions to Lower Probabilties

- To each $\mathbf{p}=\left(p_{1}, \ldots, p_{K}\right)$ corresponds a probability measure \mathbb{P}_{X}.
- Consequently, $\mathcal{S}(\mathbf{N})$ may be seen as defining a family of probability measures, uniquely defined by the following lower probability measure:

$$
P^{-}(A)=\max \left(\sum_{\xi_{k} \in A} P_{k}^{-}, 1-\sum_{\xi_{k} \notin A} P_{k}^{+}\right)
$$

- P^{-}satisfies requirements R_{1} and R_{2} :
- $P^{-}(A) \xrightarrow{P} \mathbb{P}_{x}(A)$ as $n \rightarrow \infty$, for all $A \subseteq \mathcal{X}$,
- $\mathbb{P}\left(P^{-} \leq \mathbb{P}_{X}\right) \geq 1-\alpha$.

From Lower Probabilities to Belief Functions

- Is P^{-}a belief function?
- If $K=2$ or $K=3, P^{-}$is a belief function.
- Case $K=2$:

$$
\begin{gathered}
m^{\mathcal{X}}\left(\left\{\xi_{1}\right\}\right)=P_{1}^{-}, \quad m^{\mathcal{X}}\left(\left\{\xi_{2}\right\}\right)=P_{2}^{-} \\
m^{\mathcal{X}}(\mathcal{X})=1-P_{1}^{-}-P_{2}^{-} .
\end{gathered}
$$

- If $K>3, P^{-}$is not a belief function in general. We can find the most committed belief function satisfying be $l^{\mathcal{X}} \leq P^{-}$by solving a linear optimization problem.
- The solution satisfies requirements R_{1} and R_{2} : it is a predictive belief function (at confidence level $1-\alpha$).

Example 1

- $K=2, p_{1}=\mathbb{P}_{X}\left(\left\{\xi_{1}\right\}\right)=0.3$. 100 realizations of a random sample of size $n=30 \rightarrow 100$ predictive belief functions at level $1-\alpha=0.95$.

Example 2: Psychiatric Data

A	$P^{-}(A)$	bel $^{\mathcal{X} *}(A)$	$m^{\mathcal{X}^{*}}(A)$
$\left\{\xi_{1}\right\}$	0.33	0.33	0.33
$\left\{\xi_{2}\right\}$	0.16	0.14	0.14
$\left\{\xi_{1}, \xi_{2}\right\}$	0.50	0.50	0.021
$\left\{\xi_{3}\right\}$	0.11	0.097	0.097
$\left\{\xi_{1}, \xi_{3}\right\}$	0.45	0.45	0.020
$\left\{\xi_{2}, \xi_{3}\right\}$	0.28	0.28	0.036
\vdots	\vdots	\vdots	\vdots
$\left\{\xi_{1}, \xi_{3}, \xi_{4}\right\}$	0.70	0.66	0.038
$\left\{\xi_{2}, \xi_{3}, \xi_{4}\right\}$	0.50	0.48	0.019
\mathcal{X}	1	1	0

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

4. Predictive belief functions

- Formalization
- Method
- Ordered data

Case of ordered data

- Assume \mathcal{X} is ordered: $\xi_{1}<\ldots<\xi_{K}$.
- The focal sets of bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ can be constrained to be intervals $A_{k, r}=\left\{\xi_{k}, \ldots, \xi_{r}\right\}$.
- Under this additional constraint, an analytical solution to the previous optimization problem can be found:

$$
\begin{gathered}
m^{\mathcal{X} *}\left(A_{k, k}\right)=P_{k}^{-} \\
m^{\mathcal{X} *}\left(A_{k, k+1}\right)=P^{-}\left(A_{k, k+1}\right)-P^{-}\left(A_{k+1, k+1}\right)-P^{-}\left(A_{k, k}\right), \\
m^{\mathcal{X} *}\left(A_{k, r}\right)=P^{-}\left(A_{k, r}\right)-P^{-}\left(A_{k+1, r}\right)-P^{-}\left(A_{k, r-1}\right)+P^{-}\left(A_{k+1, r-1}\right)
\end{gathered}
$$

for $r>k+1$, and $m^{\mathcal{X} *}(B)=0$, for all $B \notin \mathcal{I}$.

Example: rain data

- January precipitation in Arizona (in inches), recorded during the period 1895-2004.

class ξ_{k}	n_{k}	n_{k} / n	p_{k}^{-}	p_{k}^{+}
<0.75	48	0.44	0.32	0.56
$[0.75,1.25)$	17	0.15	0.085	0.27
$[1.25,1.75)$	19	0.17	0.098	0.29
$[1.75,2.25)$	11	0.10	0.047	0.20
$[2.25,2.75)$	6	0.055	0.020	0.14
≥ 2.75	9	0.082	0.035	0.18

- Degree of belief that the precipitation in Arizona next January will exceed, say, 2.25 inches?

Rain data: Result

$m\left(A_{k, r}\right)$	1	2	3	4	5	6
1	0.32	0	0	0.13	0.11	0
2	-	0.085	0	0	0.012	0.14
3	-	-	0.098	0	0	0
4	-	-	-	0.047	0	0
5	-	-	-	-	0.020	0
6	-	-	-	-	-	0.035

- We get bel ${ }^{\mathcal{X}}(X \geq 2.25)=$ bel $^{\mathcal{X} *}\left(\left\{\xi_{5}, \xi_{6}\right\}\right)=0.055$ and $p l(X \geq 2.25)=0.317$.
- In 95% of cases, the interval $\left[b e I^{\mathcal{X}}(A), p I^{\mathcal{X}}(A)\right]$ computed using this method contains $\mathbb{P}_{X}(A)$.

Conclusions

- A "frequentist" approach, based on multinomial confidence regions, for building a belief function quantifying the uncertainty about a discrete random variable X with unknown probability distribution, based on observed data.
- Two "reasonable" properties of the solution with respect to the true frequency distribution \mathbb{P}_{X} :
- it is less committed than \mathbb{P}_{x} with some user-defined probability, and
- it converges towards \mathbb{P}_{x} in probability as the size of the sample tends to infinity.

