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Topic of this seminar

1 This course is about the theory of belief functions and its applications to
Statistics and Machine Learning.

2 What is the Theory of Belief Functions?
A formal framework for reasoning and making decisions under uncertainty.
Originates from Arthur Dempster’s seminal work on statistical inference with
lower and upper probabilities.
It was then further developed by Glenn Shafer who showed that belief
functions can be used as a general framework for representing and
reasoning with uncertain information.
Also known as Evidence theory or Dempster-Shafer theory.

3 Many applications in several fields such as artificial intelligence,
information fusion, pattern recognition, etc.

4 Recently, there has been a revived interested in its application to
Statistical Inference and Machine Learning (classification, clustering).
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Outline of the seminar

1 Representation and combination of evidence
Constructing Belief Functions from Sample Data Using Multinomial Confidence
Regions. International Journal of Approximate Reasoning 42(3):228–252, 2006.

2 Decision-making and classification
Analysis of evidence-theoretic decision rules for pattern classification. Pattern
Recognition 30(7):1095–1107, 1997.

3 Clustering
Evidential clustering of large dissimilarity data. Knowledge-Based Systems
106:179–195, 2016.

4 Learning from uncertain data
Maximum likelihood estimation from Uncertain Data in the Belief Function
Framework. IEEE Trans. on Knowledge and Data Eng. 25(1):119–130, 2013.

5 Estimation and prediction
Prediction of future observations using belief functions: a likelihood-based
approach. International Journal of Approximate Reasoning 72:71–94, 2016.
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Representation of evidence Mass functions

Mass function
Definition

Let X be a variable taking values in a finite set Ω (frame of discernment)
Evidence about X may be represented by a mass function m : 2Ω → [0,1]
such that ∑

A⊆Ω

m(A) = 1

Every A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
hereafter, unless otherwise specified
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Representation of evidence Mass functions

Example: the broken sensor

Let X be some physical quantity (e.g., a temperature), talking values in Ω.
A sensor returns a set of values A ⊂ Ω, for instance, A = [20,22].
However, the sensor may be broken, in which case the value it returns is
completely arbitrary.
There is a probability p = 0.1 that the sensor is broken.
What can we say about X? How to represent the available information
(evidence)?
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Representation of evidence Mass functions

Analysis

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	

A	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ A.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m(A) = 0.9, m(Ω) = 0.1
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Representation of evidence Mass functions

Source

A mass function m on Ω may be viewed as arising from
A set S = {s1, . . . , sr} of states (interpretations)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m
Meaning: under interpretation si , the evidence tells us that X ∈ Γ(si ), and
nothing more. The probability P({si}) is transferred to Ai = Γ(si )

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence
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Representation of evidence Mass functions

Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function mA such that mA(A) = 1

mA is equivalent to A
Special case: m?, the vacuous mass function, represents total ignorance

If each interpretation si of the evidence points to a single value of X , then
all focal sets are singletons and m is said to be Bayesian. It is equivalent
to a probability distribution
A Dempster-Shafer mass function can thus be seen as

a generalized set
a generalized probability distribution

Total ignorance is represented by the vacuous mass function m? such
that m?(Ω) = 1
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Representation of evidence Belief and plausibility functions
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Representation of evidence Belief and plausibility functions

Degrees of support and consistency

Let m be a normalized mass function on Ω induced by a source
(S,2S,P, Γ).
Let A be a subset of Ω.
One may ask:

1 To what extent does the evidence support the proposition ω ∈ A?
2 To what extent is the evidence consistent with this proposition?

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!
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Representation of evidence Belief and plausibility functions

Belief function
Definition and interpretation

For any A ⊆ Ω, the probability that the evidence implies (supports) the
proposition X ∈ A is

Bel(A) = P({s ∈ S|Γ(s) ⊆ A}) =
∑
B⊆A

m(B).

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Bel : A→ Bel(A) is called a belief function.
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Representation of evidence Belief and plausibility functions

Plausibility function

The probability that the evidence is consistent with (does not contradict)
the proposition X ∈ A

Pl(A) = P({s ∈ S|Γ(s) ∩ A 6= ∅}) = 1− Bel(A)

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Pl : A→ Pl(A) is called a plausibility function.
The function pl : ω → Pl({ω}) is called a contour function.
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m = m? is
vacuous: then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then, Bel(A) = Pl(A) for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Broken sensor example

From
m(A) = 0.9, m(Ω) = 0.1

we get
Bel(A) = m(A) = 0.9, Pl(A) = m(A) + m(Ω) = 1

Bel(A) = 0, Pl(A) = m(Ω) = 0.1

Bel(Ω) = Pl(Ω) = 1

We observe that
Bel(A ∪ A) ≥ Bel(A) + Bel(A)

Pl(A ∪ A) ≤ Pl(A) + Pl(A)

Bel and Pl are non additive measures.
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Representation of evidence Belief and plausibility functions

Characterization of belief functions

Function Bel : 2Ω → [0,1] is a completely monotone capacity: it verifies
Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Representation of evidence Belief and plausibility functions

Relations between m, Bel et Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel et Pl are thus three equivalent representations of
a piece of evidence or, equivalently
a state of belief induced by this evidence
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Representation of evidence Belief and plausibility functions

Least Commitment Principle

It is sometimes interesting to compare two mass functions with respect to
their information content.
Let m1 and m2 be two mass functions on Ω. We say that m1 is less
committed than m2 (noted m1 w m2) if

Bel1(A) ≤ Bel2(A), ∀A ⊆ Ω

or, equivalently,

Pl1(A) ≥ Pl2(A), ∀A ⊆ Ω

Interpretation: m1 and m2 are consistent, but m1 contains less
information than m2.
Least Commitment Principle: when several belief functions are
compatible with a set of constraints, the least informative according to
some informational ordering (if it exists) should be selected.
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Relations with alternative theories Possibility theory
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Relations with alternative theories Possibility theory

Consonant belief function

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant
The following relations then hold, for all A,B ⊆ Ω,

Pl(A ∪ B) = max (Pl(A),Pl(B))

Bel(A ∩ B) = min (Bel(A),Bel(B))

Pl is this a possibility measure, and Bel is the dual necessity measure

Thierry Denœux (UTC/HEUDIASYC) Belief Functions Seminar BJUT, May 2017 22 / 73



Relations with alternative theories Possibility theory

Contour function

The contour function of a belief function Bel is defined by

pl(ω) = Pl({ω}), ∀ω ∈ Ω

When Bel is consonant, it can be recovered from its contour function,

Pl(A) = max
ω∈A

pl(ω).

The contour function is then a possibility distribution
The theory of belief function can thus be considered as more expressive
than possibility theory
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Relations with alternative theories Possibility theory

From the contour function to the mass function

Let pl be a contour on the frame Ω = {ω1, . . . , ωn}, with elements
arranged by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Then, the corresponding mass function m is

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1,
m(Ω) = pl(ωn).
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Relations with alternative theories Possibility theory

Example

Consider, for instance, the following contour distribution defined on the
frame Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.

Thierry Denœux (UTC/HEUDIASYC) Belief Functions Seminar BJUT, May 2017 25 / 73



Relations with alternative theories Imprecise probabilities
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Relations with alternative theories Imprecise probabilities

Credal set

A probability measure P on Ω is said to be compatible with Bel if

Bel(A) ≤ P(A)

for all A ⊆ Ω

Equivalently, P(A) ≤ Pl(A) for all A ⊆ Ω

The set P(m) of probability measures compatible with m is called the
credal set of m

P(Bel) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A))}
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Relations with alternative theories Imprecise probabilities

Construction of P(Bel)

An arbitrary element of P(Bel) can be obtained by distributing each mass
m(A) among the elements of A.
More precisely, let α(ω,A) be the fraction of m(A) allocated to the
element ω. We have ∑

ω∈A

α(ω,A) = m(A).

By summing up the numbers α(ω,A) for each ω, we get a probability
mass function on Ω,

pα(ω) =
∑
A3ω

α(ω,A).

It can be verified that

Pα(A) =
∑
ω∈A

pα(ω) ≥ Bel(A),

for all A ⊆ Ω.
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Relations with alternative theories Imprecise probabilities

Belief functions are coherent lower probabilities

It can be shown (Dempster, 1967) that any element of the credal set
P(Bel) can be obtained in that way.
Furthermore, the bounds in the inequalities Bel(A) ≤ P(A) and
P(A) ≤ Pl(A) are attained. We thus have, for all A ⊆ Ω,

Bel(A) = min
P∈P(Bel)

P(A)

Pl(A) = max
P∈P(Bel)

P(A)

We say that Bel is a coherent lower probability.
Not all lower envelopes of sets of probability measures are belief
functions!
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Relations with alternative theories Imprecise probabilities

A counterexample

Suppose a fair coin is tossed twice, in such a way that the outcome of the
second toss may depend on the outcome of the first toss.
The outcome of the experiment can be denoted by
Ω = {(H,H), (H,T ), (T ,H), (T ,T )}.
Let H1 = {(H,H), (H,T )} and H2 = {(H,H), (T ,H)} the events that we
get Heads in the first and second toss, respectively.
Let P be the set of probability measures on Ω which assign
P(H1) = P(H2) = 1/2 and have an arbitrary degree of dependence
between tosses.
Let P∗ be the lower envelope of P.
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Relations with alternative theories Imprecise probabilities

A counterexample – continued

It is clear that P∗(H1) = 1/2, P∗(H2) = 1/2 and P∗(H1 ∩ H2) = 0 (as the
occurrence Heads in the first toss may never lead to getting Heads in the
second toss).
Now, in the case of complete positive dependence,
P(H1 ∪ H2) = P(H1) = 1/2, hence P∗(H1 ∪ H2) ≤ 1/2.
We thus have

P∗(H1 ∪ H2) < P∗(H1) + P∗(H2)− P∗(H1 ∩ H2),

which violates the complete monotonicity condition for k = 2.
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Relations with alternative theories Imprecise probabilities

Two different theories

Mathematically, the notion of coherent lower probability is thus more
general than that of belief function.
However, the definition of the credal set associated with a belief function
is purely formal, as these probabilities have no particular interpretation in
our framework.
The theory of belief functions is not a theory of imprecise probabilities.
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Combination of evidence Dempster’s rule
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Combination of evidence Dempster’s rule

Broken sensor example continued

The first item of evidence gave us: m1(A) = 0.9, m1(Ω) = 0.1.
Another sensor returns another set of values B, and it is in working
condition with probability 0.8.
This second piece if evidence can be represented by the mass function:
m2(B) = 0.8, m2(Ω) = 0.2
How to combine these two pieces of evidence?
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Combination of evidence Dempster’s rule

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
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Combination of evidence Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) A ∩ B, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(A ∩ B) = 0.72
m(A) = 0.18
m(B) = 0.08
m(Ω) = 0.02

Thierry Denœux (UTC/HEUDIASYC) Belief Functions Seminar BJUT, May 2017 37 / 73



Combination of evidence Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs
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Combination of evidence Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) ∅, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(∅) = 0
m(A) = 0.18/0.28 ≈ 0.64
m(B) = 0.08/0.28 ≈ 0.29
m(Ω) = 0.02/0.28 ≈ 0.07
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Combination of evidence Dempster’s rule

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅

and (m1 ⊕m2)(∅) = 0
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Combination of evidence Dempster’s rule

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6
(m1 ⊕m2)({b}) = 0.2/0.6

(m1 ⊕m2)({a,b}) = 0.08/0.6
(m1 ⊕m2)({c}) = 0.15/0.6.
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Combination of evidence Dempster’s rule

Dempster’s rule
Properties

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Combination of evidence Dempster’s rule

Dempster’s conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mA. Notation:

m ⊕mA = m(·|A)

It can be shown that
Pl(B|A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and mA is a logical mass function, then m ⊕mA is a Bayesian mass
function corresponding to the conditioning of m by A
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Combination of evidence Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Combination of evidence Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have

(Q1 ⊕Q2)(A) =
1

1− κ
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1

In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 ∝ (1− κ)−1pl1pl2.
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Combination of evidence Disjunctive rule
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Combination of evidence Disjunctive rule

Disjunctive rule
Definition and justification

Let (S1,P1, Γ1) and (S2,P2, Γ2) be sources associated to two pieces of
evidence
If interpretation sk ∈ Sk holds and piece of evidence k is reliable, then we
can conclude that X ∈ Γk (sk )

If interpretation s ∈ S1 and s2 ∈ S2 both hold and we assume that at least
one of the two pieces of evidence is reliable, then we can conclude that
X ∈ Γ1(s1) ∪ Γ2(s2)

This leads to the TBM disjunctive rule:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω
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Combination of evidence Disjunctive rule

Disjunctive rule
Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {a,b},0.2 {b, c},0.25
m1 {a,b},0.2 {a,b},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a, c},0.03 {a,b, c},0.12 {a, c},0.15

The resulting mass function is

(m1 ∪m2)({a,b}) = 0.05 + 0.2 + 0.02 + 0.08 = 0.35
(m1 ∪m2)({b, c}) = 0.25
(m1 ∪m2)({a, c}) = 0.03 + 0.15 = 0.18

(m1 ∪m2)(Ω) = 0.1 + 0.12 = 0.22.
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Combination of evidence Disjunctive rule

Disjunctive rule
Properties

Commutativity, associativity.
No neutral element.
m? is an absorbing element.
Expression using belief functions:

Bel1 ∪ Bel2 = Bel1 · Bel2
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Combination of evidence Dubois-Prade rule

Definition

In general, the disjunctive rule may be preferred in case of heavy conflict
between the different pieces of evidence.
An alternative rule, which is somehow intermediate between the
disjunctive and conjunctive rules, has been proposed by Dubois and
Prade (1988). It is defined as follows:

(m1 ]m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}

m1(B)m2(C),

for all A ⊆ Ω, A 6= ∅, and (m1 ]m2)(∅) = 0.
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Combination of evidence Dubois-Prade rule

Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {b},0.2 {b, c},0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

(m1 ]m2)({a,b}) = 0.05 + 0.08 = 0.13
(m1 ]m2)({b}) = 0.2

(m1 ]m2)({b, c}) = 0.25
(m1 ]m2)({a}) = 0.02 + 0.03 + 0.12 = 0.17
(m1 ]m2)({c}) = 0.15

(m1 ]m2)(Ω) = 0.1.
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Combination of evidence Dubois-Prade rule

Properties

The DP rule boils down to the conjunctive and disjunctive rules when,
respectively, the degree of conflict is equal to zero and one.
In other cases, it has some intermediate behavior.
It is not associative. If several pieces of evidence are available, they
should be combined at once using an obvious n-ary extension of the
above formula.
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Predictive belief functions

Introductory example

Consider an urn with white (ξ1), red (ξ2) and black (ξ3) balls in proportions
p1, p2 and p3.
Let X ∈ X = {ξ1, ξ2, ξ3} be the color of a ball that will be drawn from the
urn: belief on X?
Two cases:

1 We know the proportions pk : then belX ({ξk}) = pk (Hacking’s Principle);
2 We have observed the result of n drawings from the urn with replacement,

e.g. 5 white balls, 3 red balls and 2 black balls.

How to build a belief function from data in the 2nd case ?
A solution was described in

T. Denoeux. Constructing Belief Functions from Sample Data Using
Multinomial Confidence Regions. International Journal of Approximate
Reasoning 42(3):228-252, 2006.
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Predictive belief functions Formalization
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Predictive belief functions Formalization

Formalization

Discrete variable X ∈ X = {ξ1, . . . , ξK} defined as the result of a random
experiment.
X is characterized by an unknown frequency (probability) distribution PX .
PX (A): limit frequency of the event A ⊆ X in an infinite sequence of trials.
We have observed a realization xn of an iid random sample
Xn = (X1, . . . ,Xn) with parent distribution PX .
Problem: build a belief function belX [xn] with well-defined properties
with respect to the unknown frequency distribution PX → predictive belief
function.
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Predictive belief functions Formalization

Approach

Let belX [xn] be the BF on X after observing a realization xn of random
sample Xn = (X1, . . . ,Xn).
Which properties should belX [xn] verify with respect to PX ?
Hacking’s principle (1965): if PX is know, then belX [xn] = PX .
Weak version:

∀A ⊆ X , belX [Xn](A)
P−→ PX (A), as n→∞.

(Requirement R1)
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Predictive belief functions Formalization

Approach (continued)

Least Commitment Principle: for fixed n, belX [xn] should be less
informative that PX :

belX [xn](A) ≤ PX (A), ∀A ⊆ X .

This condition is too restrictive (it leads to the vacuous BF).
Weaker condition ((Requirement R2):

P(belX [Xn] ≤ PX ) ≥ 1− α,

for some α ∈ (0,1).
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Predictive belief functions Formalization

Meaning of Requirement R2

xn = (x1, . . . , xn)→ belX [xn]

x′n = (x ′1, . . . , x
′
n)→ belX [x′n]

x′′n = (x ′′1 , . . . , x
′′
n )→ belX [x′′n ]

...

As the number of realizations of the random sample tends to∞, the
proportion of belief functions less committed than PX should tend to 1−α.
To achieve this property: use of a multinomial confidence region.
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Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions

2 Relations with alternative theories
Possibility theory
Imprecise probabilities

3 Combination of evidence
Dempster’s rule
Disjunctive rule
Dubois-Prade rule

4 Predictive belief functions
Formalization
Method
Ordered data

Thierry Denœux (UTC/HEUDIASYC) Belief Functions Seminar BJUT, May 2017 61 / 73



Predictive belief functions Method

Multinomial Confidence Region

Let Nk = #{i |Xi = ξk}. Vector N = (N1, . . . ,NK ) has a multinomial
distributionM(n,p1, . . . ,pK ), with pk = PX ({ξk}).
Let S(N) ⊆ [0,1]K a random region of [0,1]K . It is a confidence region for
p at level 1− α if

P(S(N) 3 p) ≥ 1− α.

S(N) is an asymptotic confidence region if the above inequality holds in
the limit as n→∞.
Simultaneous confidence intervals: S(N) = [P−1 ,P

+
1 ]× . . .× [P−K ,P

+
K ]
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Predictive belief functions Method

Multinomial Conf. Region (cont.)

Goodman’s simultaneous confidence intervals:

P−k =
b + 2Nk −

√
∆k

2(n + b)
,

P+
k =

b + 2Nk +
√

∆k

2(n + b)
,

with b = χ2
1;1−α/K and ∆k = b

(
b + 4Nk (n−Nk )

n

)
.
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Predictive belief functions Method

Example

220 psychiatric patients categorized as either neurotic, depressed,
schizophrenic or having a personality disorder.
Observed counts: n = (91,49,37,43).
Goodman’ confidence intervals at confidence level 1− α = 0.95:

Diagnosis Nk/n P−k P+
k

Neurotic 0.41 0.33 0.50
Depressed 0.22 0.16 0.30
Schizophrenic 0.17 0.11 0.24
Personality disorder 0.20 0.14 0.27

Thierry Denœux (UTC/HEUDIASYC) Belief Functions Seminar BJUT, May 2017 64 / 73



Predictive belief functions Method

From Conf. Regions to Lower Probabilties

To each p = (p1, . . . ,pK ) corresponds a probability measure PX .
Consequently, S(N) may be seen as defining a family of probability
measures, uniquely defined by the following lower probability measure:

P−(A) = max

∑
ξk∈A

P−k ,1−
∑
ξk 6∈A

P+
k


P− satisfies requirements R1 and R2:

P−(A)
P−→ PX (A) as n→∞, for all A ⊆ X ,

P(P− ≤ PX ) ≥ 1− α.
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Predictive belief functions Method

From Lower Probabilities to Belief Functions

Is P− a belief function ?
If K = 2 or K = 3, P− is a belief function.
Case K = 2:

mX ({ξ1}) = P−1 , mX ({ξ2}) = P−2

mX (X ) = 1− P−1 − P−2 .

If K > 3, P− is not a belief function in general. We can find the most
committed belief function satisfying belX ≤ P− by solving a linear
optimization problem.
The solution satisfies requirements R1 and R2: it is a predictive belief
function (at confidence level 1− α).
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Predictive belief functions Method

Example 1

K = 2, p1 = PX ({ξ1}) = 0.3. 100 realizations of a random sample of size
n = 30→ 100 predictive belief functions at level 1− α = 0.95.

(1,0,0) (0,1,0)

(0,0,1)

PX
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Predictive belief functions Method

Example 2: Psychiatric Data

A P−(A) belX∗(A) mX∗(A)
{ξ1} 0.33 0.33 0.33
{ξ2} 0.16 0.14 0.14
{ξ1, ξ2} 0.50 0.50 0.021
{ξ3} 0.11 0.097 0.097
{ξ1, ξ3} 0.45 0.45 0.020
{ξ2, ξ3} 0.28 0.28 0.036

...
...

...
...

{ξ1, ξ3, ξ4} 0.70 0.66 0.038
{ξ2, ξ3, ξ4} 0.50 0.48 0.019
X 1 1 0
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Predictive belief functions Ordered data
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Predictive belief functions Ordered data

Case of ordered data

Assume X is ordered: ξ1 < . . . < ξK .
The focal sets of belX [xn] can be constrained to be intervals
Ak,r = {ξk , . . . , ξr}.
Under this additional constraint, an analytical solution to the previous
optimization problem can be found:

mX∗(Ak,k ) = P−k ,

mX∗(Ak,k+1) = P−(Ak,k+1)− P−(Ak+1,k+1)− P−(Ak,k ),

mX∗(Ak,r ) = P−(Ak,r )− P−(Ak+1,r )− P−(Ak,r−1) + P−(Ak+1,r−1)

for r > k + 1, and mX∗(B) = 0, for all B 6∈ I.
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Predictive belief functions Ordered data

Example: rain data

January precipitation in Arizona (in inches), recorded during the period
1895-2004.

class ξk nk nk/n p−k p+
k

< 0.75 48 0.44 0.32 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.17 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,2.75) 6 0.055 0.020 0.14
≥ 2.75 9 0.082 0.035 0.18

Degree of belief that the precipitation in Arizona next January will exceed,
say, 2.25 inches?
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Predictive belief functions Ordered data

Rain data: Result

m(Ak,r ) 1 2 3 4 5 6
1 0.32 0 0 0.13 0.11 0
2 - 0.085 0 0 0.012 0.14
3 - - 0.098 0 0 0
4 - - - 0.047 0 0
5 - - - - 0.020 0
6 - - - - - 0.035

We get belX (X ≥ 2.25) = belX∗({ξ5, ξ6}) = 0.055 and
pl(X ≥ 2.25) = 0.317.
In 95 % of cases, the interval [belX (A),plX (A)] computed using this
method contains PX (A).
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Predictive belief functions Ordered data

Conclusions

A “frequentist” approach, based on multinomial confidence regions, for
building a belief function quantifying the uncertainty about a discrete
random variable X with unknown probability distribution, based on
observed data.
Two “reasonable” properties of the solution with respect to the true
frequency distribution PX :

it is less committed than PX with some user-defined probability, and
it converges towards PX in probability as the size of the sample tends to
infinity.
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