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Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions

2 Relations with alternative theories
Possibility theory
Imprecise probabilities

3 Combination of evidence
Dempster’s rule
Disjunctive rule
Dubois-Prade rule

Thierry Denœux (UTC/HEUDIASYC) Representation and combination of evidence BJUT, June 2016 3 / 49



Representation of evidence Mass functions

Mass function
Definition

Let X be a variable taking values in a finite set Ω (frame of discernment)
Evidence about X may be represented by a mass function m : 2Ω → [0,1]
such that ∑

A⊆Ω

m(A) = 1

Every A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
hereafter, unless otherwise specified
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Representation of evidence Mass functions

Example

When traveling by train, you find a page of a used newspaper, with an
article announcing rain for tomorrow
The date of the newspaper is missing. If is today’s newspaper, you know
that it will rain tomorrow (assuming the forecast is perfectly reliable). If
not, you know nothing
Assume your subjective probability that this is today’s paper is 0.8
The frame of discernment is Ω = {rain,¬rain}
The evidence can be represented by the following mass function

m({rain}) = 0.8, m({rain,¬rain}) = 0.2

The mass 0.2 is not committed to {¬rain}, because there is no evidence
that it will not rain
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Representation of evidence Mass functions

Mass function
Source

(S,$2S,P)$ Ω"Γ$
drunk$(0.2)$

not$drunk$(0.8)$
Peter$

John$

Mary$

A mass function m on Ω may be viewed as arising from
A set S = {s1, . . . , sr} of states (interpretations)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m
Meaning: under interpretation si , the evidence tells us that X ∈ Γ(si ), and
nothing more. The probability P({si}) is transferred to Ai = Γ(si )

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence
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Representation of evidence Mass functions

Mass functions
Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function mA such that mA(A) = 1

mA is equivalent to A
Special case: m?, the vacuous mass function, represents total ignorance

If each interpretation si of the evidence points to a single value of X , then
all focal sets are singletons and m is said to be Bayesian. It is equivalent
to a probability distribution
A Dempster-Shafer mass function can thus be seen as

a generalized set
a generalized probability distribution
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Representation of evidence Belief and plausibility functions

Belief function

If interpretation s holds and Γ(s) ⊆ A for some A ⊆ Ω, we say that the
evidence supports A.
The probability that the evidence supports A is thus

Bel(A) = P({s ∈ S|Γ(s) ⊆ A})

=
∑
B⊆A

m(B).

It can be interpreted as the total degree of support in A, or as a degree of
belief that the truth is in A.
The function Bel : 2Ω → [0,1] is called a belief function
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Representation of evidence Belief and plausibility functions

Plausibility function

We can also consider the degree of support in A,

Bel(A) =
∑
B⊆A

m(B) =
∑

B∩A=∅

m(B)

It is a measure of doubt in A (we doubt A if the complement of A is
supported).
The plausibility of A is defined as

Pl(A) = 1− Bel(A) =
∑

B∩A 6=∅

m(B).

It is high when the complement A is not supported by the evidence.
The function Pl : 2Ω → [0,1] is called a plausibility function
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty on a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m = m? is
vacuous: then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then, Bel(A) = Pl(A) for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Example

A ∅ {rain} {¬rain} {rain,¬rain}
m(A) 0 0.8 0 0.2

Bel(A) 0 0.8 0 1
pl(A) 0 1 0.2 1

We observe that

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)
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Representation of evidence Belief and plausibility functions

Characterization of belief and plausibility functions
Belief function

Function Bel is a completely monotone capacity: it verifies Bel(∅) = 0,
Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω

Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω
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Representation of evidence Belief and plausibility functions

Characterization of belief and plausibility functions
Plausibility function

A function Pl : 2Ω → [0,1] is a plausibility function iff it is a completely
alternating capacity, i.e., iff it satisfies the following conditions:

1 Pl(∅) = 0;
2 Pl(Ω) = 1;
3 For any k ≥ 2 and any collection A1, . . . ,Ak of subsets of Ω,

Pl

(
k⋂

i=1

Ai

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
.
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Representation of evidence Belief and plausibility functions

Wine/water paradox revisited

Let X denote the ratio of wine to water. All we know is that X ∈ [1/3,3].
This is modeled by the logical mass function mX such that
mX ([1/3,3]) = 1. Consequently:

BelX ([2,3]) = 0, PlX ([2,3]) = 1

Now, let Y = 1/X denote the ratio of water to wine. All we know is that
Y ∈ [1/3,3]. This is modeled by the logical mass function mY such that
mY ([1/3,3]) = 1. Consequently:

BelY ([1/3,1/2]) = 0, PlY ([1/3,1/2]) = 1
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Representation of evidence Belief and plausibility functions

Relations between m, Bel et Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel et Pl are thus three equivalent representations of
a piece of evidence or, equivalently
a state of belief induced by this evidence
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Relations with alternative theories Possibility theory
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Relations with alternative theories Possibility theory

Consonant belief function

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant
The following relations then hold, for all A,B ⊆ Ω,

Pl(A ∪ B) = max (Pl(A),Pl(B))

Bel(A ∩ B) = min (Bel(A),Bel(B))

Pl is this a possibility measure, and Bel is the dual necessity measure
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Relations with alternative theories Possibility theory

Contour function

The contour function of a belief function Bel is defined by

pl(ω) = Pl({ω}), ∀ω ∈ Ω

When Bel is consonant, it can be recovered from its contour function,

Pl(A) = max
ω∈A

pl(ω).

The contour function is then a possibility distribution
The theory of belief function can thus be considered as more expressive
than possibility theory

Thierry Denœux (UTC/HEUDIASYC) Representation and combination of evidence BJUT, June 2016 20 / 49



Relations with alternative theories Possibility theory

From the contour function to the mass function

Let pl be a contour on the frame Ω = {ω1, . . . , ωn}, with elements
arranged by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Then, the corresponding mass function m is

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1,
m(Ω) = pl(ωn).
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Relations with alternative theories Possibility theory

Example

Consider, for instance, the following contour distribution defined on the
frame Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Relations with alternative theories Imprecise probabilities
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Relations with alternative theories Imprecise probabilities

Credal set

A probability measure P on Ω is said to be compatible with Bel if

Bel(A) ≤ P(A)

for all A ⊆ Ω

Equivalently, P(A) ≤ Pl(A) for all A ⊆ Ω

The set P(m) of probability measures compatible with m is called the
credal set of m

P(Bel) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A))}
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Relations with alternative theories Imprecise probabilities

Construction of P(Bel)

An arbitrary element of P(Bel) can be obtained by distributing each mass
m(A) among the elements of A.
More precisely, let α(ω,A) be the fraction of m(A) allocated to the
element ω. We have ∑

ω∈A

α(ω,A) = m(A).

By summing up the numbers α(ω,A) for each ω, we get a probability
mass function on Ω,

pα(ω) =
∑
A3ω

α(ω,A).

It can be verified that

Pα(A) =
∑
ω∈A

pα(ω) ≥ Bel(A),

for all A ⊆ Ω.
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Relations with alternative theories Imprecise probabilities

Belief functions are coherent lower probabilities

It can be shown (Dempster, 1967) that any element of the credal set
P(Bel) can be obtained in that way.
Furthermore, the bounds in the inequalities Bel(A) ≤ P(A) and
P(A) ≤ Pl(A) are attained. We thus have, for all A ⊆ Ω,

Bel(A) = min
P∈P(Bel)

P(A)

Pl(A) = max
P∈P(Bel)

P(A)

We say that Bel is a coherent lower probability.
Not all lower envelopes of sets of probability measures are belief
functions!
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Relations with alternative theories Imprecise probabilities

A counterexample

Suppose a fair coin is tossed twice, in such a way that the outcome of the
second toss may depend on the outcome of the first toss.
The outcome of the experiment can be denoted by
Ω = {(H,H), (H,T ), (T ,H), (T ,T )}.
Let H1 = {(H,H), (H,T )} and H2 = {(H,H), (T ,H)} the events that we
get Heads in the first and second toss, respectively.
Let P be the set of probability measures on Ω which assign
P(H1) = P(H2) = 1/2 and have an arbitrary degree of dependence
between tosses.
Let P∗ be the lower envelope of P.
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Relations with alternative theories Imprecise probabilities

A counterexample – continued

It is clear that P∗(H1) = 1/2, P∗(H2) = 1/2 and P∗(H1 ∩ H2) = 0 (as the
occurrence Heads in the first toss may never lead to getting Heads in the
second toss).
Now, in the case of complete positive dependence,
P(H1 ∪ H2) = P(H1) = 1/2, hence P∗(H1 ∪ H2) ≤ 1/2.
We thus have

P∗(H1 ∪ H2) < P∗(H1) + P∗(H2)− P∗(H1 ∩ H2),

which violates the complete monotonicity condition for k = 2.
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Relations with alternative theories Imprecise probabilities

Two different theories

Mathematically, the notion of coherent lower probability is thus more
general than that of belief function.
However, the definition of the credal set associated with a belief function
is purely formal, as these probabilities have no particular interpretation in
our framework.
The theory of belief functions is not a theory of imprecise probabilities.
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Combination of evidence Dempster’s rule
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Combination of evidence Dempster’s rule

Dempster’s rule
Rain example continued

The first item of evidence gave us: m1({rain}) = 0.8, m1(Ω) = 0.2
New piece of evidence: upon arriving in the train station, you watch the
weather bulletin on TV, saying that it will not rain tomorrow, and the
forecast has 60 % reliability.
This second piece if evidence can be represented by the mass function:
m2({¬rain}) = 0.6, m2(Ω) = 0.4
How to combine these two pieces of evidence?
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Combination of evidence Dempster’s rule

Dempster’s rule
Justification

(S1,	  P1)	  

Ω	
Γ1	  

drunk	  (0.2)	  

not	  drunk	  (0.8)	  

Peter	  

John	  

Mary	  

(S2,	  P2)	  

Γ2	  

cleaned	  (0.6)	  

not	  cleaned	  
(0.4)	  

If interpretations s1 ∈ S1 and s2 ∈ S2
both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are
independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1
and s2 cannot hold simultaneously
The joint probability distribution on
S1 ×S2 must be conditioned to eliminate
such pairs
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Combination of evidence Dempster’s rule

Computation

reliable not reliable
(0.6) (0.4)

today (0.8) ∅, 0.48 {rain}, 0.32
not today (0.2) {¬rain}, 0.12 Ω, 0.08

We then get the following combined mass function,

m({rain}) = 0.32/0.52 ≈ 0.62
m({¬rain}) = 0.12/0.52 ≈ 0.23

m(Ω) = 0.08/0.52 ≈ 0.15
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Combination of evidence Dempster’s rule

Dempster’s rule
Definition

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅

and (m1 ⊕m2)(∅) = 0
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Combination of evidence Dempster’s rule

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6
(m1 ⊕m2)({b}) = 0.2/0.6

(m1 ⊕m2)({a,b}) = 0.08/0.6
(m1 ⊕m2)({c}) = 0.15/0.6.
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Combination of evidence Dempster’s rule

Dempster’s rule
Properties

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Combination of evidence Dempster’s rule

Dempster’s conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mA. Notation:

m ⊕mA = m(·|A)

It can be shown that
Pl(B|A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and mA is a logical mass function, then m ⊕mA is a Bayesian mass
function corresponding to the conditioning of m by A
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Combination of evidence Dempster’s rule

Recovering Jeffrey’s conditioning

Jeffrey’s conditioning is also recovered as a special case where:
We start with an additive probability measure P;
Given a partition E1, . . . ,En, we receive new evidence, represented by a
belief function Bel whose focal sets are all unions of Ei ’s.

The combined belief function P ⊕Bel is Bayesian. Let qi = (P ⊕Bel)(Ei ).
Then, for all A ⊆ Ω,

(P ⊕ Bel)(A) =
n∑

i=1

qiP(A|Ei )
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Combination of evidence Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Combination of evidence Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have

(Q1 ⊕Q2)(A) =
1

1− κ
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1

In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 ∝ (1− κ)−1pl1pl2.
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Combination of evidence Disjunctive rule
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Combination of evidence Disjunctive rule

Disjunctive rule
Definition and justification

Let (S1,P1, Γ1) and (S2,P2, Γ2) be sources associated to two pieces of
evidence
If interpretation sk ∈ Sk holds and piece of evidence k is reliable, then we
can conclude that X ∈ Γk (sk )

If interpretation s ∈ S1 and s2 ∈ S2 both hold and we assume that at least
one of the two pieces of evidence is reliable, then we can conclude that
X ∈ Γ1(s1) ∪ Γ2(s2)

This leads to the TBM disjunctive rule:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω
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Combination of evidence Disjunctive rule

Disjunctive rule
Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {a,b},0.2 {b, c},0.25
m1 {a,b},0.2 {a,b},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a, c},0.03 {a,b, c},0.12 {a, c},0.15

The resulting mass function is

(m1 ∪m2)({a,b}) = 0.05 + 0.2 + 0.02 + 0.08 = 0.35
(m1 ∪m2)({b, c}) = 0.25
(m1 ∪m2)({a, c}) = 0.03 + 0.15 = 0.18

(m1 ∪m2)(Ω) = 0.1 + 0.12 = 0.22.
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Combination of evidence Disjunctive rule

Disjunctive rule
Properties

Commutativity, associativity.
No neutral element.
m? is an absorbing element.
Expression using belief functions:

Bel1 ∪ Bel2 = Bel1 · Bel2
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Combination of evidence Dubois-Prade rule

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions

2 Relations with alternative theories
Possibility theory
Imprecise probabilities

3 Combination of evidence
Dempster’s rule
Disjunctive rule
Dubois-Prade rule
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Combination of evidence Dubois-Prade rule

Definition

In general, the disjunctive rule may be preferred in case of heavy conflict
between the different pieces of evidence.
An alternative rule, which is somehow intermediate between the
disjunctive and conjunctive rules, has been proposed by Dubois and
Prade (1988). It is defined as follows:

(m1 ]m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}

m1(B)m2(C),

for all A ⊆ Ω, A 6= ∅, and (m1 ]m2)(∅) = 0.
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Combination of evidence Dubois-Prade rule

Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {b},0.2 {b, c},0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

(m1 ]m2)({a,b}) = 0.05 + 0.08 = 0.13
(m1 ]m2)({b}) = 0.2

(m1 ]m2)({b, c}) = 0.25
(m1 ]m2)({a}) = 0.02 + 0.03 + 0.12 = 0.17
(m1 ]m2)({c}) = 0.15

(m1 ]m2)(Ω) = 0.1.
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Combination of evidence Dubois-Prade rule

Properties

The DP rule boils down to the conjunctive and disjunctive rules when,
respectively, the degree of conflict is equal to zero and one.
In other cases, it has some intermediate behavior.
It is not associative. If several pieces of evidence are available, they
should be combined at once using an obvious n-ary extension of the
above formula.
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