Representation and combination of evidence

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253)
https://www.hds.utc.fr/~tdenoeux
Beijing University of Technology, Beijing, China
June-July 2016

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment)
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every A of Ω such that $m(A)>0$ is a focal set of m
- m is said to be normalized if $m(\emptyset)=0$. This property will be assumed hereafter, unless otherwise specified

Example

- When traveling by train, you find a page of a used newspaper, with an article announcing rain for tomorrow
- The date of the newspaper is missing. If is today's newspaper, you know that it will rain tomorrow (assuming the forecast is perfectly reliable). If not, you know nothing
- Assume your subjective probability that this is today's paper is 0.8
- The frame of discernment is $\Omega=\{$ rain, \neg rain $\}$
- The evidence can be represented by the following mass function

$$
m(\{\text { rain }\})=0.8, \quad m(\{\text { rain }, \neg \text { rain }\})=0.2
$$

- The mass 0.2 is not committed to $\{\neg$ rain $\}$, because there is no evidence that it will not rain

Mass function

Source

- A mass function m on Ω may be viewed as arising from
- A set $S=\left\{s_{1}, \ldots, s_{r}\right\}$ of states (interpretations)
- A probability measure P on S
- A multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega}$
- The four-tuple $\left(S, 2^{S}, P, \Gamma\right)$ is called a source for m
- Meaning: under interpretation s_{i}, the evidence tells us that $X \in \Gamma\left(s_{i}\right)$, and nothing more. The probability $P\left(\left\{s_{i}\right\}\right)$ is transferred to $A_{i}=\Gamma\left(s_{i}\right)$
- $m(A)$ is the probability of knowing that $X \in A$, and nothing more, given the available evidence

Mass functions

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_{A} such that $m_{A}(A)=1$
- m_{A} is equivalent to A
- Special case: m_{7}, the vacuous mass function, represents total ignorance
- If each interpretation s_{i} of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
- a generalized set
- a generalized probability distribution

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Belief function

- If interpretation s holds and $\Gamma(s) \subseteq A$ for some $A \subseteq \Omega$, we say that the evidence supports A.
- The probability that the evidence supports A is thus

$$
\begin{aligned}
\operatorname{Bel}(A) & =P(\{s \in S \mid \Gamma(s) \subseteq A\}) \\
& =\sum_{B \subseteq A} m(B) .
\end{aligned}
$$

- It can be interpreted as the total degree of support in A, or as a degree of belief that the truth is in A.
- The function Bel : $2^{\Omega} \rightarrow[0,1]$ is called a belief function

Plausibility function

- We can also consider the degree of support in \bar{A},

$$
\operatorname{Bel}(\bar{A})=\sum_{B \subseteq \bar{A}} m(B)=\sum_{B \cap A=\emptyset} m(B)
$$

- It is a measure of doubt in A (we doubt A if the complement of A is supported).
- The plausibility of A is defined as

$$
P l(A)=1-B e l(\bar{A})=\sum_{B \cap A \neq \emptyset} m(B) .
$$

It is high when the complement \bar{A} is not supported by the evidence.

- The function $P I: 2^{\Omega} \rightarrow[0,1]$ is called a plausibility function

Two-dimensional representation

- The uncertainty on a proposition A is represented by two numbers: $\operatorname{Bel}(A)$ and $P l(A)$, with $\operatorname{Bel}(A) \leq P I(A)$
- The intervals $[\operatorname{Bel}(A), P l(A)]$ have maximum length when $m=m_{?}$ is vacuous: then, $\operatorname{Bel}(A)=0$ for all $A \neq \Omega$, and $P l(A)=1$ for all $A \neq \emptyset$.
- The intervals $[\operatorname{Bel}(A), P I(A)]$ have minimum length when m is Bayesian. Then, $\operatorname{Bel}(A)=P l(A)$ for all A, and $B e l$ is a probability measure.

Example

A	\emptyset	$\{$ rain $\}$	$\{\neg$ rain $\}$	$\{$ rain,, rain $\}$
$m(A)$	0	0.8	0	0.2
$\operatorname{Bel}(A)$	0	0.8	0	1
$p l(A)$	0	1	0.2	1

- We observe that

$$
\begin{gathered}
B e l(A \cup B) \geq B e l(A)+B e l(B)-\operatorname{Bel}(A \cap B) \\
P l(A \cup B) \leq P I(A)+P I(B)-P I(A \cap B)
\end{gathered}
$$

Characterization of belief and plausibility functions

Belief function

- Function $B e l$ is a completely monotone capacity: it verifies $\operatorname{Bel}(\emptyset)=0$, $\operatorname{Bel}(\Omega)=1$ and

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} B e l\left(\bigcap_{i \in I} A_{i}\right)
$$

for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω}

- Conversely, to any completely monotone capacity Bel corresponds a unique mass function m such that

$$
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} B e l(B), \quad \forall A \subseteq \Omega
$$

Characterization of belief and plausibility functions

Plausibility function

A function $P I: 2^{\Omega} \rightarrow[0,1]$ is a plausibility function iff it is a completely alternating capacity, i.e., iff it satisfies the following conditions:
(1) $P(\emptyset)=0$;
(2) $P I(\Omega)=1$;
(3) For any $k \geq 2$ and any collection A_{1}, \ldots, A_{k} of subsets of Ω,

$$
P I\left(\bigcap_{i=1}^{k} A_{i}\right) \leq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|| |+1} P I\left(\bigcup_{i \in I} A_{i}\right) .
$$

Wine/water paradox revisited

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. This is modeled by the logical mass function m_{X} such that $m_{X}([1 / 3,3])=1$. Consequently:

$$
\operatorname{Be}_{X}([2,3])=0, \quad P I_{X}([2,3])=1
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. This is modeled by the logical mass function m_{Y} such that $m_{Y}([1 / 3,3])=1$. Consequently:

$$
\operatorname{Be}_{Y}([1 / 3,1 / 2])=0, \quad P l_{Y}([1 / 3,1 / 2])=1
$$

Relations between $m, B e l$ et $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions
- For all $A \subseteq \Omega$,

$$
\begin{gathered}
\operatorname{Bel}(A)=1-P l(\bar{A}) \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|+1} P l(\bar{B})
\end{gathered}
$$

- $m, B e l$ et $P l$ are thus three equivalent representations of
- a piece of evidence or, equivalently
- a state of belief induced by this evidence

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Consonant belief function

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant
- The following relations then hold, for all $A, B \subseteq \Omega$,

$$
\begin{gathered}
P l(A \cup B)=\max (P l(A), P l(B)) \\
B e l(A \cap B)=\min (\operatorname{Bel}(A), B e l(B))
\end{gathered}
$$

- $P /$ is this a possibility measure, and $B e l$ is the dual necessity measure

Contour function

- The contour function of a belief function Bel is defined by

$$
p l(\omega)=P l(\{\omega\}), \quad \forall \omega \in \Omega
$$

- When Be l is consonant, it can be recovered from its contour function,

$$
P I(A)=\max _{\omega \in A} p l(\omega) .
$$

- The contour function is then a possibility distribution
- The theory of belief function can thus be considered as more expressive than possibility theory

From the contour function to the mass function

- Let $p /$ be a contour on the frame $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, with elements arranged by decreasing order of plausibility, i.e.,

$$
1=p \prime\left(\omega_{1}\right) \geq p \prime\left(\omega_{2}\right) \geq \ldots \geq p \prime\left(\omega_{n}\right)
$$

and let A_{i} denote the set $\left\{\omega_{1}, \ldots, \omega_{i}\right\}$, for $1 \leq i \leq n$.

- Then, the corresponding mass function m is

$$
\begin{aligned}
m\left(A_{i}\right) & =p l\left(\omega_{i}\right)-p l\left(\omega_{i+1}\right), \quad 1 \leq i \leq n-1, \\
m(\Omega) & =p l\left(\omega_{n}\right) .
\end{aligned}
$$

Example

- Consider, for instance, the following contour distribution defined on the frame $\Omega=\{a, b, c, d\}$:

ω	a	b	c	d
$p /(\omega)$	0.3	0.5	1	0.7

- The corresponding mass function is

$$
\begin{aligned}
m(\{c\}) & =1-0.7=0.3 \\
m(\{c, d\}) & =0.7-0.5=0.2 \\
m(\{c, d, b\}) & =0.5-0.3=0.2 \\
m(\{c, d, b, a\}) & =0.3
\end{aligned}
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
(2) Relations with alternative theories
- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Credal set

- A probability measure P on Ω is said to be compatible with $B e /$ if

$$
\operatorname{Bel}(A) \leq P(A)
$$

for all $A \subseteq \Omega$

- Equivalently, $P(A) \leq P I(A)$ for all $A \subseteq \Omega$
- The set $\mathcal{P}(m)$ of probability measures compatible with m is called the credal set of m

$$
\mathcal{P}(B e l)=\{P: \forall A \subseteq \Omega, \operatorname{Be} l(A) \leq P(A))\}
$$

Construction of $\mathcal{P}(\mathrm{Be} /)$

- An arbitrary element of $\mathcal{P}(\mathrm{Bel})$ can be obtained by distributing each mass $m(A)$ among the elements of A.
- More precisely, let $\alpha(\omega, \boldsymbol{A})$ be the fraction of $m(\boldsymbol{A})$ allocated to the element ω. We have

$$
\sum_{\omega \in A} \alpha(\omega, \boldsymbol{A})=m(\boldsymbol{A})
$$

- By summing up the numbers $\alpha(\omega, \boldsymbol{A})$ for each ω, we get a probability mass function on Ω,

$$
p_{\alpha}(\omega)=\sum_{A \ni \omega} \alpha(\omega, A) .
$$

- It can be verified that

$$
P_{\alpha}(A)=\sum_{\omega \in A} p_{\alpha}(\omega) \geq \operatorname{Bel}(A)
$$

for all $A \subseteq \Omega$.

Belief functions are coherent lower probabilities

- It can be shown (Dempster, 1967) that any element of the credal set $\mathcal{P}(\mathrm{Be})$ can be obtained in that way.
- Furthermore, the bounds in the inequalities $\operatorname{Bel}(A) \leq P(A)$ and $P(A) \leq P I(A)$ are attained. We thus have, for all $A \subseteq \Omega$,

$$
\begin{aligned}
B e l(A) & =\min _{P \in \mathcal{P}(B e l)} P(A) \\
P l(A) & =\max _{P \in \mathcal{P}(B e l)} P(A)
\end{aligned}
$$

- We say that $B e l$ is a coherent lower probability.
- Not all lower envelopes of sets of probability measures are belief functions!

A counterexample

- Suppose a fair coin is tossed twice, in such a way that the outcome of the second toss may depend on the outcome of the first toss.
- The outcome of the experiment can be denoted by $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$.
- Let $H_{1}=\{(H, H),(H, T)\}$ and $H_{2}=\{(H, H),(T, H)\}$ the events that we get Heads in the first and second toss, respectively.
- Let \mathcal{P} be the set of probability measures on Ω which assign $P\left(H_{1}\right)=P\left(H_{2}\right)=1 / 2$ and have an arbitrary degree of dependence between tosses.
- Let P_{*} be the lower envelope of \mathcal{P}.

A counterexample - continued

- It is clear that $P_{*}\left(H_{1}\right)=1 / 2, P_{*}\left(H_{2}\right)=1 / 2$ and $P_{*}\left(H_{1} \cap H_{2}\right)=0$ (as the occurrence Heads in the first toss may never lead to getting Heads in the second toss).
- Now, in the case of complete positive dependence, $P\left(H_{1} \cup H_{2}\right)=P\left(H_{1}\right)=1 / 2$, hence $P_{*}\left(H_{1} \cup H_{2}\right) \leq 1 / 2$.
- We thus have

$$
P_{*}\left(H_{1} \cup H_{2}\right)<P_{*}\left(H_{1}\right)+P_{*}\left(H_{2}\right)-P_{*}\left(H_{1} \cap H_{2}\right),
$$

which violates the complete monotonicity condition for $k=2$.

Two different theories

- Mathematically, the notion of coherent lower probability is thus more general than that of belief function.
- However, the definition of the credal set associated with a belief function is purely formal, as these probabilities have no particular interpretation in our framework.
- The theory of belief functions is not a theory of imprecise probabilities.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Dempster's rule

- The first item of evidence gave us: $m_{1}(\{$ rain $\})=0.8, m_{1}(\Omega)=0.2$
- New piece of evidence: upon arriving in the train station, you watch the weather bulletin on TV, saying that it will not rain tomorrow, and the forecast has 60 \% reliability.
- This second piece if evidence can be represented by the mass function: $m_{2}(\{\neg$ rain $\})=0.6, m_{2}(\Omega)=0.4$
- How to combine these two pieces of evidence?

Dempster's rule

Justification

- If interpretations $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ both hold, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
- If the two pieces of evidence are independent, then the probability that s_{1} and s_{2} both hold is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$
- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that s_{1} and s_{2} cannot hold simultaneously
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs

Computation

	reliable (0.6)	not reliable (0.4)
today (0.8)	Ø, 0.48	\{rain\}, 0.32
not today (0.2)	\{ \neg rain $\}, 0.12$	$\Omega, 0.08$

We then get the following combined mass function,

$$
\begin{aligned}
m(\{\text { rain }\}) & =0.32 / 0.52 \approx 0.62 \\
m(\{\neg \text { rain }\}) & =0.12 / 0.52 \approx 0.23 \\
m(\Omega) & =0.08 / 0.52 \approx 0.15
\end{aligned}
$$

Dempster's rule

Definition

- Let m_{1} and m_{2} be two mass functions and

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict

- If $\kappa<1$, then m_{1} and m_{2} can be combined as

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset
$$

$$
\text { and }\left(m_{1} \oplus m_{2}\right)(\emptyset)=0
$$

Another example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\emptyset, 0.05$	$\{b\}, 0.2$	$\emptyset, 0.25$
	$\{a, 0.2$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\emptyset, 0.1$
	$\{a, c\}, 0.3$	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$

The degree of conflict is $\kappa=0.05+0.25+0.1=0.4$. The combined mass function is

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a\}) & =(0.02+0.03+0.12) / 0.6=0.17 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{b\}) & =0.2 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{a, b\}) & =0.08 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{c\}) & =0.15 / 0.6 .
\end{aligned}
$$

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: $m_{\text {? }}$
- Generalization of intersection: if m_{A} and m_{B} are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{A} \oplus m_{B}=m_{A \cap B}
$$

- If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function m_{A}. Notation:

$$
m \oplus m_{A}=m(\cdot \mid A)
$$

- It can be shown that

$$
P I(B \mid A)=\frac{P I(A \cap B)}{P I(A)} .
$$

- Generalization of Bayes' conditioning: if m is a Bayesian mass function and m_{A} is a logical mass function, then $m \oplus m_{A}$ is a Bayesian mass function corresponding to the conditioning of m by A

Recovering Jeffrey's conditioning

- Jeffrey's conditioning is also recovered as a special case where:
- We start with an additive probability measure P;
- Given a partition E_{1}, \ldots, E_{n}, we receive new evidence, represented by a belief function Be / whose focal sets are all unions of E_{i} 's.
- The combined belief function $P \oplus B e l$ is Bayesian. Let $q_{i}=(P \oplus B e l)\left(E_{i}\right)$.
- Then, for all $A \subseteq \Omega$,

$$
(P \oplus B e l)(A)=\sum_{i=1}^{n} q_{i} P\left(A \mid E_{i}\right)
$$

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Q is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let $Q_{1} \oplus Q_{2}$ be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have

$$
\begin{gathered}
\left(Q_{1} \oplus Q_{2}\right)(A)=\frac{1}{1-\kappa} Q_{1}(A) \cdot Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

- In particular, $p l(\omega)=Q(\{\omega\})$. Consequently,

$$
p l_{1} \oplus p l_{2} \propto(1-\kappa)^{-1} p l_{1} p l_{2} .
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Disjunctive rule

Definition and justification

- Let $\left(S_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(S_{2}, P_{2}, \Gamma_{2}\right)$ be sources associated to two pieces of evidence
- If interpretation $s_{k} \in S_{k}$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_{k}\left(s_{k}\right)$
- If interpretation $s \in S_{1}$ and $s_{2} \in S_{2}$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_{1}\left(s_{1}\right) \cup \Gamma_{2}\left(s_{2}\right)$
- This leads to the TBM disjunctive rule:

$$
\left(m_{1} \cup m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega
$$

Disjunctive rule

Example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\{a, b\}, 0.05$	$\{a, b\}, 0.2$	$\{b, c\}, 0.25$
	$\{a, c\}, 0.2$	$\{a, b\}, 0.02$	$\{a, b\}, 0.08$	$\{a, b, c\}, 0.1$
	$\{a, c\}, 0.03$	$\{a, b, c\}, 0.12$	$\{a, c\}, 0.15$	

The resulting mass function is

$$
\begin{aligned}
\left(m_{1} \cup m_{2}\right)(\{a, b\}) & =0.05+0.2+0.02+0.08=0.35 \\
\left(m_{1} \cup m_{2}\right)(\{b, c\}) & =0.25 \\
\left(m_{1} \cup m_{2}\right)(\{a, c\}) & =0.03+0.15=0.18 \\
\quad\left(m_{1} \cup m_{2}\right)(\Omega) & =0.1+0.12=0.22
\end{aligned}
$$

Disjunctive rule

Properties

- Commutativity, associativity.
- No neutral element.
- $m_{\text {? }}$ is an absorbing element.
- Expression using belief functions:

$$
B e l_{1} \cup B e l_{2}=B e l_{1} \cdot B e l_{2}
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions

2 Relations with alternative theories

- Possibility theory
- Imprecise probabilities
(3) Combination of evidence
- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

Definition

- In general, the disjunctive rule may be preferred in case of heavy conflict between the different pieces of evidence.
- An alternative rule, which is somehow intermediate between the disjunctive and conjunctive rules, has been proposed by Dubois and Prade (1988). It is defined as follows:

$$
\left(m_{1} \uplus m_{2}\right)(A)=\sum_{B \cap C=A} m_{1}(B) m_{2}(C)+\sum_{\{B \cap C=\emptyset, B \cup C=A\}} m_{1}(B) m_{2}(C),
$$

for all $A \subseteq \Omega, A \neq \emptyset$, and $\left(m_{1} \uplus m_{2}\right)(\emptyset)=0$.

Example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\{a, b\}, 0.05$	$\{b\}, 0.2$	$\{b, c\}, 0.25$
	$\{a, c\}, 0.3$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\{a, b, c\}, 0.1$
	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$	

$$
\begin{aligned}
\left(m_{1} \uplus m_{2}\right)(\{a, b\}) & =0.05+0.08=0.13 \\
\left(m_{1} \uplus m_{2}\right)(\{b\}) & =0.2 \\
\left(m_{1} \uplus m_{2}\right)(\{b, c\}) & =0.25 \\
\left(m_{1} \uplus m_{2}\right)(\{a\}) & =0.02+0.03+0.12=0.17 \\
\left(m_{1} \uplus m_{2}\right)(\{c\}) & =0.15 \\
\left(m_{1} \uplus m_{2}\right)(\Omega) & =0.1 .
\end{aligned}
$$

Properties

- The DP rule boils down to the conjunctive and disjunctive rules when, respectively, the degree of conflict is equal to zero and one.
- In other cases, it has some intermediate behavior.
- It is not associative. If several pieces of evidence are available, they should be combined at once using an obvious n-ary extension of the above formula.

