Representation and combination of evidence

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Beijing University of Technology, Beijing, China June-July 2016

Thierry Denœux (UTC/HEUDIASYC)

Representation and combination of evidence

BJUT, June 2016 1 / 49

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

Image: Image:

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

Image: Image:

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment)
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

- Every A of Ω such that m(A) > 0 is a focal set of m
- *m* is said to be normalized if $m(\emptyset) = 0$. This property will be assumed hereafter, unless otherwise specified

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

- When traveling by train, you find a page of a used newspaper, with an article announcing rain for tomorrow
- The date of the newspaper is missing. If is today's newspaper, you know that it will rain tomorrow (assuming the forecast is perfectly reliable). If not, you know nothing
- Assume your subjective probability that this is today's paper is 0.8
- The frame of discernment is $\Omega = \{rain, \neg rain\}$
- The evidence can be represented by the following mass function

$$m({rain}) = 0.8, m({rain, \neg rain}) = 0.2$$

 The mass 0.2 is not committed to {¬rain}, because there is no evidence that it will not rain

Mass function

Source

• A mass function m on Ω may be viewed as arising from

- A set $S = \{s_1, \ldots, s_r\}$ of states (interpretations)
- A probability measure P on S
- A multi-valued mapping $\Gamma: S \to 2^{\Omega}$
- The four-tuple $(S, 2^S, P, \Gamma)$ is called a source for m
- Meaning: under interpretation s_i, the evidence tells us that X ∈ Γ(s_i), and nothing more. The probability P({s_i}) is transferred to A_i = Γ(s_i)
- *m*(*A*) is the probability of knowing that *X* ∈ *A*, and nothing more, given the available evidence

Thierry Denœux (UTC/HEUDIASYC)

BJUT, June 2016 6 / 49

Mass functions

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_A such that $m_A(A) = 1$
 - m_A is equivalent to A
 - Special case: m_?, the vacuous mass function, represents total ignorance
- If each interpretation s_i of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
 - a generalized set
 - a generalized probability distribution

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

Image: Image:

-

Belief function

- If interpretation s holds and Γ(s) ⊆ A for some A ⊆ Ω, we say that the evidence supports A.
- The probability that the evidence supports A is thus

$$Bel(A) = P(\{s \in S | \Gamma(s) \subseteq A\})$$
$$= \sum_{B \subseteq A} m(B).$$

- It can be interpreted as the total degree of support in *A*, or as a degree of belief that the truth is in *A*.
- The function $Bel: 2^{\Omega} \rightarrow [0, 1]$ is called a belief function

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Plausibility function

• We can also consider the degree of support in \overline{A} ,

$$\textit{Bel}(\overline{\textit{A}}) = \sum_{\textit{B} \subseteq \overline{\textit{A}}} \textit{m}(\textit{B}) = \sum_{\textit{B} \cap \textit{A} = \emptyset} \textit{m}(\textit{B})$$

- It is a measure of doubt in A (we doubt A if the complement of A is supported).
- The plausibility of A is defined as

$$Pl(A) = 1 - Bel(\overline{A}) = \sum_{B \cap A \neq \emptyset} m(B).$$

It is high when the complement \overline{A} is not supported by the evidence.

• The function $PI: 2^{\Omega} \rightarrow [0, 1]$ is called a plausibility function

Two-dimensional representation

- The uncertainty on a proposition A is represented by two numbers: Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)
- The intervals [Bel(A), Pl(A)] have maximum length when m = m_? is vacuous: then, Bel(A) = 0 for all A ≠ Ω, and Pl(A) = 1 for all A ≠ Ø.
- The intervals [Bel(A), Pl(A)] have minimum length when *m* is Bayesian. Then, Bel(A) = Pl(A) for all *A*, and *Bel* is a probability measure.

Example

A	Ø	{rain}	{¬rain}	$\{rain, \neg rain\}$
m(A)	0	0.8	0	0.2
Bel(A)	0	0.8	0	1
m(A) Bel(A) pl(A)	0	1	0.2	1

We observe that

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

 $Pl(A \cup B) \le Pl(A) + Pl(B) - Pl(A \cap B)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Characterization of belief and plausibility functions Belief function

 Function *Bel* is a completely monotone capacity: it verifies *Bel*(Ø) = 0, *Bel*(Ω) = 1 and

$$Bel\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,...,k\}} (-1)^{|I|+1} Bel\left(\bigcap_{i \in I} A_{i}\right)$$

for any $k \geq 2$ and for any family A_1, \ldots, A_k in 2^{Ω}

• Conversely, to any completely monotone capacity *Bel* corresponds a unique mass function *m* such that

$$\mathit{m}(\mathit{A}) = \sum_{\emptyset
eq \mathit{B} \subseteq \mathit{A}} (-1)^{|\mathit{A}| - |\mathit{B}|} \mathit{Bel}(\mathit{B}), \quad \forall \mathit{A} \subseteq \Omega$$

Characterization of belief and plausibility functions Plausibility function

A function $PI: 2^{\Omega} \rightarrow [0, 1]$ is a plausibility function iff it is a completely alternating capacity, i.e., iff it satisfies the following conditions:

- $Pl(\emptyset) = 0;$
- **2** $Pl(\Omega) = 1;$

(a) For any $k \ge 2$ and any collection A_1, \ldots, A_k of subsets of Ω ,

$$Pl\left(\bigcap_{i=1}^{k} A_{i}\right) \leq \sum_{\emptyset \neq l \subseteq \{1,\ldots,k\}} (-1)^{|l|+1} Pl\left(\bigcup_{i \in I} A_{i}\right).$$

Wine/water paradox revisited

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. This is modeled by the logical mass function m_X such that $m_X([1/3, 3]) = 1$. Consequently:

$$Bel_X([2,3]) = 0, Pl_X([2,3]) = 1$$

• Now, let Y = 1/X denote the ratio of water to wine. All we know is that $Y \in [1/3, 3]$. This is modeled by the logical mass function m_Y such that $m_Y([1/3, 3]) = 1$. Consequently:

$$Bel_Y([1/3, 1/2]) = 0, Pl_Y([1/3, 1/2]) = 1$$

Relations between *m*, *Bel* et *Pl*

- Let *m* be a mass function, *Bel* and *Pl* the corresponding belief and plausibility functions
- For all $A \subseteq \Omega$,

$$Bel(A) = 1 - Pl(\overline{A})$$
$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B)$$
$$m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B| + 1} Pl(\overline{B})$$

- m, Bel et Pl are thus three equivalent representations of
 - a piece of evidence or, equivalently
 - a state of belief induced by this evidence

イロト イポト イヨト イヨト

- Mass functions
- Belief and plausibility functions

Relations with alternative theories

- Possibility theory
- Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

.

- Mass functions
- Belief and plausibility functions
- Relations with alternative theoriesPossibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

.

Image: Image:

Consonant belief function

- When the focal sets of *m* are nested: A₁ ⊂ A₂ ⊂ ... ⊂ A_r, *m* is said to be consonant
- The following relations then hold, for all $A, B \subseteq \Omega$,

 $Pl(A \cup B) = \max(Pl(A), Pl(B))$

 $Bel(A \cap B) = min(Bel(A), Bel(B))$

• *Pl* is this a possibility measure, and *Bel* is the dual necessity measure

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Contour function

• The contour function of a belief function Bel is defined by

$$pl(\omega) = Pl(\{\omega\}), \quad \forall \omega \in \Omega$$

• When Bel is consonant, it can be recovered from its contour function,

$$PI(A) = \max_{\omega \in A} pI(\omega).$$

- The contour function is then a possibility distribution
- The theory of belief function can thus be considered as more expressive than possibility theory

(日)

From the contour function to the mass function

Let *pl* be a contour on the frame Ω = {ω₁,..., ω_n}, with elements arranged by decreasing order of plausibility, i.e.,

$$1 = pl(\omega_1) \ge pl(\omega_2) \ge \ldots \ge pl(\omega_n),$$

and let A_i denote the set $\{\omega_1, \ldots, \omega_i\}$, for $1 \le i \le n$.

• Then, the corresponding mass function *m* is

$$m(A_i) = pl(\omega_i) - pl(\omega_{i+1}), \quad 1 \le i \le n-1,$$

$$m(\Omega) = pl(\omega_n).$$

Example

Consider, for instance, the following contour distribution defined on the frame Ω = {a, b, c, d}:

ω	а	b	С	d
$pl(\omega)$	0.3	0.5	1	0.7

The corresponding mass function is

$$m(\{c\}) = 1 - 0.7 = 0.3$$
$$m(\{c, d\}) = 0.7 - 0.5 = 0.2$$
$$m(\{c, d, b\}) = 0.5 - 0.3 = 0.2$$
$$m(\{c, d, b, a\}) = 0.3.$$

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

.

Image: Image:

Credal set

A probability measure P on Ω is said to be compatible with Bel if

 $Bel(A) \leq P(A)$

for all $A \subseteq \Omega$

- Equivalently, $P(A) \leq PI(A)$ for all $A \subseteq \Omega$
- The set P(m) of probability measures compatible with m is called the credal set of m

$$\mathcal{P}(\textit{Bel}) = \{\textit{P} : \forall \textit{A} \subseteq \Omega, \textit{Bel}(\textit{A}) \leq \textit{P}(\textit{A}))\}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Imprecise probabilities

Construction of $\mathcal{P}(Bel)$

- An arbitrary element of *P*(*Bel*) can be obtained by distributing each mass *m*(*A*) among the elements of *A*.
- More precisely, let α(ω, A) be the fraction of m(A) allocated to the element ω. We have

$$\sum_{\omega\in A}\alpha(\omega,A)=m(A).$$

 By summing up the numbers α(ω, A) for each ω, we get a probability mass function on Ω,

$$\mathcal{P}_{lpha}(\omega) = \sum_{\mathcal{A} \ni \omega} lpha(\omega, \mathcal{A}).$$

It can be verified that

$$\mathcal{P}_{lpha}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathcal{p}_{lpha}(\omega) \geq \mathcal{Bel}(\mathcal{A}),$$

for all $A \subseteq \Omega$.

Belief functions are coherent lower probabilities

- It can be shown (Dempster, 1967) that any element of the credal set $\mathcal{P}(Bel)$ can be obtained in that way.
- Furthermore, the bounds in the inequalities $Bel(A) \le P(A)$ and $P(A) \le Pl(A)$ are attained. We thus have, for all $A \subseteq \Omega$,

$$Bel(A) = \min_{P \in \mathcal{P}(Bel)} P(A)$$

$$PI(A) = \max_{P \in \mathcal{P}(Bel)} P(A)$$

- We say that *Bel* is a coherent lower probability.
- Not all lower envelopes of sets of probability measures are belief functions!

A counterexample

- Suppose a fair coin is tossed twice, in such a way that the outcome of the second toss may depend on the outcome of the first toss.
- The outcome of the experiment can be denoted by $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$
- Let $H_1 = \{(H, H), (H, T)\}$ and $H_2 = \{(H, H), (T, H)\}$ the events that we get Heads in the first and second toss, respectively.
- Let \mathcal{P} be the set of probability measures on Ω which assign $P(H_1) = P(H_2) = 1/2$ and have an arbitrary degree of dependence between tosses.
- Let P_* be the lower envelope of \mathcal{P} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A counterexample – continued

- It is clear that P_{*}(H₁) = 1/2, P_{*}(H₂) = 1/2 and P_{*}(H₁ ∩ H₂) = 0 (as the occurrence Heads in the first toss may never lead to getting Heads in the second toss).
- Now, in the case of complete positive dependence, $P(H_1 \cup H_2) = P(H_1) = 1/2$, hence $P_*(H_1 \cup H_2) \le 1/2$.
- We thus have

$$P_*(H_1 \cup H_2) < P_*(H_1) + P_*(H_2) - P_*(H_1 \cap H_2),$$

which violates the complete monotonicity condition for k = 2.

イロト イポト イヨト イヨト 二日

Two different theories

- Mathematically, the notion of coherent lower probability is thus more general than that of belief function.
- However, the definition of the credal set associated with a belief function is purely formal, as these probabilities have no particular interpretation in our framework.
- The theory of belief functions is not a theory of imprecise probabilities.

イロト イポト イヨト イヨト

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory

 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

.

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities
- Combination of evidence
 Dempster's rule
 - Disjunctive rule
 - Dubois-Prade rule

Image: Image:

Rain example continued

- The first item of evidence gave us: $m_1({\text{rain}}) = 0.8, m_1(\Omega) = 0.2$
- New piece of evidence: upon arriving in the train station, you watch the weather bulletin on TV, saying that it will not rain tomorrow, and the forecast has 60 % reliability.
- This second piece if evidence can be represented by the mass function:
 m₂({¬rain}) = 0.6, m₂(Ω) = 0.4
- How to combine these two pieces of evidence?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dempster's rule

Justification

- If interpretations s₁ ∈ S₁ and s₂ ∈ S₂ both hold, then X ∈ Γ₁(s₁) ∩ Γ₂(s₂)
- If the two pieces of evidence are independent, then the probability that s₁ and s₂ both hold is P₁({s₁})P₂({s₂})
- If Γ₁(s₁) ∩ Γ₂(s₂) = Ø, we know that s₁ and s₂ cannot hold simultaneously
- The joint probability distribution on S₁ × S₂ must be conditioned to eliminate such pairs

Computation

	reliable	not reliable		
	(0.6)	(0.4)		
today (0.8)	Ø, 0.48	{rain}, 0.32		
not today (0.2)	{¬rain}, 0.12	Ω, 0.08		

We then get the following combined mass function,

$$m(\{\text{rain}\}) = 0.32/0.52 \approx 0.62$$
$$m(\{\neg\text{rain}\}) = 0.12/0.52 \approx 0.23$$
$$m(\Omega) = 0.08/0.52 \approx 0.15$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dempster's rule

• Let *m*₁ and *m*₂ be two mass functions and

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict

• If $\kappa < 1$, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C=A} m_1(B)m_2(C), \quad \forall A \neq \emptyset$$

and $(m_1 \oplus m_2)(\emptyset) = 0$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Another example

A		Ø	{ a }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	{ C }	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	{ <i>a</i> , <i>b</i> , <i>c</i> }	
$m_1(A$	۹)	0	0	0.5	0.2	0	0.3	0	0	
m ₂ (A	۹)	0	0.1	0	0.4	0.5	0	0	0	
					<i>m</i> ₂					
				$\{a\}, 0.1 \{a, b\}, 0.4$			{ C },	{ <i>c</i> },0.5		
			{ b },	0.5	Ø, 0.05	-	[<i>b</i> },0.2	Ø, 0 .	25	
	m_1		<i>m</i> ₁ { <i>a</i> , <i>b</i> }, 0.2		, 0.2	{ <i>a</i> },0.02		, <i>b</i> },0.08	₿ Ø, 0	.1
		{ <i>a</i> , <i>c</i> }	, 0.3	{ <i>a</i> },0.0	3 {	<i>a</i> },0.12	{ <i>c</i> },C).15		

The degree of conflict is $\kappa = 0.05 + 0.25 + 0.1 = 0.4.$ The combined mass function is

$$(m_1 \oplus m_2)(\{a\}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6$$

 $(m_1 \oplus m_2)(\{b\}) = 0.2/0.6$
 $m_1 \oplus m_2)(\{a, b\}) = 0.08/0.6$
 $(m_1 \oplus m_2)(\{c\}) = 0.15/0.6.$

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: m₂
- Generalization of intersection: if m_A and m_B are logical mass functions and $A \cap B \neq \emptyset$, then

$$m_A \oplus m_B = m_{A \cap B}$$

If either m_1 or m_2 is Bayesian, then so is $m_1 \oplus m_2$ (as the intersection of a • singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

• Conditioning is a special case, where a mass function *m* is combined with a logical mass function *m_A*. Notation:

$$m \oplus m_A = m(\cdot|A)$$

It can be shown that

$$PI(B|A) = rac{PI(A \cap B)}{PI(A)}.$$

• Generalization of Bayes' conditioning: if *m* is a Bayesian mass function and m_A is a logical mass function, then $m \oplus m_A$ is a Bayesian mass function corresponding to the conditioning of *m* by *A*

Recovering Jeffrey's conditioning

Jeffrey's conditioning is also recovered as a special case where:

- We start with an additive probability measure P;
- Given a partition E_1, \ldots, E_n , we receive new evidence, represented by a belief function *Bel* whose focal sets are all unions of E_i 's.
- The combined belief function $P \oplus Bel$ is Bayesian. Let $q_i = (P \oplus Bel)(E_i)$.
- Then, for all $A \subseteq \Omega$,

$$(P \oplus Bel)(A) = \sum_{i=1}^{n} q_i P(A|E_i)$$

Commonality function

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

• *Q* is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_1 and Q_2 be the commonality functions associated to m_1 and m_2 .
- Let $Q_1 \oplus Q_2$ be the commonality function associated to $m_1 \oplus m_2$.
- We have

$$(Q_1 \oplus Q_2)(A) = \frac{1}{1-\kappa}Q_1(A) \cdot Q_2(A), \quad \forall A \subseteq \Omega, A \neq \emptyset$$

 $(Q_1 \oplus Q_2)(\emptyset) = 1$

• In particular, $pl(\omega) = Q(\{\omega\})$. Consequently,

$$pl_1 \oplus pl_2 \propto (1-\kappa)^{-1} pl_1 pl_2.$$

Outline

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities

- Disjunctive rule
- Dubois-Prade rule

Image: Image:

Disjunctive rule

Definition and justification

- Let (S₁, P₁, Γ₁) and (S₂, P₂, Γ₂) be sources associated to two pieces of evidence
- If interpretation s_k ∈ S_k holds and piece of evidence k is reliable, then we can conclude that X ∈ Γ_k(s_k)
- If interpretation s ∈ S₁ and s₂ ∈ S₂ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that X ∈ Γ₁(s₁) ∪ Γ₂(s₂)
- This leads to the TBM disjunctive rule:

$$(m_1 \cup m_2)(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega$$

イロト イポト イヨト イヨト

Disjunctive rule

Disjunctive rule

Example

Α	Ø	{ a }	{ b }	{ <i>a</i> , <i>b</i> }	{ C }	{ a , c }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }		
$m_1(A)$	0	0	0.5	0.2	0	0.3	0	0		
$m_2(A)$	0	0.1	0	0.4	0.5	0	0	0		
	m ₂									
				a},0.1	{ <i>a</i>	, <i>b</i> },0.4	{ <i>C</i>	{ <i>c</i> },0.5		
	{b	},0.5	{ a ,	<i>b</i> },0.05	{ <i>a</i> , <i>b</i> },0.2		{ <i>b</i> , <i>c</i>	{ <i>b</i> , <i>c</i> },0.25 { <i>a</i> , <i>b</i> , <i>c</i> },0.1		
m_1	{ a ,	{ <i>a</i> , <i>b</i> },0.2		<i>b</i> },0.02	{ a ,	<i>b</i> },0.08	{ a , b			
	{ a ,	{ <i>a</i> , <i>c</i> },0.3		{ <i>a</i> , <i>c</i> }, 0.03		{ <i>a</i> , <i>b</i> , <i>c</i> },0.12		{ <i>a</i> , <i>c</i> },0.15		

The resulting mass function is

$$\begin{split} (m_1 \cup m_2)(\{a, b\}) &= 0.05 + 0.2 + 0.02 + 0.08 = 0.35 \\ (m_1 \cup m_2)(\{b, c\}) &= 0.25 \\ (m_1 \cup m_2)(\{a, c\}) &= 0.03 + 0.15 = 0.18 \\ (m_1 \cup m_2)(\Omega) &= 0.1 + 0.12 = 0.22. \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Disjunctive rule Properties

- Commutativity, associativity.
- No neutral element.
- $m_{?}$ is an absorbing element.
- Expression using belief functions:

 $\textit{Bel}_1 \cup \textit{Bel}_2 = \textit{Bel}_1 \cdot \textit{Bel}_2$

Outline

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory

 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Disjunctive rule
- Dubois-Prade rule

.

Image: Image:

Definition

- In general, the disjunctive rule may be preferred in case of heavy conflict between the different pieces of evidence.
- An alternative rule, which is somehow intermediate between the disjunctive and conjunctive rules, has been proposed by Dubois and Prade (1988). It is defined as follows:

$$(m_1 \uplus m_2)(A) = \sum_{B \cap C = A} m_1(B)m_2(C) + \sum_{\{B \cap C = \emptyset, B \cup C = A\}} m_1(B)m_2(C),$$

for all $A \subseteq \Omega$, $A \neq \emptyset$, and $(m_1 \uplus m_2)(\emptyset) = 0$.

Example

	A	Ø	{ a }	{	b}	{ <i>a</i> , <i>b</i> }	{ C }	{ <i>a</i> , <i>c</i> }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }
m_1	(A)	0	0	0.5		0.2	0	0.3	0	0
m_2	(A)	0	0.1	0		0.4	0.5	0	0	0
					m_{2} {a},0.1 {a,b},0.4 {c},0.5					
_	<i>m</i> ₁	$\{b\}, 0.5$ $\{a, b\}, 0.2$ $\{a, c\}, 0.3$			{ <i>a</i> , <i>b</i> },0.05 { <i>a</i> },0.02 { <i>a</i> },0.03		{ { a ,	<i>b</i> },0.2 <i>b</i> },0.08 a},0.12		

$$(m_1 \uplus m_2)(\{a, b\}) = 0.05 + 0.08 = 0.13$$

$$(m_1 \uplus m_2)(\{b\}) = 0.2$$

$$(m_1 \uplus m_2)(\{b, c\}) = 0.25$$

$$(m_1 \uplus m_2)(\{a\}) = 0.02 + 0.03 + 0.12 = 0.17$$

$$(m_1 \uplus m_2)(\{c\}) = 0.15$$

$$(m_1 \uplus m_2)(\Omega) = 0.1.$$

BJUT, June 2016 48 / 49

< □ > < □ > < □ > < □ > < □ > = Ξ

Properties

- The DP rule boils down to the conjunctive and disjunctive rules when, respectively, the degree of conflict is equal to zero and one.
- In other cases, it has some intermediate behavior.
- It is not associative. If several pieces of evidence are available, they should be combined at once using an obvious *n*-ary extension of the above formula.

イロト イポト イヨト イヨト