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Clustering

n objects described by

Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data)

Goals:
1 Discover groups in the data
2 Assess the uncertainty in group

membership
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Hard and soft clustering concepts

Hard clustering: no representation of uncertainty. Each object is assigned to one
and only one group. Group membership is represented by binary
variables uik such that uik = 1 if object i belongs to group k and
uik = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uik ∈ [0, 1] to each
group, with

∑c
k=1 uik = 1. The uik ’s can be interpreted as

probabilities.

Fuzzy clustering with noise cluster: the above equality is replaced by∑c
k=1 uik ≤ 1. The number 1−

∑c
k=1 uik is interpreted as a degree

of membership (or probability of belonging to) to a noise cluster.
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Hard and soft clustering concepts

Possibilistic clustering: the uik are free to take any value in [0, 1]. Each number
uik is interpreted as a degree of possibility that object i belongs to
group k.

Rough clustering: each cluster ωk is characterized by a lower approximation ωk

and an upper approximation ωk , with ωk ⊆ ωk ; the membership of
object i to cluster k is described by a pair (uik , uik) ∈ {0, 1}2, with
uik ≤ uik ,

∑c
k=1 uik ≤ 1 and

∑c
k=1 uik ≥ 1.
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Clustering and belief functions

clustering structure uncertainty framework
fuzzy partition probability theory

possibilistic partition possibility theory
rough partition (rough) sets

? belief functions

As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework for
cluster analysis?

Objectives:

Unify the various approaches to clustering
Achieve a richer and more accurate representation of uncertainty
New clustering algorithms and new tools to compare and combine clustering
results.
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Evidential clustering Credal partition

Evidential partition

Let {o1, . . . , on} be a set of n objects and Ω = {ω1, . . . , ωc} be a set of c
groups (clusters).

Each object oi is assumed to belong to at most one group.

Evidence about the group membership of object oi is represented by a mass
function mi on Ω.

To account for the possibility that an object may not belong to any of the c
groups, we use unnormalized mass functions mi such that mi (∅) ≥ 0.

Definition

The n-tuple M = (m1, . . . ,mn) is called an evidential partition.
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Evidential clustering Credal partition

Example
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Credal partition

∅ {ω1} {ω2} {ω1, ω2}
m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Evidential clustering Credal partition

Relationship with other clustering structures

Hard%par''on%

Fuzzy%par''on%
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mi%certain%
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Bayesian%
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Evidential clustering Credal partition

Rough clustering as a special case

Assume that each mi is logical, i.e., mi (Ai ) = 1 for some Ai ⊆ Ω, Ai 6= ∅.
We can then define the lower and upper approximations of cluster ωk as

ωk = {oi ∈ O : Ai = {ωk}}, ωk = {oi ∈ O : ωk ∈ Ai}.

The membership values to the lower and upper approximations of cluster ωk

are uik = Beli ({ωk}) and uik = Pli ({ωk}).

m({ω1})=1( m({ω1, ω2})=1( m({ω2})=1(

Lower(
approxima4ons(

Upper(
approxima4ons(

ω1
L( ω2

L( ω2
U(ω1

U(
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Evidential clustering Summarization of a credal partition

Summarization of a credal partition
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Evidential clustering Summarization of a credal partition

From evidential to rough clustering

For each i , let Ai ⊆ Ω be the set of non dominated clusters

Ai = {ω ∈ Ω : ∀ω′ ∈ Ω,Bel∗i ({ω′}) ≤ Pl∗i ({ω})},

where Bel∗i and Pl∗i are the normalized belief and plausibility functions.

Lower approximation:

uik =

{
1 if Ai = {ωk}
0 otherwise.

Upper approximation:

uik =

{
1 if ωk ∈ Ai

0 otherwise.

The outliers can be identified separately as the objects for which
mi (∅) ≥ mi (A) for all A 6= ∅.
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Evidential clustering Relational representation of a credal partition
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Evidential clustering Relational representation of a credal partition

Relational representation of a hard partition

A hard partition can be represented equivalently by

the n × c membership matrix U = (uik) or
an n × n relation matrix R = (rij) representing the equivalence relation

rij =

{
1 if oi and oj belong to the same group

0 otherwise.

The relational representation R is invariant under renumbering of the
clusters, and is thus more suitable to compare or combine several partitions.

What is the counterpart of matrix R in the case of a credal partition?
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Evidential clustering Relational representation of a credal partition

Relational representation

Let M = (m1, . . . ,mn) be a credal partition.

For a pair of objects {oi , oj}, let Qij be the question “Do oi and oj belong to
the same group?” defined on the frame Θ = {s,¬s}.
Θ is a coarsening of Ω2.

ω1	 ω2	 ω3	 ω4	

ω1	

ω2	

ω3	

ω4	

Ω	

Ω	

S	

Given mi and mj on Ω, a mass function mij on Θ
can be computed as follows:

1 Extend mi and mj to Ω2;

2 Combine the extensions of mi and mj by the
unnormalized Dempster’s rule;

3 Compute the restriction of the combined
mass function to Θ.
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Evidential clustering Relational representation of a credal partition

Pairwise mass function

Mass function:

mij(∅) = mi (∅) + mj(∅)−mi (∅)mj(∅)

mij({s}) =
c∑

k=1

mi ({ωk})mj({ωk})

mij({¬s}) = κij −mij(∅)

mij(Θ) = 1− κij −
∑
k

mi ({ωk})mj({ωk}).

where κij is the degree of conflict between mi and mj .

In particular,
plij(s) = 1− κij .

Return to CECM
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Evidential clustering Relational representation of a credal partition

Special cases

Hard partition:
mij({s}) = rij , mij({¬s}) = 1− rij with rij ∈ {0, 1}

Fuzzy partition:
mij({s}) = rij , mij({¬s}) = 1− rij with rij ∈ [0, 1]

Rough partition: Assume mi (Ai ) = 1 and mj(Aj) = 1.

mij({s}) = 1 if Ai = Aj = {ωk}
mij({¬s}) = 1 if Ai ∩ Aj = ∅

mij(Θ) = 1 otherwise.
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Evidential clustering Relational representation of a credal partition

Relational representation of a credal partition

Let M = (m1, . . . ,mn) be a credal partition.

The tuple R = (mij)1≤i<j≤n is called the relational representation of credal
partition M.

M = (m1,m2,m3,m4,m5) −→ R =


1 2 3 4 5

1 · m12 m13 m14 m15

2 · · m23 m24 m25

3 · · · m34 m35

4 · · · · m45

5 · · · · ·


Open question: given a relational representation R, can we uniquely recover
the credal partition M, up to a permutation of the cluster indices?

Thierry Denœux Belief functions - Evidential clustering Summer 2022 21 / 92



Evidential clustering Relational representation of a credal partition

Example

Credal partition:

A ∅ {ω1} {ω2} {ω1, ω2}
m1(A) 0.3 0.6 0.1 0.0
m2(A) 0.0 0.7 0.1 0.2
m3(A) 0.0 0.1 0.6 0.3

Relational representation:

A ∅ {s} {¬s} {s,¬s}
m12(A) 0.30 0.43 0.13 0.14
m13(A) 0.30 0.12 0.37 0.21
m23(A) 0.00 0.13 0.43 0.44
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Evidential clustering algorithms

Main approaches

1 Evidential c-means (ECM): (Masson and Denœux, 2008):

Attribute data
HCM, FCM family

2 EVCLUS (Denœux and Masson, 2004; Denœux et al., 2016):

Attribute or proximity (possibly non metric) data
Multidimensional scaling approach

3 Bootclus (Denœux, 2020)

Attribute data
Based on mixture models and the bootstrap
Provides belief functions with frequentist properties
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Evidential clustering algorithms Evidential c-means
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Evidential clustering algorithms Evidential c-means

Principle

Problem: generate a credal partition M = (m1, . . . ,mn) from attribute data
X = (x1, ..., xn), x i ∈ Rp.

Generalization of hard and fuzzy c-means algorithms:

Each cluster is represented by a prototype.
Cyclic coordinate descent algorithm: optimization of a cost function
alternatively with respect to the prototypes and to the credal partition.

Thierry Denœux Belief functions - Evidential clustering Summer 2022 26 / 92



Evidential clustering algorithms Evidential c-means

Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβikd
2
ik

with dik = ||x i − v k || subject to the constraints
∑

k uik = 1 for all i .

Alternate optimization algorithm:

v k =

∑n
i=1 u

β
ikx i∑n

i=1 u
β
ik

uik =
d
−2/(β−1)
ik∑c

`=1 d
−2/(β−1)
i`

.
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Evidential clustering algorithms Evidential c-means

ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each cluster ωk represented by a prototype v k .

Each nonempty set of clusters Aj represented by
a prototype v̄ j defined as the center of mass of
the v k for all ωk ∈ Aj .

Basic ideas:

For each nonempty Aj ⊆ Ω, mij = mi (Aj) should
be high if x i is close to v̄ j .
The distance to the empty set is defined as a
fixed value δ.
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Evidential clustering algorithms Evidential c-means

ECM algorithm: cost function

Define the nonempty focal sets F = {A1, . . . ,Af } ⊆ 2Ω \ {∅}.
Minimize

JECM(M,V ) =
n∑

i=1

f∑
j=1

|Aj |αmβ
ij d

2
ij +

n∑
i=1

δ2mβ
i∅

subject to the constraints
∑f

j=1 mij + mi∅ = 1 for all i .

Parameters:

α controls the specificity of mass functions (default: 1)
β controls the hardness of the credal partition (default: 2)
δ controls the proportion of data considered as outliers

JECM(M,V ) can be iteratively minimized with respect to M and to V .
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Evidential clustering algorithms Evidential c-means

ECM algorithm: update equations

Update of M:

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij∑f

k=1 c
−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

,

for i = 1, . . . , n and j = 1, . . . , f , and

mi∅ = 1−
f∑

j=1

mij , i = 1, . . . , n

Update of V : solve a linear system of the form

HV = B,

where B is a matrix of size c × p and H a matrix of size c × c .
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Evidential clustering algorithms Evidential c-means

Butterfly dataset

−5 0 5 10

−
2

0
2

4
6

8
10

Butterfly data

x1

x 2

1

2

3

4

5 6 7

8

9

10

11

12

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

objects

m
as

se
s m(∅)

m(ω1)
m(ω2)
m(Ω)

Thierry Denœux Belief functions - Evidential clustering Summer 2022 31 / 92



Evidential clustering algorithms Evidential c-means

4-class data set
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Evidential clustering algorithms Evidential c-means

Determining the number of groups

If a proper number of groups is chosen, the prototypes will cover the clusters
and most of the mass will be allocated to singletons of Ω.

On the contrary, if c is too small or too high, the mass will be distributed to
subsets with higher cardinality or to ∅.
Nonspecificity of a mass function:

N(m) ,
∑

A∈2Ω\∅

m(A) log2 |A|+ m(∅) log2 |Ω|

Proposed validity index of a credal partition:

N∗(c) ,
1

n log2(c)

n∑
i=1

 ∑
A∈2Ω\∅

mi (A) log2 |A|+ mi (∅) log2(c)


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Evidential clustering algorithms Evidential c-means

Results for the 4-class dataset
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Evidential clustering algorithms Evidential c-means

Carefully selecting the focal sets

If no restriction is imposed on the focal sets, the number of parameters to be
estimated in evidential clustering grows exponentially with the number c of
clusters, which makes it intractable unless c is small.

If we allow masses to be assigned to all pairs of clusters, the number of focal
sets becomes proportional to c2, which is manageable for moderate values of
c (say, until 10), but still impractical for larger n.

Idea: assign masses only to pairs of contiguous clusters.

If each cluster has at most q neighbors, then the number of focal sets is
proportional to c .
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Evidential clustering algorithms Evidential c-means

Example
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The S2 dataset (n = 5000) and the 15 clusters found by k-EVCLUS with k = 100
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Evidential clustering algorithms Evidential c-means

Method

Step1: Run an evidential clustering algorithm (e.g., ECM ) with focal sets
of cardinalities 0, 1 and (optionally) c . A credal partition M0 is
obtained.

Step 2: Compute the similarity between each pair of clusters (ωj , ω`) as

S(j , `) =
n∑

i=1

plijpli`,

where plij and pli` are the normalized plausibilities that object i
belongs, respectively, to clusters j and `. Determine the set PK of
pairs {ωj , ω`} that are mutual q nearest neighbors.

Step 3: Run the evidential clustering algorithm again, starting from the
previous credal partition M0, and adding as focal sets the pairs in
PK .
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Evidential clustering algorithms Evidential c-means

Pairs of mutual neighbors with q = 1
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Evidential clustering algorithms Evidential c-means

Pairs of mutual neighbors with q = 2
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Evidential clustering algorithms Evidential c-means

Initial credal partition M0
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Evidential clustering algorithms Evidential c-means

Final credal partition (q = 1)
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Evidential clustering algorithms Evidential c-means

Constrained Evidential c-means

In some cases, we may have some prior knowledge about the group
membership of some objects.

Such knowledge may take the form of instance-level constraints of two kinds:
1 Must-link (ML) constraints, which specify that two objects certainly belong to

the same cluster;
2 Cannot-link (CL) constraints, which specify that two objects certainly belong

to different clusters.

How to take into account such constraints?
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Evidential clustering algorithms Evidential c-means

Modified cost-function

To take into account ML and CL constraints, we can modify the cost
function of ECM as

JCECM(M,V ) = (1− ξ)JECM(M,V ) + ξJCONST(M)

with

JCONST(M) =
1

|M|+ |C|

 ∑
(xi ,xj )∈M

plij(¬S) +
∑

(xi ,xj )∈C

plij(S)


where

M and C are, respectively, the sets of ML and CL constraints.
plij(S) and plij(¬S) are computed from the pairwise mass function mij

Go back to pairwise mass functions

Minimizing JCECM(M,V ) w.r.t. M is a quadratic programming problem.
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Evidential clustering algorithms Evidential c-means

Active learning

ML and CL constraints are sometimes given in advance, but they can
sometimes be elicited from the user using an active learning strategy.

For instance, we may select pairs of object such that

The first object is classified with high uncertainty (e.g., an object such that mi

has high nonspecificity);
The second object is classified with low uncertainty (e.g., an object that is
close to a cluster center).

The user is then provided with this pair of objects, and enters either a ML or
a CL constraint.
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Evidential clustering algorithms Evidential c-means

Results

Glass data Ionosphere data
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Evidential clustering algorithms Evidential c-means

Other variants of ECM

Relational Evidential c-Means (RECM) for (metric) proximity data (Masson and
Denœux, 2009).

ECM with adaptive metrics to obtain non-spherical clusters (Antoine et al.,
2012). Specially useful with CECM.

Spatial Evidential C-Means (SECM) for image segmentation (Lelandais et al.,
2014).
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Evidential clustering algorithms EVCLUS

Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures

Thierry Denœux Belief functions - Evidential clustering Summer 2022 47 / 92



Evidential clustering algorithms EVCLUS

Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij), how to build a
“reasonable” credal partition ?

We need a model that relates cluster membership to dissimilarities.

Basic idea: “The more similar two objects, the more plausible it is that they
belong to the same group”.

How to formalize this idea?
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Evidential clustering algorithms EVCLUS

Formalization

Let mi and mj be mass functions regarding the group membership of objects
oi and oj .

We have seen that the plausibility that objects oi and oj belong to the same
group is

plij(S) =
∑

A∩B 6=∅

mi (A)mj(B) = 1− κij

where κij = degree of conflict between mi and mj .

Problem: find a credal partition M = (m1, . . . ,mn) such that larger degrees
of conflict κij correspond to larger dissimilarities dij .
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Evidential clustering algorithms EVCLUS

Cost function

Approach: minimize the discrepancy between the dissimilarities dij and the
degrees of conflict κij .

Example of a cost (stress) function:

J(M) =
∑
i<j

(κij − ϕ(dij))2

where ϕ is an increasing function from [0,+∞) to [0, 1], for instance

ϕ(d) = 1− exp(−γd2).

γ can be determined by fixing α ∈ (0, 1) and d0 such that, for any two
objects (oi , oj) with dij ≥ d0, the plausibility that they belong to the same
cluster is at leat 1− α.
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Evidential clustering algorithms EVCLUS

Butterfly example
Data and dissimilarities

Determination of γ in ϕ(d) = 1− exp(−γd2): fix α ∈ (0, 1) and d0 such that, for
any two objects (oi , oj) with dij ≥ d0, the plausibility that they belong to the same
cluster is at least 1− α.
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Butterfly example
Credal partition
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Butterfly example
Shepard diagram
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Example with a four-class dataset (2000 objects)
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Advantages

Conceptually simple, clear interpretation.

EVCLUS can handle non metric dissimilarity data (even expressed on an
ordinal scale).

It was also shown to outperform some of the state-of-the-art relational
clustering techniques on a number of datasets (Denœux and Masson, 2004).
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Limitations

Requires to store the whole dissimilarity matrix; the space complexity is thus
O(n2), where n is the number of objects. Restricts application to datasets
with n ∼ 102 − 103.

Each computation of the gradient requires O(f 3n2) operations, where f is
the number of focal sets of the mass functions. In the worst case, f = 2c .

To make the method usable even for moderate values of c , we need to
restrict the form of the mass functions so that masses are only assigned to
focal sets of size 0, 1 or c , which prevents us from fully exploiting the
potential generality of the method.
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Improvements of EVCLUS

1 Fast optimization algorithm

2 Sample dissimilarities

3 Carefully select the focal sets
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Fast optimization

The optimization algorithm initially used in EVCLUS is a gradient-based
procedure.

Here, we propose to use a cyclic coordinate descent algorithm that minimizes
J(M) with respect to each mi at a time.

The new method, called Iterative Row-wise Quadratic Programming (IRQP),
exploits the particular approach of the problem (a quadratic programming
problem is solved at each step), and it is thus much more efficient.
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IRQP algorithm
Vector representation of the cost function

The stress function can be written as

J(M) =
∑
i<j

(mT
i Cmj − δij)2.

where

δij = ϕ(dij) are the scaled dissimilarities
mi and mj are vectors encoding mass functions mi and mj

C is a square matrix, with general term Ck` = 1 if Fk ∩ F` = ∅ and Ck` = 0
otherwise.

Fixing all mass functions except mi , the stress function becomes quadratic.
Minimizing J w.r.t. mi is a linearly constrained positive least-squares
problem, which can be solved using efficient algorithms.

By iteratively updating each mi , the algorithm converges to a local minimum
of the cost function.
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Experiment 1: Proteins dataset
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Experiment 1: Proteins dataset
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Stress vs. time (in seconds) for 20 runs of the Gradient (left) and IRQP (right)
algorithms on the Protein data.
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Experiment 1: Proteins dataset
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Boxplots of computing time (left) and stress value at convergence (right) for 20
runs of the Gradient and IRQP algorithms on the Protein data.
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Experiment 2: simulated data (n = 200)
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Experiment 2: simulated data (n = 200)
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Boxplots of computing time (left) and stress value at convergence (right) for 20
runs of the Gradient and IRQP algorithms on the simulated data.
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Experiment 2: simulated data (n = 200)
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Influence of n
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Sampling dissimilarities

EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable to
large proximity data.

However, there is usually some redundancy in a dissimilarity matrix.

In particular, if two objects o1 and o2 are very similar, then any object o3 that
is dissimilar from o1 is usually also dissimilar from o2.

Because of such redundancies, it might be possible to compute the
differences between degrees of conflict and dissimilarities, for only a subset of
randomly sampled dissimilarities.
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New stress function

Let j1(i), . . . , jk(i) be k integers sampled at random from the set
{1, . . . , i − 1, i + 1, . . . , n}, for i = 1, . . . , n.

Let Jk the following stress criterion,

Jk(M) =
n∑

i=1

k∑
r=1

(κi,jr (i) − δi,jr (i))
2.

The calculation of Jk(M) requires only O(nk) operations.

If k can be kept constant as n increases, then time and space complexities
are reduced from quadratic to linear.
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Example with simulated data (n = 10, 000)
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Zongker Digit dissimilarity data

Similarities between 2000 handwritten digits in 10 classes, based on
deformable template matching.

k-EVCLUS was run with c = 10 and differents following values of k.

Parameter d0 was fixed to the 0.3-quantile of the dissimilarities.

k-EVCLUS was run 10 times with random initializations.
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Zongker Digit dissimilarity data
Results
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Comparing and combining the results of soft clustering algorithms

Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Comparing and combining the results of soft clustering algorithms

Exploiting the generality of evidential clustering

We have seen that the concept of credal partition subsumes the main hard
and soft clustering structures.

Consequently, methods designed to evaluate or combine credal partitions can
be used to evaluate or combine the results of any hard or soft clustering
algorithms.

Two such methods will be described:
1 A generalization of the Rand index to compute the distance between two

credal partitions;
2 A method to combine credal partitions.
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Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Rand index

The Rand index is a widely used measure of agreement (similarity) tbetween
two hard partitions.

It is defined as

RI =
a + b

n(n − 1)/2

with

a = number of pairs of objects that are grouped together in both partitions
b = number of pairs of objects that are assigned to different clusters in both
partitions.

How to generalize the Rand Index to credal partitions?
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Jousselme’s distance

Let R = (mij) and R ′ = (m′ij) be the relational representations of two credal
partitions.

The assess the distance between R and R ′, we can average the distances
between the mij ’s and m′ij ’s.

A suitable measure is the squared Jousselme’s metric, defined as

dij =

(
1

2
(mij −m′ij)

T J(mij −m′ij)
)1/2

with mij = (mij(∅),mij({s}),mij({ns}),mij(Θ))T and

J =


1 0 0 0
0 1 0 1/2
0 0 1 1/2
0 1/2 1/2 1


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Credal Rand index

We define the Credal Rand Index as

CRI = 1−
∑

i<j dij

n(n − 1)/2
.

Properties:

0 ≤ CRI ≤ 1
CRI is the Rand index when the two partitions are hard
Symmetry: CRI (R,R ′) = CRI (R ′,R)
If R = R ′, then CRI (R,R ′) = 1
1-CRI is a metric in the space of relational representations of credal partitions
(it is reflexive, symmetric, separable and it verifies the triangular inequality).

The CRI can be used to compare the results of any two hard or soft
clustering algorithms.
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Example: Seeds data

Seeds from three different varieties of wheat: Kama, Rosa and Canadian, 70
elements each, 7 features. First 4 principal components:
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Clustering algorithms

Evidential clustering (R package evclust)

ECM, F = {A ⊆ Ω, |A| ≤ 2}
EVCLUS (F = {A ⊆ Ω, |A| ≤ 1} ∪ {Ω}; F = 2Ω).

and their derived hard, fuzzy and rough partitions

Hard clustering: HCM (R package stats)

Fuzzy clustering (R package fclust)

FCM
Fuzzy K medoids

Rough clustering (R package SoftClustering)

Peter’s rough k-means P-RCM
Pi rough k-means π-RCM
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Result: MDS configuration
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Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
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EVCLUS

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Motivations for combining clustering structures

Let M1, . . . ,MN be an ensemble of N credal partitions generated by hard or
soft (fuzzy, rough, etc.) clustering structures.

It may be useful to combine these credal partitions:

to increase the chance of finding a good approximation to the true partition, or
to highlight invariant patterns across the clustering structures.

Combination is easily carried out using relational representations.
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Combination method

M1	

M2	

…
	

Mk	

R1	
R2	

…
	

Rk	

combina/on	 R*	 M*	

Credal		
par//ons	

Pairwise	
representa/ons	

Combined	credal		
par//on	

The combined credal partition can be defined as

M∗ = arg max
M

CRI (R(M),R∗),

where R(M) denotes the relational representation of M.
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Example: seeds data
Hard clustering results
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Example: seeds data
Fuzzy clustering results
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Example: seeds data
Combined credal partition (Dubois-Prade rule)
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Conclusions

Summary

The Dempster-Shafer theory of belief functions provides a rich and flexible
framework to represent uncertainty in clustering.

The concept of credal partition encompasses the main existing soft clustering
concepts (fuzzy, possibilistic, rough partitions).

Efficient algorithms exist, allowing one to generate credal partitions from
attribute or proximity datasets.

These algorithms can be applied to large datasets and large numbers of
clusters (by carefully selecting the focal sets).

Concepts from the theory of belief functions make it possible to compare and
combine clustering structures generated by various soft clustering algorithms.
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Conclusions

Future research directions

Combining clustering structures in various settings

distributed clustering,
combination of different attributes, different algorithms,
etc.

Handling huge datasets (several millions of objects)

Criteria for selecting the number of clusters

Semi-supervised clustering

Clustering imprecise or uncertain data

Applications to image processing, social network analysis, process monitoring,
etc.

Etc...
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Conclusions

The evclust package

https://cran.r-project.org/web/packages
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