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Hard and soft clustering concepts

Hard clustering: no representation of uncertainty. Each object is assigned to one
and only one group. Group membership is represented by binary
variables uj such that vy = 1 if object i belongs to group k and
ujx = 0 otherwise.

Fuzzy clustering: each object has a degree of membership vy € [0, 1] to each
group, with Zi:l ujx = 1. The uj’'s can be interpreted as
probabilities.

Fuzzy clustering with noise cluster: the above equality is replaced by

> i—q Uik < 1. The number 1 — >";_, uj is interpreted as a degree
of membership (or probability of belonging to) to a noise cluster.

g
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|
Hard and soft clustering concepts

Possibilistic clustering: the uj are free to take any value in [0,1]. Each number
ujk is interpreted as a degree of possibility that object i/ belongs to
group k.

Rough clustering: each cluster wy is characterized by a lower approximation w,
and an upper approximation @y, with w, C @y; the membership of
object i to cluster k is described by a pair (u;, i) € {0,1}2, with
Upe < Tjg, P Uy < Tand 354 Ty > 1.
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|
Clustering and belief functions

clustering structure  uncertainty framework

fuzzy partition probability theory
possibilistic partition possibility theory
rough partition (rough) sets
? belief functions

@ As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework for
cluster analysis?

@ Objectives:

o Unify the various approaches to clustering

o Achieve a richer and more accurate representation of uncertainty

o New clustering algorithms and new tools to compare and combine clustering
results. Y
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Outline

@ Evidential clustering
@ Credal partition
@ Summarization of a credal partition
@ Relational representation of a credal partition

e Evidential clustering algorithms
o Evidential c-means
e EVCLUS

© Comparing and combining the results of soft clustering algorithms
@ The credal Rand index
@ Combining clustering structures
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Outline

@ Evidential clustering
@ Credal partition
@ Summarization of a credal partition
@ Relational representation of a credal partition
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Outline

@ Evidential clustering
@ Credal partition
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Evidential partition

Let {o1,...,0n} be a set of n objects and Q = {wy,...,wc} be aset of ¢
groups (clusters).

Each object o; is assumed to belong to at most one group.

Evidence about the group membership of object o; is represented by a mass
function m; on €.

@ To account for the possibility that an object may not belong to any of the ¢
groups, we use unnormalized mass functions m; such that m;(#) > 0.

Definition
The n-tuple M = (my, ..., m,) is called an evidential partition. J
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Example

Butterfly data
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Relationship with other clustering structures

More general
A

m; unormalized
Bayesian

Credal partition m; general

Fuzzy partition

with a noise cluster

Possibilisti

¢ partition Rough partition

Fuzzy partition

m; Bayesian

Less general

Thierry Denceux
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m; consonant m; logical

Hard partition | m,; certain

2

%S
PN
e

Belief functions - Evidential clustering Summer 2022 11 /92



Rough clustering as a special case

@ Assume that each m; is logical, i.e., m;(A;) = 1 for some A; C Q, A; # (.
@ We can then define the lower and upper approximations of cluster wy as

gk:{o;GO:A;:{wk}}, wk:{O;EO:wkEA;}.

@ The membership values to the lower and upper approximations of cluster wy
are U, = Be/,-({wk}) and Uy = P/,({wk})

m({o,})=1 m({("y wz) m({o,})=1

.
Lower Y ! Upper

apprOX|mat|ons appro><|mahons
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SYCENEIRGIE NS  Summarization of a credal partition

@ Evidential clustering

@ Summarization of a credal partition
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SYCENEIRGIE NS  Summarization of a credal partition

Summarization of a credal partition

More complex
unnormalized

pignistic/plausibility
transformation

Fuzzy partition
with a noise cluster

Credal partition

contour
function

y

interval dominance
or maximum mass

l, normalization | Possibilistic partition |

Fuzzy partition

maximum
probability

/

Less complex

maximum
plausibility

Hard partition
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Summarization of a credal partition
From evidential to rough clustering

@ For each i/, let A; C Q be the set of non dominated clusters
A ={weQ: VW e Q Belf({w'}) < PlIF({w})},

where Bel! and Pl are the normalized belief and plausibility functions.

@ Lower approximation:

{1 if A,' = {wk}

u.,, =
wik 0 otherwise.
@ Upper approximation:
_ 1 ifwe €A
Uik = .
0 otherwise.

@ The outliers can be identified separately as the objects for which
m;(0) > m;(A) for all A# 0.
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Evidential clustering Relational representation of a credal partition

@ Evidential clustering

@ Relational representation of a credal partition
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Relational representation of a credal partition
Relational representation of a hard partition

@ A hard partition can be represented equivalently by

e the n x ¢ membership matrix U = (ui) or
e an n x n relation matrix R = (r;) representing the equivalence relation

{1 if o; and o; belong to the same group
=

0 otherwise.

@ The relational representation R is invariant under renumbering of the
clusters, and is thus more suitable to compare or combine several partitions.

@ What is the counterpart of matrix R in the case of a credal partition?

%’- ¢
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Relational representation of a credal partition
Relational representation

o Let M= (my,..

., my) be a credal partition.

o For a pair of objects {o;, 0}, let Q;; be the question “Do o; and o; belong to
the same group?” defined on the frame © = {s, —s}.

@ O is a coarsening of 0.

Q

Ex ;] 0, | W3] Wy
(1 /
, 4«1

3

Wy

Thierry Denceux

Given m; and m; on Q, a mass function m;; on ©
can be computed as follows:

@ Extend m; and mj to Q?;

@ Combine the extensions of m; and m; by the
unnormalized Dempster's rule;

© Compute the restriction of the combined
mass function to ©.
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Evidential clustering Relational representation of a credal partition

Pairwise mass function

@ Mass function:
m;;(0) = m'(@) + m;(0) — m;(0)m;(0)
m;i({s}) = Z ({wi})mj({wi})

k=1

mj({~s}) = rij — m(D)
m;i(©) =1 —rj— > mi({wi})m;({wi})-
k

where rj; is the degree of conflict between m; and m;.

@ In particular,
pI’J(S) =1- Ii,j.

%"
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Special cases

Evidential clustering Relational representation of a credal partition

Hard partition:

mij({s}) =rj, mi({-s})=1—r; with r; € {0,1}
Fuzzy partition:
mi({s}) =rj, mj({-s})=1—r; with rj€[0,1]
Rough partition: Assume m;(A;) =1 and mj(A;) = 1.
m;j({s}) =1
mij({-s}) =1

m;(©) =1

if A,‘ = Aj = {wk}
if AiNA =10

otherwise.
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Relational representation of a credal partition
Relational representation of a credal partition

o Let M = (my,..., m,) be a credal partition.

@ The tuple R = (mjj)i<i<j<n is called the relational representation of credal
partition M.

1 2 3 4 5

1 mip mi3 My Mis
2 - M3 Moy Mps
M:(m17m2am3am4am5)4>R: 3
mszsg  M3s
4 Mas
5

@ Open question: given a relational representation R, can we uniquely recover
the credal partition M, up to a permutation of the cluster indices?

S
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Evidential clustering Relational representation of a credal partition

Example

o Credal partition:

A 0 {wl} {w2}  {wi,wa}
m(A) 03 01 00
m(A) 0.0 0.7 01 02
my(A) 00 01 06 03

@ Relational representation:

A 0 {s} {-s} {s s}
mpp(A) 030 043 013  0.14
mi3(A) 030 012 037 021
mo3(A)  0.00 0.13 043  0.44

Thierry Denceux
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Outline

e Evidential clustering algorithms
o Evidential c-means
e EVCLUS
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Main approaches

@ Evidential c-means (ECM): (Masson and Denceux, 2008):
o Attribute data
e HCM, FCM family
@ EVCLUS (Denceux and Masson, 2004; Denceux et al., 2016):
o Attribute or proximity (possibly non metric) data
e Multidimensional scaling approach
@ Bootclus (Denceux, 2020)
o Attribute data

e Based on mixture models and the bootstrap
o Provides belief functions with frequentist properties

-, "w..w“‘:
g
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SV CHEEIRETEENPEEIECIGOTEEN  Evidential c-means

e Evidential clustering algorithms
o Evidential c-means
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Principle

@ Problem: generate a credal partition M = (my, ..., m,) from attribute data
X = (x1,...,xp), x; € RP.
@ Generalization of hard and fuzzy c-means algorithms:
o Each cluster is represented by a prototype.
e Cyclic coordinate descent algorithm: optimization of a cost function
alternatively with respect to the prototypes and to the credal partition.

e

o™

Thierry Denceux Belief functions - Evidential clustering Summer 2022 26 /92



Fuzzy c-means (FCM)

@ Minimize
n c

Jen(U, V) =D " udy

i=1 k=1
with dj = ||x; — vi|| subject to the constraints >, uy =1 for all /.
@ Alternate optimization algorithm:

Sy Ui
i “ﬁ(

g2/

22:1 di;2/(ﬂ*1)'

Vi =

Ujx =

et

R
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ECM algorithm

Principle
°° o 4 @ Each cluster wy represented by a prototype vy.
° o v, <_<_3_:’20 @ Each nonempty set of clusters A; represented by
o Vigo-———®7T S o a prototype v; defined as the center of mass of
o O V4 © the vy for all wy € A;.
N o] ' I
% ,/,' v, o Basic ideas:
\'A o o e For each nonempty A; C Q, mj = mj(A;) should
o ‘\'/o o be high if x; is close to v;.
R R S Vs e The distance to the empty set is defined as a
o fixed value 6.
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ECM algorithm: cost function

o Define the nonempty focal sets F = {A;, ..., Ar} C 2%\ {0}.
@ Minimize
V)= 35 AL 1 Y
i=1 j=1 i=1
subject to the constraints Zf L mjj+ mig =1 forall i.
@ Parameters:

o « controls the specificity of mass functions (default: 1)
e (3 controls the hardness of the credal partition (default: 2)
e J controls the proportion of data considered as outliers

@ Jeew(M, V) can be iteratively minimized with respect to M and to V.

A

m,@,f
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ECM algorithm: update equations

Update of M:
Cj*a/(ﬂfl)dU*Q/(ﬁ*l)

p— “a/(B—1) 4—2/(B—1 YT
Rl e gy

mi

fori=1,...,nandj=1,...,f, and

f
mipp=1— E mj, i=1,...,n
j=1

Update of V: solve a linear system of the form
HV = B,

where B is a matrix of size ¢ x p and H a matrix of size c x c.

o
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Butterfly dataset

Butterfly data
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4-class data set

X2
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X1 i
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7 e
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Determining the number of groups

If a proper number of groups is chosen, the prototypes will cover the clusters
and most of the mass will be allocated to singletons of 2.

On the contrary, if ¢ is too small or too high, the mass will be distributed to
subsets with higher cardinality or to 0.

Nonspecificity of a mass function:

N(m)£ >~ m(A)log, |Al + m(0)log, |Q|
Ae22\(

Proposed validity index of a credal partition:

W)L T S | S miA)logs A+ m(0) oga()

i=1 [ Ae22\0

g

Thierry Denceux Belief functions - Evidential clustering Summer 2022 33 /92



Results for the 4-class dataset

0.26
|

nonspecificity
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SV CHEEIRETEENPEEIECIGOTEEN  Evidential c-means

Carefully selecting the focal sets

@ If no restriction is imposed on the focal sets, the number of parameters to be
estimated in evidential clustering grows exponentially with the number ¢ of
clusters, which makes it intractable unless c is small.

o If we allow masses to be assigned to all pairs of clusters, the number of focal
sets becomes proportional to c?, which is manageable for moderate values of
¢ (say, until 10), but still impractical for larger n.

o Idea: assign masses only to pairs of contiguous clusters.

o If each cluster has at most g neighbors, then the number of focal sets is
proportional to c.
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Evidential clustering algorithms (S EIERSRIEENS

Example
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The S, dataset (n = 5000) and the 15 clusters found by k-EVCLUS with k = l@
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SV CHEEIRETEENPEEIECIGOTEEN  Evidential c-means

Method

Stepl:

Step 2:

Step 3:

Run an evidential clustering algorithm (e.g., ECM ) with focal sets
of cardinalities 0, 1 and (optionally) c. A credal partition My is
obtained.

Compute the similarity between each pair of clusters (wj, wy) as
n
S, 0) =Y plyphe,
i=1

where pl; and pli; are the normalized plausibilities that object
belongs, respectively, to clusters j and £. Determine the set Pk of
pairs {wj,w,} that are mutual g nearest neighbors.

Run the evidential clustering algorithm again, starting from the
previous credal partition My, and adding as focal sets the pairs in
Pk.

R

Thierry Denceux Belief functions - Evidential clustering Summer 2022 37 /92



Pairs of mutual neighbors with g = 1
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Pairs of mutual neighbors with g = 2
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Initial credal partition M,
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Final credal partition (g = 1)
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Constrained Evidential c-means

@ In some cases, we may have some prior knowledge about the group
membership of some objects.
@ Such knowledge may take the form of instance-level constraints of two kinds:

© Must-link (ML) constraints, which specify that two objects certainly belong to
the same cluster;

@ Cannot-link (CL) constraints, which specify that two objects certainly belong
to different clusters.

@ How to take into account such constraints?

&,
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Modified cost-function

@ To take into account ML and CL constraints, we can modify the cost
function of ECM as

JCECM(M7 V) = (1 - g)JECM(Mv V) + gJCONST(M)
with
1

S phi(-5) + S pl(S)
(M +1C] (xi,x;)EM (xi,x;)€C

JCONST(M)

where

e M and C are, respectively, the sets of ML and CL constraints.
e plii(S) and pl;j(—S) are computed from the pairwise mass function mj;

@ Minimizing Jeeew(M, V) w.r.t. M is a quadratic programming problem.
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Active learning

@ ML and CL constraints are sometimes given in advance, but they can
sometimes be elicited from the user using an active learning strategy.
@ For instance, we may select pairs of object such that

o The first object is classified with high uncertainty (e.g., an object such that m;
has high nonspecificity);

e The second object is classified with low uncertainty (e.g., an object that is
close to a cluster center).

@ The user is then provided with this pair of objects, and enters either a ML or
a CL constraint.
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Evidential c-means

Results

Glass data lonosphere data
! 0.9
- —e— Average Rand Index computed on 100 trials
098 —— Rand Index obtained with Active Learning
0.96
0.94 x
5
3
— £
s
0.92 £
i
0.9
0.88 —@— Average Rand Index computed on 100 trials
—— Rand Index obtained with Active Learning
0.86
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of constraints Number of constraints
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Other variants of ECM

Relational Evidential c-Means (RECM) for (metric) proximity data (Masson and
Denceux, 2009).

ECM with adaptive metrics to obtain non-spherical clusters (Antoine et al.,
2012). Specially useful with CECM.

Spatial Evidential C-Means (SECM) for image segmentation (Lelandais et al.,
2014).
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Outline

e Evidential clustering algorithms

e EVCLUS
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Learning a Credal Partition from proximity data

@ Problem: given the dissimilarity matrix D = (d;;), how to build a
“reasonable” credal partition ?

@ We need a model that relates cluster membership to dissimilarities.

@ Basic idea: “The more similar two objects, the more plausible it is that they
belong to the same group”.

@ How to formalize this idea?

My e
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Evidential clustering algorithms V@RI

Formalization

o Let m; and m; be mass functions regarding the group membership of objects
o; and o;.
@ We have seen that the plausibility that objects o; and o; belong to the same
group is
pli(S)=>_ mi(A)m;(B) =1— s
ANB#()
where kj; = degree of conflict between m; and mj.

@ Problem: find a credal partition M = (my, ..., m,) such that larger degrees
of conflict k;; correspond to larger dissimilarities dj;.

O
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Cost function

@ Approach: minimize the discrepancy between the dissimilarities dj; and the
degrees of conflict k.

e Example of a cost (stress) function:

J(M) = (ki — o(dy))?
i<j
where @ is an increasing function from [0, 4+00) to [0, 1], for instance
p(d) =1 — exp(—d®).

@ 7 can be determined by fixing « € (0,1) and dp such that, for any two
objects (o;, o) with djj > dp, the plausibility that they belong to the same

cluster is at leat 1 — «.
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Butterfly example

Data and dissimilarities

Determination of v in (d) = 1 — exp(—~d?): fix a € (0,1) and dp such that, for
any two objects (oj, 0;) with djj > dp, the plausibility that they belong to the same
cluster is at least 1 — a.

Butterfly data
o 12 4y PUTE——
1-q ) / '
©
7 ¢
©
2 < 5
34 /
4 /
h 2 10 /
=11 356 7 911 y
<l do
vl 4 ‘ 8 ‘ 31 : : : :
-5 0 5 10 0 5 10 15 20
X1 d;
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Evidential clustering algorithms V@RI

Butterfly example

Credal partition

Butterfly data
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Butterfly example

Shepard diagram
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Evidential clustering algorithms V@RI

Example with a four-class dataset (2000 objects)

< <
3 = °
= =

= B °

X1
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Advantages

@ Conceptually simple, clear interpretation.

@ EVCLUS can handle non metric dissimilarity data (even expressed on an
ordinal scale).

@ It was also shown to outperform some of the state-of-the-art relational
clustering techniques on a number of datasets (Denceux and Masson, 2004).
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Evidential clustering algorithms [SVERUELY

Limitations

@ Requires to store the whole dissimilarity matrix; the space complexity is thus
O(n?), where n is the number of objects. Restricts application to datasets
with n ~ 102 — 103.

e Each computation of the gradient requires O(f3n?) operations, where f is
the number of focal sets of the mass functions. In the worst case, f = 2°.

@ To make the method usable even for moderate values of ¢, we need to
restrict the form of the mass functions so that masses are only assigned to
focal sets of size 0, 1 or ¢, which prevents us from fully exploiting the
potential generality of the method.

%)

g
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Improvements of EVCLUS

@ Fast optimization algorithm
@ Sample dissimilarities
© Carefully select the focal sets

Thierry Denceux Belief functions - Evidential clustering
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Evidential clustering algorithms SAVERVLY

Fast optimization

@ The optimization algorithm initially used in EVCLUS is a gradient-based
procedure.

@ Here, we propose to use a cyclic coordinate descent algorithm that minimizes
J(M) with respect to each m; at a time.

@ The new method, called Iterative Row-wise Quadratic Programming (IRQP),
exploits the particular approach of the problem (a quadratic programming
problem is solved at each step), and it is thus much more efficient.

R
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IRQP algorithm

Vector representation of the cost function

@ The stress function can be written as

_ T 2
J(M) = "(m] Cm; —5;).
i<j
where
e §jj = p(dj) are the scaled dissimilarities
e m; and m; are vectors encoding mass functions m; and m;

o C is a square matrix, with general term G, =1 if Fk N Fe =0 and Cye =0
otherwise.

@ Fixing all mass functions except mj, the stress function becomes quadratic.
Minimizing J w.r.t. m; is a linearly constrained positive least-squares
problem, which can be solved using efficient algorithms.

o By iteratively updating each m;, the algorithm converges to a local minimum
of the cost function. {
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Experiment 1: Proteins dataset
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Experiment 1: Proteins dataset

Gradient, Protein data IRQP, Protein data
o
g4 g
o =7
o
Q o
n
S 84
© o
o o
N N
0 9 7 0 O 7
g ° g ©
k7] k7] °
g g
o )
0 wn
S S
) ) ‘&

algorithms on the Protein data.
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Experiment 1: Proteins dataset
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Boxplots of computing time (left) and stress value at convergence (right) for 20—
runs of the Gradient and IRQP algorithms on the Protein data. x$
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Experiment 2: simulated data (n = 200)

Gradient, n=200 IRQP, n=200
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Boxplots of computing time (left) and stress value at convergence (right) for 20=
runs of the Gradient and IRQP algorithms on the simulated data. x$
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Experiment 2: simulated data (n = 200)
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Boxplots of computing time (left) and stress value at convergence (right) for 20=
runs of the Gradient and IRQP algorithms on the simulated data. x$
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Sampling dissimilarities

@ EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable to
large proximity data.

@ However, there is usually some redundancy in a dissimilarity matrix.

@ In particular, if two objects o; and o, are very similar, then any object o3 that
is dissimilar from oy is usually also dissimilar from o;.

@ Because of such redundancies, it might be possible to compute the
differences between degrees of conflict and dissimilarities, for only a subset of
randomly sampled dissimilarities.
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New stress function

Let ji(i),...,jk(i) be k integers sampled at random from the set
{1,...,i=1,i+1,....n}, fori=1,...,n

Let Ji the following stress criterion,

n k

J(M) = Z Z(Hf,jr(f) —0i())*

i=1 r=1

The calculation of Jx(M) requires only O(nk) operations.

If k can be kept constant as n increases, then time and space complexities
are reduced from quadratic to linear.

S
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Example with simulated data (n = 10, 000)
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Zongker Digit dissimilarity data

@ Similarities between 2000 handwritten digits in 10 classes, based on
deformable template matching.

@ k-EVCLUS was run with ¢ = 10 and differents following values of k.
o Parameter dy was fixed to the 0.3-quantile of the dissimilarities.

@ k-EVCLUS was run 10 times with random initializations.
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Zongker Digit dissimilarity data

Results
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Comparing and combining the results of soft clustering algorithms

© Comparing and combining the results of soft clustering algorithms
@ The credal Rand index
@ Combining clustering structures

g
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Exploiting the generality of evidential clustering

@ We have seen that the concept of credal partition subsumes the main hard
and soft clustering structures.

@ Consequently, methods designed to evaluate or combine credal partitions can
be used to evaluate or combine the results of any hard or soft clustering
algorithms.

@ Two such methods will be described:

© A generalization of the Rand index to compute the distance between two
credal partitions;
@ A method to combine credal partitions.

&,

N %
o
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Comparing and combining the results of soft clustering algorithms [N RN RINIY

© Comparing and combining the results of soft clustering algorithms
@ The credal Rand index

a
a“
‘% S
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Comparing and combining the results of soft clustering algorithms [N RN RINIY

@ The Rand index is a widely used measure of agreement (similarity) tbetween
two hard partitions.

@ It is defined as
a+b

Rl = —
n(n—1)/2
with
e a = number of pairs of objects that are grouped together in both partitions
e b = number of pairs of objects that are assigned to different clusters in both
partitions.

@ How to generalize the Rand Index to credal partitions?
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L
Jousselme’s distance

o Let R = (mj) and R' = (m};) be the relational representations of two credal
partitions.

@ The assess the distance between R and R’, we can average the distances
between the mj;'s and mfj's.

@ A suitable measure is the squared Jousselme's metric, defined as

1

1/2
dj = (2(m,-j — mfj)TJ(m,-j —mj; )

with my; = (my(0), my({s}), my({ns}), m;(©))" and

1 0 0 0
oo 1 0 1
"o o 1 1p
0 1/2 12 1

S

Thierry Denceux Belief functions - Evidential clustering Summer 2022 76 / 92



Comparing and combining the results of soft clustering algorithms [N RN RINIY

o We define the Credal Rand Index as

Ei<j djj

CRI =1- nn—1)/2°

@ Properties:

0<CRIL1

CRI is the Rand index when the two partitions are hard

Symmetry: CRI(R,R’) = CRI(R', R)

If R= R’ then CRI(R,R') =1

1-CRI is a metric in the space of relational representations of credal partitions
(it is reflexive, symmetric, separable and it verifies the triangular inequality).

@ The CRI can be used to compare the results of any two hard or soft
clustering algorithms.

S
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Example: Seeds data

Seeds from three different varieties of wheat: Kama, Rosa and Canadian, 70
elements each, 7 features. First 4 principal components:
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Clustering algorithms

Evidential clustering (R package evclust)

o ECM, F={ACQ,|A <2}

o EVCLUS (F={AC QA <1}U{Q}; F =29).
and their derived hard, fuzzy and rough partitions
Hard clustering: HCM (R package stats)

Fuzzy clustering (R package fclust)

e FCM
e Fuzzy K medoids

Rough clustering (R package SoftClustering)

o Peter’'s rough k-means P-RCM
e Pi rough k-means 7-RCM

g

Thierry Denceux Belief functions - Evidential clustering Summer 2022 79 /92



Comparing and combining the results of soft clustering algorithms RNt IR CTr Lt

Result: MDS configuration
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Comparing and combining the results of soft clustering algorithms RSN R ISR

© Comparing and combining the results of soft clustering algorithms

@ Combining clustering structures

My
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Motivations for combining clustering structures

o Let My,..., My be an ensemble of N credal partitions generated by hard or
soft (fuzzy, rough, etc.) clustering structures.
@ |t may be useful to combine these credal partitions:

e to increase the chance of finding a good approximation to the true partition, or
e to highlight invariant patterns across the clustering structures.

@ Combination is easily carried out using relational representations.

e /,
e
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Combination method

Credal Pairwise
partitions representations

M; =——> R, Combined credal
M, = R, partition

combination R* —> M*

M, —> R,

The combined credal partition can be defined as

M* = arg max CRI(R(M), R*),

where R(M) denotes the relational representation of M. Y

S 2
ey
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the results of soft clustering Il Combining clustering structures

Example: seeds data

Hard clustering results

HCM Hierarchical Ward

X2

-1

-2

X1 X1
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Example: seeds data

Fuzzy clustering results

FCM FKM.med
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Variability explained by these two components: 71.61% Variability explained by these two components: 71.61%
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Comparing and combining the results of soft clustering algorithms RSN R ISR

Example: seeds data

Combined credal partition (Dubois-Prade rule)

X2

Thierry Denceux
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Combined (DP)
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Conclusions

Summary

@ The Dempster-Shafer theory of belief functions provides a rich and flexible
framework to represent uncertainty in clustering.

@ The concept of credal partition encompasses the main existing soft clustering
concepts (fuzzy, possibilistic, rough partitions).

o Efficient algorithms exist, allowing one to generate credal partitions from
attribute or proximity datasets.

@ These algorithms can be applied to large datasets and large numbers of
clusters (by carefully selecting the focal sets).

@ Concepts from the theory of belief functions make it possible to compare and
combine clustering structures generated by various soft clustering algorithms.
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Future research directions

°
o distributed clustering,
e combination of different attributes, different algorithms,
e etc.

@ Handling huge datasets (several millions of objects)

@ Criteria for selecting the number of clusters

o Semi-supervised clustering

@ Clustering imprecise or uncertain data

°

etc.
o Etc...

Thierry Denceux

Combining clustering structures in various settings

Belief functions - Evidential clustering

Applications to image processing, social network analysis, process monitoring,
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The evclust package

evclust: Evidential Clustering

Various clustering algorithms that produce a credal partition, i.e., a set of Dempster-Shafer mass functions
representing the membership of objects to clusters. The mass functions quantify the cluster-membership uncertainty
of the objects. The algorithms are: Evidential c-Means (ECM), Relational Evidential c-Means (RECM),
Constrained Evidential c-Means (CECM), EVCLUS and EK-NNclus.

Version: 103

Depends: R(z3.1.0)

Imports: ENN, R.utils, limSolve, Matrix
Suggests: knitr, rmarkdown

Published: 2016-09-04

Author: Thierry Denoeux

Maintainer: Thierry Denoeux <tdenoeux at utc.fr>
License: GPL-3

NeedsCompilation: no

In views: Cluster

CRAN checks: evclust results

https://cran.r-project.org/web/packages
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