Introduction to belief functions Exercises on statistical inference

Thierry Denœux

1 Exercise 1

The one-parameter Fréchet distribution with shape parameter $\alpha > 0$ has the cumulative distribution function (cdf)

$$P(X \le x) = \exp(-x^{-\alpha}) \mathbb{1}_{(0,+\infty)}(x)$$

- 1. Write a program that simulates this distribution using the probability integral transform method.
- 2. Write functions to compute the log-likelihood and the relative likelihood, given a realization x_1, \ldots, x_n of an iid sample. Plot these functions for a particular sample.
- 3. Let $X_1, \ldots, X_n, X_{n+1}$ be an iid random sample from the Fréchet distribution with unknown shape parameter $\alpha > 0$. Write a program that computes the belief and the plausibility of the event $X_{n+1} \in [a, b]$ for any real interval [a, b], given a realization x_1, \ldots, x_n of X_1, \ldots, X_n .

2 Exercise 2

Write a program to solve the same problems as in Questions 2 and 3 of Exercise 1, this time assuming that the sample is generated from the two-parameter Fréchet distribution with shape parameter $\alpha > 0$ and scale parameter $\sigma > 0$, with cdf

$$P(X \le x) = \exp\left[-\left(\frac{x}{\sigma}\right)^{-\alpha}\right] \mathbb{1}_{(0,+\infty)}(x).$$

(Use a constrained nonlinear optimization function such as function constrOptim.nl in R package alabama).