Introduction to belief functions, Lecture 1– Exercises

Thierry Denœux

1. An urn contains 90 balls, of which 30 are white, and 60 are either black or yellow. A ball is going to be drawn from the urn. Represent the uncertainty about the outcome of this experiment using a mass function on a suitable frame. Compute the corresponding belief and plausibility functions.

Solution: The frame can be denoted as $\Omega = \{w, b, y\}$ for the three colors. The chance to get a white ball is 1/3 and the chance to get a ball that is either black or yellow is 2/3. We thus have the following mass function:

$$m(\{w\}) = 1/3, \quad m(\{b, y\}) = 2/3.$$

The corresponding belief and plausibility functions are given in the following table:

-	A	Ø	$\{w\}$	$\{b\}$	$\{w, b\}$	$\{y\}$	$\{w, y\}$	$\{b, y\}$	$\{w, b, y\}$
	Bel(A)	0	1/3	0	1/3	0	1/3	2/3	1
	Pl(A)	0	1/3	2/3	1	2/3	1	2/3	1

2. Let $\Omega = \{a, b, c\}$ and f the following function from 2^{Ω} to [0, 1]:

A	Ø	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a,c\}$	$\{b, c\}$	$\{a, b, c\}$
f(A)	0	0.5	0.2	0.8	0	0.5	0.5	1

Is f a belief function?

Solution: Let us assume that f is a belief function, and let us compute the corresponding mass function. We have $m(\{a\}) = 0.5$ and $m(\{b\}) = 0.2$,

 \mathbf{SO}

$$m(\{a, b\}) = 0.8 - 0.5 - 0.2 = 0.1.$$

Similarly, $m(\{c\}) = 0$, so $m(\{a, c\}) = 0.5 - 0.5 - 0 = 0$, and

$$m(\{b,c\}) = 0.5 - 0.2 - 0 = 0.3.$$

Finally,

$$m(\{a, b, c\}) = 1 - 0.5 - 0.2 - 0.1 - 0.3 = -0.1.$$

This mass is negative, so f is not a belief function.

We can also notice that f is not even 2-monotone. For instance,

$$f(\{a,b\} \cup \{b,c\}) = f(\{a,b,c\}) = 1$$

and

$$f(\{a,b\}) + f(\{b,c\}) - f(\{a,b\} \cap \{b,c\}) = 0.8 + 0.5 - 0.2 = 1.1,$$

 \mathbf{so}

$$f(\{a,b\} \cup \{b,c\}) < f(\{a,b\}) + f(\{b,c\}) - f(\{a,b\} \cap \{b,c\}).$$

3. An expert has given the following contour function on $\Omega = \{a, b, c, d, e, f\}$:

ω	a	b	c	d	e	f
$pl(\omega)$	0.1	0.3	0.5	1	0.7	0.3

Compute the corresponding mass function, assuming that it is consonant.

Solution: The elements of Ω are ordered by decreasing plausibility as 1 = pl(d) > pl(e) > pl(c) > pl(b) = pl(f) > pl(a),so the focal sets are $\{d\}, \{d, e\}, \{d, e, c\}, \{d, e, c, b, f\}$ and Ω . We have $m(\{d\}) = 1 - 0.7 = 0.3$ $m(\{d, e\}) = 0.7 - 0.5 = 0.2$ $m(\{d, e, c\}) = 0.5 - 0.3 = 0.2$ $m(\{d, e, c, b, f\}) = 0.3 - 0.1 = 0.2$ $m(\Omega) = 0.1.$

4. Let *m* be a consonant mass function on a frame Ω and let *Bel* and *Pl* be the corresponding belief and plausibility functions. Show that, for any subset *A* of Ω , $Bel(A) > 0 \Rightarrow Pl(A) = 1$.

Solution: We have $Pl(\overline{A}) = 1 - Bel(A)$, so Bel(A) > 0 implies $Pl(\overline{A}) < 1$. Now, since *m* is consonant, we have $Pl(\Omega) = Pl(A \cup \overline{A}) = \max(Pl(A), Pl(\overline{A})) = 1.$ Consequently, Pl(A) = 1.

5. Let m_1 and m_2 be two mass functions on $\Omega = \{a, b, c, d\}$ defined as follows

 $m_1(\{a\}) = 0.3$ $m_1(\{a,c\}) = 0.5$ $m_1(\{b,c,d\}) = 0.2$

and

$$m_2(\{b,c\}) = 0.4$$
 $m_2(\{a,c,d\}) = 0.5$ $m_2(\{d\}) = 0.1.$

Compute the combined mass function by Dempster's rule. What is the degree of conflict between m_1 and m_2 ?

Solution:							
				m_2			
			$\{b, c\}, 0.4$	$\{a,c,d\}, 0.5$	$\{d\}, 0.1$		
		$\{a\}, 0.3$	$\emptyset, 0.12$	$\{a\}, 0.15$	$\emptyset, 0.03$		
	m_1	$\{a, c\}, 0.5$	$\{c\}, 0.2$	$\{a, c\}, 0.25$	$\emptyset, 0.05$		
		$\{b,c,d\}, 0.2$	$\{b, c\}, 0.08$	$\{c,d\}, 0.1$	$\{d\}, 0.02$		
The degree of conflict is							
$\kappa = 0.12 + 0.03 + 0.05 = 0.2$							

and the combined mass function is

$$\begin{split} (m_1 \oplus m_2)(\{a\}) &= 0.15/0.8 = 0.1875\\ (m_1 \oplus m_2)(\{c\}) &= 0.2/0.8 = 0.25\\ (m_1 \oplus m_2)(\{a,c\}) &= 0.25/0.8 = 0.3125\\ (m_1 \oplus m_2)(\{b,c\}) &= 0.08/0.8 = 0.1\\ (m_1 \oplus m_2)(\{c,d\}) &= 0.1/0.8 = 0.125\\ (m_1 \oplus m_2)(\{d\}) &= 0.02/0.8 = 0.025. \end{split}$$

6. Let $\Omega = \{a, b\}$, and let m and m' be the following mass functions on Ω ,

$$m = \{a\}^{\alpha} \oplus \{b\}^{\beta}, \quad m' = \{a\}^{\alpha'} \oplus \{b\}^{\beta'},$$

where A^w denotes the mass function m such that m(A) = 1 - w and $m(\Omega) = w$.

(a) Compute m and m'.

Solution: To compute m we can make the following table:								
			$ $ {b} ^{i}					
			$\{b\}, 1-\beta$	Ω, eta				
	$\{a\}^{\alpha}$	$\{a\}, 1-\alpha$	$\emptyset, (1-\alpha)(1-\beta)$	$\{a\}, \beta(1-\alpha)$				
		$\Omega, lpha$	$\{b\}, \alpha(1-\beta)$	$\Omega, lphaeta$	_			
The degree of conflict is $\kappa = (1 - \alpha)(1 - \beta) = 1 - \alpha - \beta + \alpha\beta$, so								
$m(\{a\}) = \frac{\beta(1-\alpha)}{\alpha+\beta-\alpha\beta}, m(\{b\}) = \frac{\alpha(1-\beta)}{\alpha+\beta-\alpha\beta},$								
			0					

$$m(\{a,b\}) = \frac{\alpha\beta}{\alpha + \beta - \alpha\beta}.$$

A similar expression is obtained for m' by replacing α and β by α' and β' .

(b) Compute $m \oplus m'$.

Solution: We observe that

$$A^w \oplus A^{w'} = A^{ww'}.$$

Consequently, using the commutativity and associativity of $\oplus,$

$$m\oplus m'=\{a\}^{lpha}\oplus\{b\}^{eta}\oplus\{a\}^{lpha'}\oplus\{b\}^{eta'}=\{a\}^{lphalpha'}\oplus\{b\}^{etaeta'}.$$

Consequently,

$$(m \oplus m')(\{a\}) = \frac{\beta\beta'(1 - \alpha\alpha')}{\alpha\alpha' + \beta\beta' - \alpha\beta\alpha'\beta'}, \quad (m \oplus m')(\{b\}) = \frac{\alpha\alpha'(1 - \beta\beta')}{\alpha\alpha' + \beta\beta' - \alpha\beta\alpha'\beta'},$$
$$(m \oplus m')(\{a, b\}) = \frac{\alpha\alpha'\beta\beta'}{\alpha\alpha' + \beta\beta' - \alpha\beta\alpha'\beta'}.$$