Introduction to belief functions, Lecture 1- Exercises

Thierry Denœux

1. An urn contains 90 balls, of which 30 are white, and 60 are either black or yellow. A ball is going to be drawn from the urn. Represent the uncertainty about the outcome of this experiment using a mass function on a suitable frame. Compute the corresponding belief and plausibility functions.

Solution: The frame can be denoted as $\Omega=\{w, b, y\}$ for the three colors. The chance to get a white ball is $1 / 3$ and the chance to get a ball that is either black or yellow is $2 / 3$. We thus have the following mass function:

$$
m(\{w\})=1 / 3, \quad m(\{b, y\})=2 / 3 .
$$

The corresponding belief and plausibility functions are given in the following table:

A	\emptyset	$\{w\}$	$\{b\}$	$\{w, b\}$	$\{y\}$	$\{w, y\}$	$\{b, y\}$	$\{w, b, y\}$
$\operatorname{Bel}(A)$	0	$1 / 3$	0	$1 / 3$	0	$1 / 3$	$2 / 3$	1
$\operatorname{Pl}(A)$	0	$1 / 3$	$2 / 3$	1	$2 / 3$	1	$2 / 3$	1

2. Let $\Omega=\{a, b, c\}$ and f the following function from 2^{Ω} to $[0,1]$:

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$f(A)$	0	0.5	0.2	0.8	0	0.5	0.5	1

Is f a belief function?

Solution: Let us assume that f is a belief function, and let us compute the corresponding mass function. We have

$$
m(\{a\})=0.5 \quad \text { and } \quad m(\{b\})=0.2
$$

so

$$
m(\{a, b\})=0.8-0.5-0.2=0.1
$$

Similarly, $m(\{c\})=0$, so $m(\{a, c\})=0.5-0.5-0=0$, and

$$
m(\{b, c\})=0.5-0.2-0=0.3
$$

Finally,

$$
m(\{a, b, c\})=1-0.5-0.2-0.1-0.3=-0.1
$$

This mass is negative, so f is not a belief function.
We can also notice that f is not even 2-monotone. For instance,

$$
f(\{a, b\} \cup\{b, c\})=f(\{a, b, c\})=1
$$

and

$$
f(\{a, b\})+f(\{b, c\})-f(\{a, b\} \cap\{b, c\})=0.8+0.5-0.2=1.1
$$

so

$$
f(\{a, b\} \cup\{b, c\})<f(\{a, b\})+f(\{b, c\})-f(\{a, b\} \cap\{b, c\}) .
$$

3. An expert has given the following contour function on $\Omega=\{a, b, c, d, e, f\}$:

ω	a	b	c	d	e	f
$p l(\omega)$	0.1	0.3	0.5	1	0.7	0.3

Compute the corresponding mass function, assuming that it is consonant.

Solution: The elements of Ω are ordered by decreasing plausibility as

$$
1=p l(d)>p l(e)>p l(c)>p l(b)=p l(f)>p l(a)
$$

so the focal sets are $\{d\},\{d, e\},\{d, e, c\},\{d, e, c, b, f\}$ and Ω. We have

$$
\begin{aligned}
m(\{d\}) & =1-0.7=0.3 \\
m(\{d, e\}) & =0.7-0.5=0.2 \\
m(\{d, e, c\}) & =0.5-0.3=0.2 \\
m(\{d, e, c, b, f\}) & =0.3-0.1=0.2 \\
m(\Omega) & =0.1
\end{aligned}
$$

4. Let m be a consonant mass function on a frame Ω and let $B e l$ and $P l$ be the corresponding belief and plausibility functions. Show that, for any subset A of $\Omega, \operatorname{Bel}(A)>0 \Rightarrow \operatorname{Pl}(A)=1$.

Solution: We have $\operatorname{Pl}(\bar{A})=1-\operatorname{Bel}(A)$, so $\operatorname{Bel}(A)>0$ implies $\operatorname{Pl}(\bar{A})<1$. Now, since m is consonant, we have

$$
P l(\Omega)=P l(A \cup \bar{A})=\max (P l(A), P l(\bar{A}))=1
$$

Consequently, $\operatorname{Pl}(A)=1$.
5. Let m_{1} and m_{2} be two mass functions on $\Omega=\{a, b, c, d\}$ defined as follows

$$
m_{1}(\{a\})=0.3 \quad m_{1}(\{a, c\})=0.5 \quad m_{1}(\{b, c, d\})=0.2
$$

and

$$
m_{2}(\{b, c\})=0.4 \quad m_{2}(\{a, c, d\})=0.5 \quad m_{2}(\{d\})=0.1
$$

Compute the combined mass function by Dempster's rule. What is the degree of conflict between m_{1} and m_{2} ?

Solution:

		m_{2}		
		$\{b, c\}, 0.4$	$\{a, c, d\}, 0.5$	$\{d\}, 0.1$
m_{1}	$\{a\}, 0.3$	$\emptyset, 0.12$	$\{a\}, 0.15$	$\emptyset, 0.03$
	$\{a, c\}, 0.5$	$\{c\}, 0.2$	$\{a, c\}, 0.25$	$\emptyset, 0.05$
	$\{b, c, d\}, 0.2$	$\{b, c\}, 0.08$	$\{c, d\}, 0.1$	$\{d\}, 0.02$

The degree of conflict is

$$
\kappa=0.12+0.03+0.05=0.2
$$

and the combined mass function is

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a\}) & =0.15 / 0.8=0.1875 \\
\left(m_{1} \oplus m_{2}\right)(\{c\}) & =0.2 / 0.8=0.25 \\
\left(m_{1} \oplus m_{2}\right)(\{a, c\}) & =0.25 / 0.8=0.3125 \\
\left(m_{1} \oplus m_{2}\right)(\{b, c\}) & =0.08 / 0.8=0.1 \\
\left(m_{1} \oplus m_{2}\right)(\{c, d\}) & =0.1 / 0.8=0.125 \\
\left(m_{1} \oplus m_{2}\right)(\{d\}) & =0.02 / 0.8=0.025 .
\end{aligned}
$$

6. Let $\Omega=\{a, b\}$, and let m and m^{\prime} be the following mass functions on Ω,

$$
m=\{a\}^{\alpha} \oplus\{b\}^{\beta}, \quad m^{\prime}=\{a\}^{\alpha^{\prime}} \oplus\{b\}^{\beta^{\prime}}
$$

where A^{w} denotes the mass function m such that $m(A)=1-w$ and $m(\Omega)=w$.
(a) Compute m and m^{\prime}.

Solution: To compute m we can make the following table:

		$\multicolumn{2}{\|c}{b}^{\beta}$	
		$\{b\}, 1-\beta$	Ω, β
$\{a\}^{\alpha}$	$\{a\}, 1-\alpha$	$\emptyset,(1-\alpha)(1-\beta)$	$\{a\}, \beta(1-\alpha)$
	Ω, α	$\{b\}, \alpha(1-\beta)$	$\Omega, \alpha \beta$

The degree of conflict is $\kappa=(1-\alpha)(1-\beta)=1-\alpha-\beta+\alpha \beta$, so

$$
\begin{gathered}
m(\{a\})=\frac{\beta(1-\alpha)}{\alpha+\beta-\alpha \beta}, \quad m(\{b\})=\frac{\alpha(1-\beta)}{\alpha+\beta-\alpha \beta}, \\
m(\{a, b\})=\frac{\alpha \beta}{\alpha+\beta-\alpha \beta} .
\end{gathered}
$$

A similar expression is obtained for m^{\prime} by replacing α and β by α^{\prime} and β^{\prime}.
(b) Compute $m \oplus m^{\prime}$.

Solution: We observe that

$$
A^{w} \oplus A^{w^{\prime}}=A^{w w^{\prime}} .
$$

Consequently, using the commutativity and associativity of \oplus,

$$
m \oplus m^{\prime}=\{a\}^{\alpha} \oplus\{b\}^{\beta} \oplus\{a\}^{\alpha^{\prime}} \oplus\{b\}^{\beta^{\prime}}=\{a\}^{\alpha \alpha^{\prime}} \oplus\{b\}^{\beta \beta^{\prime}}
$$

Consequently,

$$
\begin{gathered}
\left(m \oplus m^{\prime}\right)(\{a\})=\frac{\beta \beta^{\prime}\left(1-\alpha \alpha^{\prime}\right)}{\alpha \alpha^{\prime}+\beta \beta^{\prime}-\alpha \beta \alpha^{\prime} \beta^{\prime}}, \quad\left(m \oplus m^{\prime}\right)(\{b\})=\frac{\alpha \alpha^{\prime}\left(1-\beta \beta^{\prime}\right)}{\alpha \alpha^{\prime}+\beta \beta^{\prime}-\alpha \beta \alpha^{\prime} \beta^{\prime}}, \\
\left(m \oplus m^{\prime}\right)(\{a, b\})=\frac{\alpha \alpha^{\prime} \beta \beta^{\prime}}{\alpha \alpha^{\prime}+\beta \beta^{\prime}-\alpha \beta \alpha^{\prime} \beta^{\prime}}
\end{gathered}
$$

