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Outline of the course I

Course homepage:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf

1 Basic notions. Classification
1 Belief functions on finite sets. Dempster’s rule (lecture + exercises)
2 Decision making (lecture + exercises)
3 Evidential k -NN classification:

A k-nearest neighbor classification rule based on Dempster-Shafer theory
An evidence-theoretic k-NN rule with parameter optimization

4 A neural network classifier based on Dempster-Shafer theory (paper reading
+ exercises in R)

2 Clustering
1 Evidential clustering of large dissimilarity data (paper reading + exercises in

R)
2 NN-EVCLUS: Neural Network-based Evidential Clustering (paper reading +

exercises in R)
3 Calibrated model-based evidential clustering using bootstrapping (paper

reading + exercises in R)
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Outline of the course II

3 Statistical inference, prediction, regression
1 Likelihood-based belief function:

Likelihood-based belief function: Justification and some extensions to low-quality
data
Combining statistical and expert evidence using belief functions: Application to
centennial sea level estimation taking into account climate change

2 Prediction:
Prediction of future observations using belief functions: a likelihood-based
approach
Evidential calibration of binary SVM classifiers

3 Uncertain data:
Maximum likelihood estimation from Uncertain Data in the Belief Function
Framework
Parametric Classification with Soft Labels using the Evidential EM Algorithm

4 Random fuzzy sets and evidential regression
Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models
An Evidential Neural Network Model for Regression Based on Random Fuzzy
Numbers
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What we will study in this part

A mathematical formalism called
Dempster-Shafer (DS) theory
Evidence theory
Theory of belief functions

This formalism was introduced by A. P. Dempster in the 1960’s for
statistical inference, and developed by G. Shafer in the late 1970’s into a
general theory for reasoning under uncertainty.
DS encompasses probability theory and set-membership approaches
such as interval analysis as special cases: it is very general.
Many applications in AI (expert systems, machine learning), engineering
(information fusion, uncertainty quantification, risk analysis), statistics
(statistical estimation and prediction), etc.
Some applications to econometrics. A new research avenue to explore!
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Representation of evidence

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions
Consonant belief functions

2 Dempster’s rule
Definition
Conditioning
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Representation of evidence Mass functions

Outline
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Mass functions
Belief and plausibility functions
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Definition
Conditioning
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Representation of evidence Mass functions

Mass function
Definition

Let X be a variable taking one and only one value in a finite set Ω, called
the frame of discernment
Evidence (uncertain information) about X can be represented by a mass
function m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1

Every subset A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
throughout this course, unless otherwise specified.
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Representation of evidence Mass functions

Example: road scene analysis

Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments

Thierry Denœux Belief functions - Basic concepts Summer 2022 8 / 43



Representation of evidence Mass functions

Example: road scene analysis (continued)

Let X be the type of object in some region of the image, and
Ω = {G,R,T ,O,S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky.
Assume that a lidar sensor (laser telemeter) returns the information
X ∈ {T ,O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).
How to represent this information by a mass function?

Thierry Denœux Belief functions - Basic concepts Summer 2022 9 / 43



Representation of evidence Mass functions

Formalization

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	
T	
O	

G	
R	

S	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ {T ,O}.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m({T ,O}) = 0.9, m(Ω) = 0.1
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Representation of evidence Mass functions

General framework

A model with three components:
A set S = {s1, . . . , sr} of states (interpretations of a piece of evidence)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m. It induces a mass
function of Ω.
Meaning: under interpretation s ∈ S, the evidence tells us that X ∈ Γ(s),
and nothing more. The probability P({s}) is transferred to the set
A = Γ(s) and we have

m(A) =
∑

s∈S:Γ(s)=A

P({s})

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence.
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Representation of evidence Mass functions

Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function mA such that mA(A) = 1.

Example: m{T ,O} means the mass function such that m{T ,O}({T ,O}) = 1.

Special case: m?, the vacuous mass function, represents total ignorance
If all focal sets of m are singletons, m is said to be Bayesian. It is
equivalent to a probability distribution.

Example: m({T}) = 0.5, m({O}) = 0.5.

A Dempster-Shafer mass function can thus be seen as
a generalized set
a generalized probability distribution
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Representation of evidence Belief and plausibility functions

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions
Consonant belief functions

2 Dempster’s rule
Definition
Conditioning
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Representation of evidence Belief and plausibility functions

Belief function

If the evidence tells us that the truth is in B, and B ⊆ A, we say that the
evidence supports A.

W
A

B1

B2

B3

B4

Given a normalized mass function
m, the probability that the
evidence supports A is thus

Bel(A) =
∑
B⊆A

m(B)

The number Bel(A) is called the
credibility of A, or the degree of
belief in A, and the function
A→ Bel(A) is called a belief
function.
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Representation of evidence Belief and plausibility functions

Plausibility function

If the evidence does not support A, it is said to be consistent with A.

W
A

B1

B2

B3

B4

The probability that the evidence
is consistent with A is thus

Pl(A) =
∑

B∩A 6=∅

m(B).

The number Pl(A) is called the
plausibility of A, and the function
A→ Pl(A) is called a plausibility
function.
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Representation of evidence Belief and plausibility functions

Interpretation and elementary properties

Properties:
1 Bel(∅) = Pl(∅) = 0
2 Bel(Ω) = Pl(Ω) = 1
3 For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

Pl(A) = 1− Bel(A)

Interpretation:
Bel(A) is the probability that A is supported by the evidence
Bel(A) is the probability that A is supported by the evidence
Pl(A) = 1− Bel(A) is the probability that A is not supported by the evidence,
i.e., that A is consistent with the evidence
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m = m? is
vacuous: then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then,

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Road scene analysis example

We had Ω = {G,R,T ,O,S} and

m({T ,O}) = 0.9, m(Ω) = 0.1

What are the credibility and the plausibility that the region corresponds /
does not correspond to a tree?

Bel({T}) = 0, Pl({T}) = 0.9 + 0.1 = 1

Bel({T}) = 0, Pl({T}) = 1

But Bel({T} ∪ {T}) = Bel(Ω) = 1 and Pl({T} ∪ {T}) = Pl(Ω) = 1.
We observe that

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)

(Bel is superadditive, Pl is subadditive).
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Representation of evidence Belief and plausibility functions

Characterization of belief functions

Theorem

Let F : 2Ω → [0,1]. The following two statements are equivalent:
Statement 1 There exists a mass function m : 2Ω → [0,1] such that

F (A) =
∑

B⊆A m(B) for all A ⊆ Ω (i.e., F is a belief function).
Statement 2 Function F has the following 3 properties:

1 F (∅) = 0
2 F (Ω) = 1
3 For any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω,

F

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1F

(⋂
i∈I

Ai

)
(1)

(Property (1) is called complete monotonicity).
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Representation of evidence Belief and plausibility functions

Relations between m, Bel and Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
Thanks to the following equations, given any one of these functions, we
can recover the other two: for all A ⊆ Ω,

Bel(A) =
∑
B⊆A

m(B) (2)

Pl(A) = 1− Bel(A) (3)

Bel(A) = 1− Pl(A) (4)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B) (5)

m, Bel et Pl are thus three equivalent representations of a piece of
evidence.
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Representation of evidence Consonant belief functions

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions
Consonant belief functions
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Definition
Conditioning
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Representation of evidence Consonant belief functions

Definitions

Definition (Consonant mass function)

A mass function m is consonant iff its focal sets are nested, i.e., for any two
focal set Ai and Aj , Ai ⊆ Aj or Aj ⊆ Ai

Definition (Possibility measure)

A mapping Π : 2Ω → [0,1] is a possibility measure iff, for any A,B ⊆ Ω,

Π(A ∪ B) = max [Π(A),Π(B)]

Definition (Necessity measure)

A mapping N : 2Ω → [0,1] is a necessity measure iff, for any A,B ⊆ Ω,

N(A ∩ B) = min [N(A),N(B)]
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Representation of evidence Consonant belief functions

Theorem

Theorem
Let m be a mass function, and let Bel and Pl be the corresponding belief and
plausibility functions. The following statements are equivalent:

1 m is consonant
2 Bel is a necessity measure
3 Pl is a possibility measure

Consequence: The theory of belief functions is more expressive than
possibility theory (a possibility measure is a plausibility function, but the
converse is false in general).
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Representation of evidence Consonant belief functions

Proof of 1⇒ 2

Let m be a consonant mass function with focal sets A1 ⊆ A2 ⊆ . . . ⊆ Ar .
For any A,B ⊆ Ω, let i1 and i2 be the largest indices such that Ai ⊆ A and
Ai ⊆ B, respectively.
Then, Ai ⊆ A ∩ B iff i ≤ min(i1, i2) and

Bel(A ∩ B) =

min(i1,i2)∑
i=1

m(Ai )

= min

(
i1∑

i=1

m(Ai ),

i2∑
i=1

m(Ai )

)
= min(Bel(A),Bel(B)).
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Representation of evidence Consonant belief functions

Proof of 2⇒ 3

Now, from the equality A ∪ B = A ∩ B, we have

Pl(A ∪ B) = 1− Bel(A ∪ B)

= 1− Bel(A ∩ B)

= 1−min(Bel(A),Bel(B))

= max(1− Bel(A),1− Bel(B))

= max(Pl(A),Pl(B)).
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Representation of evidence Consonant belief functions

Contour function

Definition (Contour function)

The contour function of a belief function Bel is the mapping Ω→ [0,1] defined
by

pl(ω) = Pl({ω}), ∀ω ∈ Ω

When m is consonant, it can be recovered from its contour function:

Pl(A) = max
ω∈A

pl(ω)

and we have
max
ω∈Ω

pl(ω) = Pl(Ω) = 1

In Possibility theory, function pl is called a possibility distribution.
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Representation of evidence Consonant belief functions

Proof of 3⇒ 1

ω1	 ω2	 ω3	 ω4	

A1	
A2	

A3	
A4=Ω

Let Pl be a possibility measure and let pl be its contour function.
Let Ω = {ω1, . . . , ωn} be the frame of discernment with elements arranged
by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Let m be the consonant mass function defined as follows:

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1,
m(Ω) = pl(ωn).
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Representation of evidence Consonant belief functions

Example

For instance, for the following contour function defined on the frame
Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

the corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Representation of evidence Consonant belief functions

Proof of 3⇒ 1 (continued)

Let Plm be the plausibility function induced by m.
For any subset A of Ω, let iA = min{1 ≤ i ≤ n : ωi ∈ A}.
Ai ∩ A 6= ∅ iff i ≥ iA.
Consequently,

Plm(A) =
n∑

i=iA

m(Ai )

= pl(ωiA )− pl(ωiA+1) + pl(ωiA+1)− pl(ωiA+2) + . . .− pl(ωn) + pl(ωn)

= pl(ωiA )

= max
ω∈A

pl(ω) = Pl(A),

i.e., Plm = Pl .
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Dempster’s rule
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Dempster’s rule Definition
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Dempster’s rule Definition

Road scene example continued

Variable X was defined as the type of object in some region of the image,
and the frame was Ω = {G,R,T ,O,S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky
A lidar sensor gave us the following mass function:

m1({T ,O}) = 0.9, m1(Ω) = 0.1

Now, assume that a camera returns the mass function:

m2({G,T}) = 0.8, m2(Ω) = 0.2

How to combine these two pieces of evidence?
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Dempster’s rule Definition

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
O	

G	

R	
S	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
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Dempster’s rule Definition

Computation

m1\m2 {T ,G} Ω
(0.8) (0.2)

{O,T} (0.9) {T} (0.72) {O,T} (0.18)
Ω (0.1) {T ,G} (0.08) Ω (0.02)

We then get the following combined mass function,

m({T}) = 0.72
m({O,T}) = 0.18
m({T ,G}) = 0.08

m(Ω) = 0.02
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Dempster’s rule Definition

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs
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Dempster’s rule Definition

Computation

m1\m2 {G,R} Ω
(0.8) (0.2)

{O,T} (0.9) ∅ (0.72) {O,T} (0.18)
Ω (0.1) {G,R} (0.08) Ω (0.02)

We then get the following combined mass function,

m(∅) = 0
m({O,T}) = 0.18/0.28 = 9/14
m({G,R}) = 0.08/0.28 = 4/14

m(Ω) = 0.02/0.28 = 1/14

Thierry Denœux Belief functions - Basic concepts Summer 2022 36 / 43



Dempster’s rule Definition

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅ (6)

and (m1 ⊕m2)(∅) = 0
m1 ⊕m2 is called the orthogonal sum of m1 and m2

This rule can be used to combine mass functions induced by
independent pieces of evidence
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Dempster’s rule Definition

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6
(m1 ⊕m2)({b}) = 0.2/0.6

(m1 ⊕m2)({a,b}) = 0.08/0.6
(m1 ⊕m2)({c}) = 0.15/0.6.
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Dempster’s rule Definition

Properties

1 Commutativity, associativity. Neutral element: m?

2 Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

3 If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).

4 Let pl1⊕2 be the contour function of m1 ⊕m2. Then,

pl1⊕2 =
pl1pl2
1− κ

∝ pl1pl2

Proof: see next slide.
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Dempster’s rule Definition

Proof of Property 4

For any ω ∈ Ω,

pl1⊕2(ω) =
∑

{B:ω∈B}

(m1 ⊕m2)(B)

= (1− κ)−1
∑

{B:ω∈B}

∑
{C,D:C∩D=B}

m1(C)m2(D)

= (1− κ)−1
∑

{C,D:ω∈C∩D}

m1(C)m2(D)

= (1− κ)−1
∑

{C,D:ω∈C,ω∈D}

m1(C)m2(D)

= (1− κ)−1

 ∑
{C:ω∈C}

m1(C)

 ∑
{D:ω∈D}

m2(D)


= (1− κ)−1pl1(ω) · pl2(ω).
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Dempster’s rule Conditioning
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Dempster’s rule Conditioning

Dempster’s rule conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mB. Notation:

m ⊕mB = m(· | B)

We thus have m(A | B) = 0 for any A not included in B and, for any
A ⊆ B,

m(A | B) = (1− κ)−1
∑

C∩B=A

m(C), (7)

where the degree of conflict κ is

κ =
∑

C∩B=∅

m(C) = 1−
∑

C∩B 6=∅

m(C) = 1− Pl(B).
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Dempster’s rule Conditioning

Conditional plausibility function

Proposition

The plausibility function Pl(·|B) induced by m(·|B) is given by

Pl(A | B) =
Pl(A ∩ B)

Pl(B)

Proof: We have

Pl(A | B) =
∑

{C:C∩A 6=∅}

m(C|B)

= Pl(B)−1
∑

{C:C∩A 6=∅}

∑
{D:D∩B=C}

m(D)

= Pl(B)−1
∑

{D:D∩B∩A6=∅}

m(D) =
Pl(A ∩ B)

Pl(B)

If Pl is a probability measure, Pl(· | B) is, thus, the conditional probability
measure given B: Dempster’s rule of combination thus extends Bayesian
conditioning.
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