Introduction to Belief Functions
Belief functions on finite frames. Dempster’s rule

Thierry Denceux

Summer 2022

)
7)

5,

&

P,
N
d

E/
5

Thierry Denceux Belief functions - Basic concepts Summer 2022 1/43



N
Outline of the course |

Course homepage:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf

@ Basic notions. Classification
@ Belief functions on finite sets. Dempster’s rule (lecture + exercises)

@ Decision making (lecture + exercises)
@ Evidential k-NN classification:

@ A k-nearest neighbor classification rule based on Dempster-Shafer theory
@ An evidence-theoretic k-NN rule with parameter optimization
@ A neural network classifier based on Dempster-Shafer theory (paper reading
+ exercises in R)

@ Clustering
@ Evidential clustering of large dissimilarity data (paper reading + exercises in

R)
@ NN-EVCLUS: Neural Network-based Evidential Clustering (paper reading +
exercises in R)
© Calibrated model-based evidential clustering using bootstrapping (paper
reading + exercises in R)
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N
Outline of the course Il

@ Statistical inference, prediction, regression
@ Likelihood-based belief function:
o Likelihood-based belief function: Justification and some extensions to low-quality
data
@ Combining statistical and expert evidence using belief functions: Application to
centennial sea level estimation taking into account climate change
@ Prediction:
@ Prediction of future observations using belief functions: a likelihood-based
approach
@ Evidential calibration of binary SVM classifiers
© Uncertain data:
@ Maximum likelihood estimation from Uncertain Data in the Belief Function
Framework
@ Parametric Classification with Soft Labels using the Evidential EM Algorithm
@ Random fuzzy sets and evidential regression
@ Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models
@ An Evidential Neural Network Model for Regression Based on Random Fuzzy,’;%' 3
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|
What we will study in this part

@ A mathematical formalism called
o Dempster-Shafer (DS) theory
e Evidence theory
e Theory of belief functions

@ This formalism was introduced by A. P. Dempster in the 1960’s for
statistical inference, and developed by G. Shafer in the late 1970’s into a
general theory for reasoning under uncertainty.

@ DS encompasses probability theory and set-membership approaches
such as interval analysis as special cases: it is very general.

@ Many applications in Al (expert systems, machine learning), engineering
(information fusion, uncertainty quantification, risk analysis), statistics
(statistical estimation and prediction), etc.

@ Some applications to econometrics. A new research avenue to explore!
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Outline

e Representation of evidence
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Representation of evidence Mass functions
Outline

e Representation of evidence
@ Mass functions
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.
Mass function

Definition

@ Let X be a variable taking one and only one value in a finite set €, called
the frame of discernment

@ Evidence (uncertain information) about X can be represented by a mass
function m: 22 — [0, 1] such that

> m(A) =1
ACQ
@ Every subset A of Q such that m(A) > 0 is a focal set of m

@ mis said to be normalized if m(#) = 0. This property will be assumed
throughout this course, unless otherwise specified.
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Example: road scene analysis

Real world driving scene

| Ground ” Vegetati0n| | Class K |

Independent classification modules

Classified segments @
'y &
.‘l‘L : <:| Fusion on a unified

| decision space
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Example: road scene analysis (continued)

@ Let X be the type of object in some region of the image, and
Q={G,R, T, 0, S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky.

@ Assume that a lidar sensor (laser telemeter) returns the information
X € {T, O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).

@ How to represent this information by a mass function?
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N
Formalization

broken (0.1)//7

o

working (0.9) o

o —

@ Here, the probability p is not about X, but about the state of a sensor.
@ Let S = {working, broken} the set of possible sensor states.

o If the state is “working”, we know that X € {T, O}.

o If the state is “broken”, we just know that X € Q, and nothing more.

@ This uncertain evidence can be represented by a mass function mon Q,
such that
m({T,0})=0.9, m(2)=0.1
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General framework

@ A model with three components:
o AsetS={s1,...,s/} of states (interpretations of a piece of evidence)
@ A probability measure Pon S
e A multi-valued mapping I : S — 2
@ The four-tuple (S, 25, P,T) is called a source for m. It induces a mass
function of Q.
@ Meaning: under interpretation s € S, the evidence tells us that X € I'(s),
and nothing more. The probability P({s}) is transferred to the set
A =T(s) and we have

mA)= > P(s})

seS:I(s)=A

@ m(A) is the probability of knowing that X € A, and nothing more, given
the available evidence. ,\
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.
Special cases

@ If the evidence tells us that X € A for sure and nothing more, for some
A C Q, then we have a logical mass function mx such that ma(A) = 1.

e Example: m;r oy means the mass function such that m;r o1 ({7, O}) = 1.
@ Special case: m,, the vacuous mass function, represents total ignorance

@ If all focal sets of m are singletons, mis said to be Bayesian. It is
equivalent to a probability distribution.
e Example: m({T}) = 0.5, m({O}) = 0.5.
@ A Dempster-Shafer mass function can thus be seen as

@ a generalized set
@ a generalized probability distribution

R 2
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Representation of evidence Belief and plausibility functions
Outline

e Representation of evidence

@ Belief and plausibility functions

s
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Representation of evidence Belief and plausibility functions

Belief function

@ If the evidence tells us that the truth is in B, and B C A, we say that the
evidence supports A.

@ Given a normalized mass function
m, the probability that the

evidence supports A is thus

Bel(A) = > m(B)

BCA

@ The number Bel(A) is called the
credibility of A, or the degree of
belief in A, and the function

A — Bel(A) is called a belief
function.

s
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Representation of evidence Belief and plausibility functions

Plausibility function

@ If the evidence does not support A, it is said to be consistent with A.

@ The probability that the evidence
is consistent with A is thus

BNA£D
@ The number PI(A) is called the

plausibility of A, and the function
A — PI(A) is called a plausibility

function.
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Belief and plausibility functions
Interpretation and elementary properties

@ Properties:
@ Bel(§)) = PI(}) =0
Q Bel(Q) = PI(Q) =1
@ Forall ACQ, B
Bel(A) =1 — PI(A)
PI(A) = 1 — Bel(A)
@ Interpretation:
e Bel(A) is the probability that A is supported by the evidence
o Bel(A) is the probability that A is supported by the evidence
e PI(A) =1 — Bel(A) is the probability that A is not supported by the evidence,
i.e., that A is consistent with the evidence
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Belief and plausibility functions
Two-dimensional representation

@ The uncertainty about a proposition A is represented by two numbers:
Bel(A) and PI(A), with Bel(A) < PI(A)

@ The intervals [Bel(A), PI(A)] have maximum length when m = m; is
vacuous: then, Bel(A) = 0 for all A # Q, and P/(A) =1 for all A # ().

@ The intervals [Bel(A), PI(A)] have minimum length when m is Bayesian.
Then,
Bel(A) = PI(A) = > m({w})
weA

for all A, and Bel is a probability measure.
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Belief and plausibility functions
Road scene analysis example

@ Wehad Q={G,R,T,0,S} and
m({T,0})=10.9, m(2)=0.1

@ What are the credibility and the plausibility that the region corresponds /
does not correspond to a tree?

Bel({T}) =0, PI({T})=0.9+0.1=1
Bel({T}) =0, PI({T})=

{T}
But Bel({T}U{T}) = Bel(Q) =1and PI{T} U{T}) = PI(Q) = 1.
@ We observe that

Bel(AU B) > Bel(A) + Bel(B) — Bel(An B)
PI(AU B) < PI(A) + PI(B) — PI(An B)

i\

!
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(Bel is superadditive, Pl is subadditive). Sz
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Belief and plausibility functions
Characterization of belief functions

Theorem
Let F : 22 — [0,1]. The following two statements are equivalent:

Statement 1 There exists a mass function m : 2 — [0, 1] such that
F(A) = Y gcam(B) forall AC Q (i.e., F is a belief function).

Statement 2 Function F has the following 3 properties:
Q@ FD)=0
Q F(Q)=1
© Forany k > 2 and for any family Ay, ..., A in 29,

k
F (U A,-) > (=n"™F (ﬂA-) (1)
i=1 0AIC{1,....k} iel
(Property (1) is called complete monotonicity). N
Y
e
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Representation of evidence Belief and plausibility functions

Relations between m, Bel and P/

@ Let m be a mass function, Bel and P/ the corresponding belief and
plausibility functions

@ Thanks to the following equations, given any one of these functions, we
can recover the other two: for all A C ©,

Bel(A) = > m(B) (2)
BCA
PI(A) = 1 — Bel(A) (3)
Bel(A) = 1 — PI(A) (4)
m(A) = > (-1)A-18Bei(B) (5)
0#BCA

@ m, Bel et Pl are thus three equivalent representations of a piece of
evidence. 73
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Representation of evidence Consonant belief functions
Outline

e Representation of evidence

@ Consonant belief functions

s
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I i lidl]  Consonant beit unciions
.
Definitions

Definition (Consonant mass function)

A mass function m is consonant iff its focal sets are nested, i.e., for any two
focal set A; and A;, A; C A;j or A; C A;

Definition (Possibility measure)
A mapping I : 22 — [0, 1] is a possibility measure iff, for any A, B C Q,

MN(AU B) = max[N(A), N(B)]

Definition (Necessity measure)
A mapping N : 22 — [0, 1] is a necessity measure iff, for any A, B C Q,

N(AN B) = min [N(A), N(B)]
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Representation of evidence Consonant belief functions

Theorem
Let m be a mass function, and let Bel and Pl be the corresponding belief and
plausibility functions. The following statements are equivalent:

@ mis consonant

@ Bel is a necessity measure

@ Pl is a possibility measure

Consequence: The theory of belief functions is more expressive than

possibility theory (a possibility measure is a plausibility function, but the
converse is false in general).
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Representation of evidence Consonant belief functions

Proofof 1 = 2

@ Let mbe a consonant mass function with focal sets Ay C A> C ... C A,.
@ Forany A, B C Q, let i; and i be the largest indices such that A; C A and

A;i C B, respectively.

@ Then, A; C An Biff i < min(iy, ix) and

Bel(An B)

Thierry Denceux

min(i,iz)

i=1

= min (i m(A;), Ii m(A,-))
i=1 i=1

= min(Bel(A), Bel(B)).
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Representation of evidence Consonant belief functions

@ Now, from the equality AU B = An B, we have

PI(AUB) =1 — Bel(AU B)
=1- Bel(An B)
=1 — min(Bel(A), Bel(B))
= max(1 — Bel(A),1 — Bel(B))
= max(PI(A), PI(B)).
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Representation of evidence Consonant belief functions

Contour function

Definition (Contour function)

The contour function of a belief function Bel is the mapping Q2 — [0, 1] defined
by

pl(w) = Pl({w}), YweQ

@ When mis consonant, it can be recovered from its contour function

PI(A) = max pl(w)

weA

and we have
ma§>2<pl(w) =PI(Q) =1
we

@ In Possibility theory, function pl is called a possibility distribution.
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Representation of evidence Consonant belief functions

@ Let Pl be a possibility measure and let p/ be its contour function.
@ Let Q = {wy,...,wn} be the frame of discernment with elements arranged

by decreasing order of plausibility, i.e.,
1= pl(wi) > pl(wz) > ... > pl(wn),

and let A; denote the set {w1,...,w;}, for1 <i<n.

@ Let m be the consonant mass function defined as follows:

m(Aj) = pl(wj) — pl(wi1), 1<i<n-1,

Thierry Denceux Belief functions - Basic concepts
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Representation of evidence Consonant belief functions

For instance, for the following contour function defined on the frame
Q=1{a,b,c, d}:

w a b ¢ d
pllw) 03 05 1 07

the corresponding mass function is

m({c})=1-0.7=03
m({c,d})=07-05=0.2
m({c,d,b})=05-0.3=0.2
m({c,d,b,a}) =0.3.
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Proof of 3 = 1 (continued)

@ Let P, be the plausibility function induced by m.

@ For any subset Aof Q, letis = min{1 < i <n:w; € A}
@ ANAADIffi> ia.

@ Consequently,

Pln(A) = Z m(A))
= pl(wiy) — Pl(wig+1) + Pl(wigr1) — Plwigr2) + - .. — pl(wn) + pl(wn)
= pl(wiA)
= mg)‘(pl(w) = PI(A),

i.e., Ply = PI.

= N
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Outline

© Dempsters rule
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Outline

© Dempsters rule
@ Definition
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Road scene example continued

@ Variable X was defined as the type of object in some region of the image,
and the frame was Q = {G, R, T, O, S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky

@ Alidar sensor gave us the following mass function:
m({T,0}) =09, m(Q)=01

@ Now, assume that a camera returns the mass function:
my({G,T})=0.8, my(Q) =02

@ How to combine these two pieces of evidence?
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Analysis

broken (0.1)

working (0.9)

@ If interpretations s; € Sy and sp € S, both hold, then X € T'1(s1) N T2(s2)

@ If the two pieces of evidence are independent, then the probability that ss-. \
and s, both hold is P;({s1})Pa({s2}) %)
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Computation

m1\m2 {T, G} Q
(0.8) (0.2)
{O T+(0.9) | {T}(0.72) {O T} (0.18
Q(0.1) {T, G} (0.08) Q (0. 02)

We then get the following combined mass function,

m({T}) = 0.72
m({0, T}) = 0.18
m({T,G}) = 0.08

m(Q) = 0.02
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Case of conflicting pieces of evidence

(Sll Pl)
broken (0.1)

working (0.9)
[ E—

working (0.8)

broken
(0.2)

@ IfI'1(s1) NT2(s2) = 0, we know that s; and s, cannot hold simultaneously

@ The joint probability distribution on Sy x S; must be conditionedto -,
eliminate such pairs 5
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Computation

m \m2 {G, R} Q
(0.8) (0.2)
{O, T} (0.9) () (0.72) {O T} (0.18
Q(0.1) | {G,R}(0.08) Q0. 02)

We then get the following combined mass function,

m(0) =0

m({O, T}) = 0.18/0.28 = 9/14
m({G, R}) = 0.08/0.28 = 4/14
m(Q) = 0.02/0.28 = 1/14
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Dempster’s rule

@ Let my and m» be two mass functions and

k= Y_ mi(B)my(C)
BNC=0
their degree of conflict
@ If k < 1, then my and m» can be combined as
(m © mp)(A) = ——— > m(B)mo(C), VA#0 (6)

1_
¥ Bhc=a

and (my @ m2)(0) =0
@ my & mo is called the orthogonal sum of my and m,

@ This rule can be used to combine mass functions induced by
independent pieces of evidence T

A

%

1

g7
He

Thierry Denceux Belief functions - Basic concepts Summer 2022 37/43



Dempster’s rule Definition

Another example

A D {} {b} {a b} {C} {a C} {b c} {abc}
mi(A) 0 05 02
me(A) 0 0.1 0 0.4 0.5 0 O 0
my
{a},0.1 {a,b},04 {c},05
{b},0.5 (,0.05 {b},0.2 0,0.25
my  {a b},02 | {a},0.02 {a, b}, 0.08 0,0.1
{a,c},0.3 | {a},0.03 {a},0.12 {c},0.15

The degree of conflict is Kk = 0.05 + 0.25 + 0.1 = 0.4. The combined mass

function is

(m & mp)({a}) =
~0.2/0.6
~0.08/0.6

(my © mp)({b})
(my @ mg)({a, b})

(my ® mo)({c}) = 0.15/0.6.

Thierry Denceux

(0.02 +0.03 +0.12)/0.6 = 0.17/0.6
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Properties

@ Commutativity, associativity. Neutral element: m,

@ Generalization of intersection: if ms and mg are logical mass functions
and AN B # (), then
ma & Mg = Mang

@ If either my or m, is Bayesian, then so is my & m. (as the intersection of a
singleton with another subset is either a singleton, or the empty set).

© Let pl42 be the contour function of my & m,. Then,

P1P

Phaz = o ph pk

Proof: see next slide.

Thierry Denceux Belief functions - Basic concepts Summer 2022 39/43



Proof of Property 4

Forany w € Q,

Phaa(w) = D (my@m)(B)
{B:weB}

(1—r)" > > m(C)my(D)

{B:weB} {C,D:CND=B}
=(1-r)" > m(C)my(D)
{C,D:weCnD}

=(1-x)7" > m(C)m(D)

{C,D:weC,weD}

:(1_@—1( > m1(C))< > mg(D))

{C:weC} {D:weD}

3
’f

= (1 - )" "ph(w) - Ph(w). )
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Outline

© Dempsters rule

@ Conditioning
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Dempster’s rule conditioning

@ Conditioning is a special case, where a mass function m is combined with
a logical mass function mg. Notation:

m® mg = m(- | B)
@ We thus have m(A | B) = 0 for any A not included in B and, for any

AC B,
mA|B)=(1-x)"" Y m(C), (7)
CNB=A

where the degree of conflict « is

k= Y mC)=1- > m(C)=1-PIB).

CNB=0 CNB#)

3
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Conditional plausibility function

Proposition
The plausibility function PI(-|B) induced by m(-|B) is given by

PI(AB)_PI(F;?(;)B)

Proof: We have

PI(A|B)= > m(C|B)
{C:CNA#£D}

=PI(B)"" > > m(D)
{C:CNA#0} {D:DNB=C}
PI(AN B)
= PI(B)~" D)= ————"
PIB)" > m(D)= g
{D:DNBNA#D}
If Pl'is a probability measure, PI(- | B) is, thus, the conditional probability 7z
measure given B: Dempster’s rule of combination thus extends Bayesian ;E
conditioning. N
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