Introduction to Belief Functions

Belief functions on finite frames. Dempster's rule

Thierry Denœux

Summer 2022

Outline of the course I

Course homepage:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf
(1) Basic notions. Classification
(1) Belief functions on finite sets. Dempster's rule (lecture + exercises)
(2) Decision making (lecture + exercises)
(3) Evidential k-NN classification:

- A k-nearest neighbor classification rule based on Dempster-Shafer theory
- An evidence-theoretic k-NN rule with parameter optimization
(1) A neural network classifier based on Dempster-Shafer theory (paper reading + exercises in R)
(2) Clustering
(1) Evidential clustering of large dissimilarity data (paper reading + exercises in R)
(2) NN-EVCLUS: Neural Network-based Evidential Clustering (paper reading + exercises in R)
(3) Calibrated model-based evidential clustering using bootstrapping (paper reading + exercises in R)

Outline of the course II

(3) Statistical inference, prediction, regression
(1) Likelihood-based belief function:

- Likelihood-based belief function: Justification and some extensions to low-quality data
- Combining statistical and expert evidence using belief functions: Application to centennial sea level estimation taking into account climate change
(2) Prediction:
- Prediction of future observations using belief functions: a likelihood-based approach
- Evidential calibration of binary SVM classifiers
(3) Uncertain data:
- Maximum likelihood estimation from Uncertain Data in the Belief Function Framework
- Parametric Classification with Soft Labels using the Evidential EM Algorithm
(4) Random fuzzy sets and evidential regression
- Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models
- An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers

What we will study in this part

- A mathematical formalism called
- Dempster-Shafer (DS) theory
- Evidence theory
- Theory of belief functions
- This formalism was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches such as interval analysis as special cases: it is very general.
- Many applications in AI (expert systems, machine learning), engineering (information fusion, uncertainty quantification, risk analysis), statistics (statistical estimation and prediction), etc.
- Some applications to econometrics. A new research avenue to explore!

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Condititioning

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Condilitioning

Mass function

Definition

- Let X be a variable taking one and only one value in a finite set Ω, called the frame of discernment
- Evidence (uncertain information) about X can be represented by a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every subset A of Ω such that $m(A)>0$ is a focal set of m
- m is said to be normalized if $m(\emptyset)=0$. This property will be assumed throughout this course, unless otherwise specified.

Example: road scene analysis

Example: road scene analysis (continued)

- Let X be the type of object in some region of the image, and $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information $X \in\{T, O\}$, but we there is a probability $p=0.1$ that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

Formalization

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in\{T, O\}$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function m on Ω, such that

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

General framework

- A model with three components:
- A set $S=\left\{s_{1}, \ldots, s_{r}\right\}$ of states (interpretations of a piece of evidence)
- A probability measure P on S
- A multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega}$
- The four-tuple $\left(S, 2^{S}, P, \Gamma\right)$ is called a source for m. It induces a mass function of Ω.
- Meaning: under interpretation $s \in S$, the evidence tells us that $X \in \Gamma(s)$, and nothing more. The probability $P(\{s\})$ is transferred to the set $A=\Gamma(s)$ and we have

$$
m(A)=\sum_{s \in S: \Gamma(s)=A} P(\{s\})
$$

- $m(A)$ is the probability of knowing that $X \in A$, and nothing more, given the available evidence.

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_{A} such that $m_{A}(A)=1$.
- Example: $m_{\{T, O\}}$ means the mass function such that $m_{\{T, O\}}(\{T, O\})=1$.
- Special case: $m_{?}$, the vacuous mass function, represents total ignorance
- If all focal sets of m are singletons, m is said to be Bayesian. It is equivalent to a probability distribution.
- Example: $m(\{T\})=0.5, m(\{O\})=0.5$.
- A Dempster-Shafer mass function can thus be seen as
- a generalized set
- a generalized probability distribution

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Condilitioning

Belief function

- If the evidence tells us that the truth is in B, and $B \subseteq A$, we say that the evidence supports A.

- Given a normalized mass function m, the probability that the evidence supports A is thus

$$
B e l(A)=\sum_{B \subseteq A} m(B)
$$

- The number $\operatorname{Bel}(A)$ is called the credibility of A, or the degree of belief in A, and the function $A \rightarrow \operatorname{Bel}(A)$ is called a belief function.

Plausibility function

- If the evidence does not support \bar{A}, it is said to be consistent with A.

- The probability that the evidence is consistent with A is thus

$$
P I(A)=\sum_{B \cap A \neq \emptyset} m(B) .
$$

- The number $P I(A)$ is called the plausibility of A, and the function $A \rightarrow P I(A)$ is called a plausibility function.

Interpretation and elementary properties

- Properties:
(1) $\operatorname{Bel}(\emptyset)=P I(\emptyset)=0$
(2) $\operatorname{Bel}(\Omega)=P I(\Omega)=1$
(3) For all $A \subseteq \Omega$,

$$
\begin{aligned}
& \operatorname{Bel}(A)=1-P l(\bar{A}) \\
& P l(A)=1-\operatorname{Bel}(\bar{A})
\end{aligned}
$$

- Interpretation:
- $\operatorname{Bel}(A)$ is the probability that A is supported by the evidence
- $\operatorname{Bel}(\bar{A})$ is the probability that \bar{A} is supported by the evidence
- $P l(A)=1-\operatorname{Bel}(\bar{A})$ is the probability that \bar{A} is not supported by the evidence, i.e., that A is consistent with the evidence

Two-dimensional representation

- The uncertainty about a proposition A is represented by two numbers: $\operatorname{Bel}(A)$ and $P l(A)$, with $\operatorname{Bel}(A) \leq P I(A)$
- The intervals $[\operatorname{Bel}(A), P l(A)]$ have maximum length when $m=m_{?}$ is vacuous: then, $\operatorname{Bel}(A)=0$ for all $A \neq \Omega$, and $P l(A)=1$ for all $A \neq \emptyset$.
- The intervals $[\operatorname{Bel}(A), P I(A)]$ have minimum length when m is Bayesian. Then,

$$
\operatorname{Be} I(A)=P I(A)=\sum_{\omega \in A} m(\{\omega\})
$$

for all A, and $B e l$ is a probability measure.

Road scene analysis example

- We had $\Omega=\{G, R, T, O, S\}$ and

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

- What are the credibility and the plausibility that the region corresponds / does not correspond to a tree?

$$
\begin{gathered}
\operatorname{Be}(\{T\})=0, \quad P l(\{T\})=0.9+0.1=1 \\
\operatorname{Bel}(\overline{\{T\}})=0, \quad \operatorname{Pl}(\overline{\{T\}})=1
\end{gathered}
$$

But $\operatorname{Be}((\{T\} \cup \overline{\{T\}})=\operatorname{Be}((\Omega)=1$ and $P l(\{T\} \cup \overline{\{T\}})=P I(\Omega)=1$.

- We observe that

$$
\begin{gathered}
\operatorname{Bel}(A \cup B) \geq \operatorname{Be}(A)+\operatorname{Bel}(B)-\operatorname{Be}(A \cap B) \\
P l(A \cup B) \leq P l(A)+P l(B)-P l(A \cap B)
\end{gathered}
$$

(Be l is superadditive, $P l$ is subadditive).

Characterization of belief functions

Theorem

Let $F: 2^{\Omega} \rightarrow[0,1]$. The following two statements are equivalent:
Statement 1 There exists a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that $F(A)=\sum_{B \subseteq A} m(B)$ for all $A \subseteq \Omega$ (i.e., F is a belief function).
Statement 2 Function F has the following 3 properties:
(1) $F(\emptyset)=0$
(2) $F(\Omega)=1$
(3) For any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω},

$$
\begin{equation*}
F\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} F\left(\bigcap_{i \in I} A_{i}\right) \tag{1}
\end{equation*}
$$

(Property (1) is called complete monotonicity).

Relations between $m, B e l$ and $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions
- Thanks to the following equations, given any one of these functions, we can recover the other two: for all $A \subseteq \Omega$,

$$
\begin{align*}
\operatorname{Bel}(A) & =\sum_{B \subseteq A} m(B) \tag{2}\\
P l(A) & =1-\operatorname{Bel}(\bar{A}) \tag{3}\\
\operatorname{Bel}(A) & =1-P l(\bar{A}) \tag{4}\\
m(A) & =\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \tag{5}
\end{align*}
$$

- $m, B e l$ et $P l$ are thus three equivalent representations of a piece of evidence.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning

Definitions

Definition (Consonant mass function)
A mass function m is consonant iff its focal sets are nested, i.e., for any two focal set A_{i} and $A_{j}, A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$

Definition (Possibility measure)
A mapping $\Pi: 2^{\Omega} \rightarrow[0,1]$ is a possibility measure iff, for any $A, B \subseteq \Omega$,

$$
\Pi(A \cup B)=\max [\Pi(A), \Pi(B)]
$$

Definition (Necessity measure)
A mapping $N: 2^{\Omega} \rightarrow[0,1]$ is a necessity measure iff, for any $A, B \subseteq \Omega$,

$$
N(A \cap B)=\min [N(A), N(B)]
$$

Theorem

Theorem
Let m be a mass function, and let Bel and PI be the corresponding belief and plausibility functions. The following statements are equivalent:
(1) m is consonant
(2) Bel is a necessity measure
(3) Pl is a possibility measure

Consequence: The theory of belief functions is more expressive than possibility theory (a possibility measure is a plausibility function, but the converse is false in general).

Proof of $1 \Rightarrow 2$

- Let m be a consonant mass function with focal sets $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{r}$.
- For any $A, B \subseteq \Omega$, let i_{1} and i_{2} be the largest indices such that $A_{i} \subseteq A$ and $A_{i} \subseteq B$, respectively.
- Then, $A_{i} \subseteq A \cap B$ iff $i \leq \min \left(i_{1}, i_{2}\right)$ and

$$
\begin{aligned}
\operatorname{Bel}(A \cap B) & =\sum_{i=1}^{\min \left(i_{1}, i_{2}\right)} m\left(A_{i}\right) \\
& =\min \left(\sum_{i=1}^{i_{1}} m\left(A_{i}\right), \sum_{i=1}^{i_{2}} m\left(A_{i}\right)\right) \\
& =\min (\operatorname{Bel}(A), \operatorname{Bel}(B)) .
\end{aligned}
$$

Proof of $2 \Rightarrow 3$

- Now, from the equality $\overline{A \cup B}=\bar{A} \cap \bar{B}$, we have

$$
\begin{aligned}
P l(A \cup B) & =1-\operatorname{Bel}(\overline{A \cup B}) \\
& =1-\operatorname{Bel}(\bar{A} \cap \bar{B}) \\
& =1-\min (\operatorname{Bel}(\bar{A}), \operatorname{Bel}(\bar{B})) \\
& =\max (1-\operatorname{Bel}(\overline{\bar{A}}), 1-\operatorname{Bel}(\bar{B})) \\
& =\max (P l(A), P l(B)) .
\end{aligned}
$$

Contour function

Definition (Contour function)
The contour function of a belief function Bel is the mapping $\Omega \rightarrow[0,1]$ defined by

$$
p l(\omega)=P l(\{\omega\}), \quad \forall \omega \in \Omega
$$

- When m is consonant, it can be recovered from its contour function:

$$
P I(A)=\max _{\omega \in A} p l(\omega)
$$

and we have

$$
\max _{\omega \in \Omega} p l(\omega)=P l(\Omega)=1
$$

- In Possibility theory, function pl is called a possibility distribution.

Proof of $3 \Rightarrow 1$

- Let $P /$ be a possibility measure and let $p /$ be its contour function.
- Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the frame of discernment with elements arranged by decreasing order of plausibility, i.e.,

$$
1=p \prime\left(\omega_{1}\right) \geq p \prime\left(\omega_{2}\right) \geq \ldots \geq p^{\prime}\left(\omega_{n}\right)
$$

and let A_{i} denote the set $\left\{\omega_{1}, \ldots, \omega_{i}\right\}$, for $1 \leq i \leq n$.

- Let m be the consonant mass function defined as follows:

$$
\begin{aligned}
m\left(A_{i}\right) & =p l\left(\omega_{i}\right)-p l\left(\omega_{i+1}\right), \quad 1 \leq i \leq n-1, \\
m(\Omega) & =p l\left(\omega_{n}\right) .
\end{aligned}
$$

Example

For instance, for the following contour function defined on the frame $\Omega=\{a, b, c, d\}$:

ω	a	b	c	d
$p l(\omega)$	0.3	0.5	1	0.7

the corresponding mass function is

$$
\begin{aligned}
m(\{c\}) & =1-0.7=0.3 \\
m(\{c, d\}) & =0.7-0.5=0.2 \\
m(\{c, d, b\}) & =0.5-0.3=0.2 \\
m(\{c, d, b, a\}) & =0.3
\end{aligned}
$$

Proof of $3 \Rightarrow 1$ (continued)

- Let $P I_{m}$ be the plausibility function induced by m.
- For any subset A of Ω, let $i_{A}=\min \left\{1 \leq i \leq n: \omega_{i} \in A\right\}$.
- $A_{i} \cap A \neq \emptyset$ iff $i \geq i_{A}$.
- Consequently,

$$
\begin{aligned}
P I_{m}(A) & =\sum_{i=i_{A}}^{n} m\left(A_{i}\right) \\
& =p l\left(\omega_{i_{A}}\right)-p l\left(\omega_{i_{A}+1}\right)+p l\left(\omega_{i_{A}+1}\right)-p l\left(\omega_{i_{A}+2}\right)+\ldots-p l\left(\omega_{n}\right)+p l\left(\omega_{n}\right) \\
& =p l\left(\omega_{i_{A}}\right) \\
& =\max _{\omega \in A} p I(\omega)=P I(A),
\end{aligned}
$$

i.e., $P I_{m}=P I$.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$
m_{1}(\{T, O\})=0.9, \quad m_{1}(\Omega)=0.1
$$

- Now, assume that a camera returns the mass function:

$$
m_{2}(\{G, T\})=0.8, \quad m_{2}(\Omega)=0.2
$$

- How to combine these two pieces of evidence?

Analysis

- If interpretations $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ both hold, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
- If the two pieces of evidence are independent, then the probability that s_{1} and s_{2} both hold is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$

Computation

$m_{1} \backslash m_{2}$	$\{T, G\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\{T\}(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{T, G\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\{T\}) & =0.72 \\
m(\{O, T\}) & =0.18 \\
m(\{T, G\}) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that s_{1} and s_{2} cannot hold simultaneously
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs

Computation

$m_{1} \backslash m_{2}$	$\{G, R\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\emptyset(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{G, R\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(\{O, T\}) & =0.18 / 0.28=9 / 14 \\
m(\{G, R\}) & =0.08 / 0.28=4 / 14 \\
m(\Omega) & =0.02 / 0.28=1 / 14
\end{aligned}
$$

Dempster's rule

- Let m_{1} and m_{2} be two mass functions and

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict

- If $\kappa<1$, then m_{1} and m_{2} can be combined as

$$
\begin{equation*}
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset \tag{6}
\end{equation*}
$$

and $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$

- $m_{1} \oplus m_{2}$ is called the orthogonal sum of m_{1} and m_{2}
- This rule can be used to combine mass functions induced by independent pieces of evidence

Another example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\emptyset, 0.05$	$\{b\}, 0.2$	$\emptyset, 0.25$
	$\{a, b\}, 0.2$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\emptyset, 0.1$
	$\{a, c\}, 0.3$	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$

The degree of conflict is $\kappa=0.05+0.25+0.1=0.4$. The combined mass function is

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a\}) & =(0.02+0.03+0.12) / 0.6=0.17 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{b\}) & =0.2 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{a, b\}) & =0.08 / 0.6 \\
\left(m_{1} \oplus m_{2}\right)(\{c\}) & =0.15 / 0.6 .
\end{aligned}
$$

Properties

(1) Commutativity, associativity. Neutral element: $m_{\text {? }}$
(2) Generalization of intersection: if m_{A} and m_{B} are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{A} \oplus m_{B}=m_{A \cap B}
$$

(c) If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).
(Let $p l_{1 \oplus 2}$ be the contour function of $m_{1} \oplus m_{2}$. Then,

$$
p l_{1 \oplus 2}=\frac{p l_{1} p l_{2}}{1-\kappa} \propto p l_{1} p l_{2}
$$

Proof: see next slide.

Proof of Property 4

For any $\omega \in \Omega$,

$$
\begin{aligned}
p l_{1 \oplus 2}(\omega) & =\sum_{\{B: \omega \in B\}}\left(m_{1} \oplus m_{2}\right)(B) \\
& =(1-\kappa)^{-1} \sum_{\{B: \omega \in B\}} \sum_{\{C, D: C \cap D=B\}} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1} \sum_{\{C, D: \omega \in C \cap D\}} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1} \sum_{\{C, D: \omega \in C, \omega \in D\}} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1}\left(\sum_{\{C: \omega \in C\}} m_{1}(C)\right)\left(\sum_{\{D: \omega \in D\}} m_{2}(D)\right) \\
& =(1-\kappa)^{-1} p l_{1}(\omega) \cdot p l_{2}(\omega) .
\end{aligned}
$$

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning

Dempster's rule conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function m_{B}. Notation:

$$
m \oplus m_{B}=m(\cdot \mid B)
$$

- We thus have $m(A \mid B)=0$ for any A not included in B and, for any $A \subseteq B$,

$$
\begin{equation*}
m(A \mid B)=(1-\kappa)^{-1} \sum_{C \cap B=A} m(C), \tag{7}
\end{equation*}
$$

where the degree of conflict κ is

$$
\kappa=\sum_{C \cap B=\emptyset} m(C)=1-\sum_{C \cap B \neq \emptyset} m(C)=1-P /(B) .
$$

Conditional plausibility function

Proposition

The plausibility function $P I(\cdot \mid B)$ induced by $m(\cdot \mid B)$ is given by

$$
P I(A \mid B)=\frac{P l(A \cap B)}{P l(B)}
$$

Proof: We have

$$
\begin{aligned}
P I(A \mid B) & =\sum_{\{C: C \cap A \neq \emptyset\}} m(C \mid B) \\
& =P I(B)^{-1} \sum_{\{C: C \cap A \neq \emptyset\}} \sum_{\{D: D \cap B=C\}} m(D) \\
& =P I(B)^{-1} \sum_{\{D: D \cap B \cap A \neq \emptyset\}} m(D)=\frac{P I(A \cap B)}{P I(B)}
\end{aligned}
$$

If $P l$ is a probability measure, $P I(\cdot \mid B)$ is, thus, the conditional probability measure given B : Dempster's rule of combination thus extends Bayesian conditioning.

