Introduction to belief functions, Lecture 1- Exercises

Thierry Denœux

Summer 2023

1. An urn contains 90 balls, of which 30 are white, and 60 are either black or yellow. A ball is going to be drawn from the urn. Represent the uncertainty about the outcome of this experiment using a mass function on a suitable frame. Compute the corresponding belief and plausibility functions.
2. Let $\Omega=\{a, b, c\}$ and f the following function from 2^{Ω} to $[0,1]$:

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$f(A)$	0	0.5	0.2	0.8	0	0.5	0.5	1

Is f a belief function?
3. An expert has given the following contour function on $\Omega=\{a, b, c, d, e, f\}$:

ω	a	b	c	d	e	f
$p l(\omega)$	0.1	0.3	0.5	1	0.7	0.3

Compute the corresponding mass function, assuming that it is consonant.
4. Let m be a consonant mass function on a frame Ω and let $B e l$ and $P l$ be the corresponding belief and plausibility functions. Show that, for any subset A of $\Omega, \operatorname{Bel}(A)>0 \Rightarrow \operatorname{Pl}(A)=1$.
5. Let m_{1} and m_{2} be two mass functions on $\Omega=\{a, b, c, d\}$ defined as follows

$$
m_{1}(\{a\})=0.3 \quad m_{1}(\{a, c\})=0.5 \quad m_{1}(\{b, c, d\})=0.2
$$

and

$$
m_{2}(\{b, c\})=0.4 \quad m_{2}(\{a, c, d\})=0.5 \quad m_{2}(\{d\})=0.1
$$

Compute the combined mass function by Dempster's rule. What is the degree of conflict between m_{1} and m_{2} ?
6. Let $\Omega=\{a, b\}$, and let m and m^{\prime} be the following mass functions on Ω,

$$
m=\{a\}^{\alpha} \oplus\{b\}^{\beta}, \quad m^{\prime}=\{a\}^{\alpha^{\prime}} \oplus\{b\}^{\beta^{\prime}}
$$

where A^{w} denotes the mass function m such that $m(A)=1-w$ and $m(\Omega)=w$.
(a) Compute m and m^{\prime}.
(b) Compute $m \oplus m^{\prime}$.

