Introduction to belief functions, Lecture 1– Exercises

Thierry Denœux

Summer 2023

1. An urn contains 90 balls, of which 30 are white, and 60 are either black or yellow. A ball is going to be drawn from the urn. Represent the uncertainty about the outcome of this experiment using a mass function on a suitable frame. Compute the corresponding belief and plausibility functions.

Solution: The frame can be denoted as $\Omega = \{w, b, y\}$ for the three colors. The chance to get a white ball is 1/3 and the chance to get a ball that is either black or yellow is 2/3. We thus have the following mass function:

$$m(\{w\}) = 1/3, \quad m(\{b, y\}) = 2/3.$$

The corresponding belief and plausibility functions are given in the following table:

A	Ø	$\{w\}$	$\{b\}$	$\{w,b\}$	<i>{y}</i>	$\{w,y\}$	$\{b,y\}$	$\{w,b,y\}$
Bel(A)	0	1/3	0	1/3	0	1/3	2/3	1
Pl(A)	0	1/3	2/3	1	2/3	1	2/3	1

2. Let $\Omega = \{a, b, c\}$ and f the following function from 2^{Ω} to [0, 1]:

•	\overline{A}	Ø	<i>{a}</i>	{b}	$\{a,b\}$	{c}	$\{a,c\}$	$\{b,c\}$	$\{a,b,c\}$
	f(A)	0	0.5	0.2	0.8	0	0.5	0.5	1

Is f a belief function?

Solution: Let us assume that f is a belief function, and let us compute the corresponding mass function. We have

$$m({a}) = 0.5$$
 and $m({b}) = 0.2$,

so

$$m({a,b}) = 0.8 - 0.5 - 0.2 = 0.1.$$

Similarly, $m({c}) = 0$, so $m({a, c}) = 0.5 - 0.5 - 0 = 0$, and

$$m({b,c}) = 0.5 - 0.2 - 0 = 0.3.$$

Finally,

$$m({a,b,c}) = 1 - 0.5 - 0.2 - 0.1 - 0.3 = -0.1.$$

This mass is negative, so f is not a belief function.

We can also notice that f is not even 2-monotone. For instance,

$$f({a,b} \cup {b,c}) = f({a,b,c}) = 1$$

and

$$f({a,b}) + f({b,c}) - f({a,b} \cap {b,c}) = 0.8 + 0.5 - 0.2 = 1.1,$$

so

$$f({a,b} \cup {b,c}) < f({a,b}) + f({b,c}) - f({a,b} \cap {b,c}).$$

3. An expert has given the following contour function on $\Omega = \{a, b, c, d, e, f\}$:

ω	a	b	c	d	e	f
$pl(\omega)$	0.1	0.3	0.5	1	0.7	0.3

Compute the corresponding mass function, assuming that it is consonant.

Solution: The elements of Ω are ordered by decreasing plausibility as

$$1 = pl(d) > pl(e) > pl(c) > pl(b) = pl(f) > pl(a),$$

so the focal sets are $\{d\}$, $\{d,e\}$, $\{d,e,c\}$, $\{d,e,c,b,f\}$ and Ω . We have

$$\begin{split} m(\{d\}) &= 1 - 0.7 = 0.3 \\ m(\{d,e\}) &= 0.7 - 0.5 = 0.2 \\ m(\{d,e,c\}) &= 0.5 - 0.3 = 0.2 \\ m(\{d,e,c,b,f\}) &= 0.3 - 0.1 = 0.2 \\ m(\Omega) &= 0.1. \end{split}$$

4. Let m be a consonant mass function on a frame Ω and let Bel and Pl be the corresponding belief and plausibility functions. Show that, for any subset A of Ω , $Bel(A) > 0 \Rightarrow Pl(A) = 1$.

Solution: We have $Pl(\overline{A}) = 1 - Bel(A)$, so Bel(A) > 0 implies $Pl(\overline{A}) < 1$. Now, since m is consonant, we have

$$Pl(\Omega) = Pl(A \cup \overline{A}) = \max(Pl(A), Pl(\overline{A})) = 1.$$

Consequently, Pl(A) = 1.

5. Let m_1 and m_2 be two mass functions on $\Omega = \{a, b, c, d\}$ defined as follows

$$m_1({a}) = 0.3$$
 $m_1({a,c}) = 0.5$ $m_1({b,c,d}) = 0.2$

and

$$m_2({b,c}) = 0.4$$
 $m_2({a,c,d}) = 0.5$ $m_2({d}) = 0.1$.

Compute the combined mass function by Dempster's rule. What is the degree of conflict between m_1 and m_2 ?

Solution:

The degree of conflict is

$$\kappa = 0.12 + 0.03 + 0.05 = 0.2$$

and the combined mass function is

$$(m_1 \oplus m_2)(\{a\}) = 0.15/0.8 = 0.1875$$

$$(m_1 \oplus m_2)(\{c\}) = 0.2/0.8 = 0.25$$

$$(m_1 \oplus m_2)(\{a, c\}) = 0.25/0.8 = 0.3125$$

$$(m_1 \oplus m_2)(\{b, c\}) = 0.08/0.8 = 0.1$$

$$(m_1 \oplus m_2)(\{c, d\}) = 0.1/0.8 = 0.125$$

$$(m_1 \oplus m_2)(\{d\}) = 0.02/0.8 = 0.025.$$

6. Let $\Omega = \{a, b\}$, and let m and m' be the following mass functions on Ω ,

$$m = \{a\}^{\alpha} \oplus \{b\}^{\beta}, \quad m' = \{a\}^{\alpha'} \oplus \{b\}^{\beta'},$$

where A^w denotes the mass function m such that m(A) = 1 - w and $m(\Omega) = w$.

(a) Compute m and m'.

Solution: To compute m we can make the following table:

$$\begin{array}{c|c} \{b\}^{\beta} \\ \{b\}, 1-\beta & \Omega, \beta \\ \hline \{a\}^{\alpha} & \{a\}, 1-\alpha & \emptyset, (1-\alpha)(1-\beta) & \{a\}, \beta(1-\alpha) \\ \hline \Omega, \alpha & \{b\}, \alpha(1-\beta) & \Omega, \alpha\beta \\ \hline \end{array}$$
 The degree of conflict is $\kappa = (1-\alpha)(1-\beta) = 1-\alpha-\beta+\alpha\beta$, so

$$m(\{a\}) = \frac{\beta(1-\alpha)}{\alpha+\beta-\alpha\beta}, \quad m(\{b\}) = \frac{\alpha(1-\beta)}{\alpha+\beta-\alpha\beta},$$

$$m(\{a,b\}) = \frac{\alpha\beta}{\alpha + \beta - \alpha\beta}.$$

A similar expression is obtained for m' by replacing α and β by α' and β' .

(b) Compute $m \oplus m'$.

Solution: We observe that

$$A^w \oplus A^{w'} = A^{ww'}.$$

Consequently, using the commutativity and associativity of \oplus ,

$$m \oplus m' = \{a\}^{\alpha} \oplus \{b\}^{\beta} \oplus \{a\}^{\alpha'} \oplus \{b\}^{\beta'} = \{a\}^{\alpha\alpha'} \oplus \{b\}^{\beta\beta'}.$$

Consequently,

$$(m \oplus m')(\{a\}) = \frac{\beta\beta'(1 - \alpha\alpha')}{\alpha\alpha' + \beta\beta' - \alpha\beta\alpha'\beta'}, \quad (m \oplus m')(\{b\}) = \frac{\alpha\alpha'(1 - \beta\beta')}{\alpha\alpha' + \beta\beta' - \alpha\beta\alpha'\beta'},$$

$$(m \oplus m')(\{a,b\}) = \frac{\alpha \alpha' \beta \beta'}{\alpha \alpha' + \beta \beta' - \alpha \beta \alpha' \beta'}.$$