Theory of belief functions: Application to machine learning and statistical inference Decision Analysis - Exercises

Thierry Denœux

August 4, 2023

1. An oil company must decide whether or not to drill for oil. They are uncertain whether the hole will be dry (D), have a trickle of oil (T), or be a gusher (G). Drilling a hole costs $\$ 70,000$. The payoffs for hitting a gusher, a trickle or a dry hole are $\$ 270,000, \$ 120,000$, and $\$ 0$, respectively.
(a) Which act do we select using the Laplace, maximax, maximin criteria?

Solution: We have the following payoff matrix (in 1000\$):

	D	T	G
drill $\left(f_{1}\right)$	-70	50	200
not drill $\left(f_{2}\right)$	0	0	0

Using the Laplace criterion, the average utility of drilling is

$$
\frac{1}{3}(-70+50+200)=60
$$

and the utility of not drilling is 0 , so $f_{1} \succcurlyeq f_{2}$.
Using the maximax criterion, the maximum utilities of drilling and not drilling are, respectively, 200 and 0 , so again $f_{1} \succcurlyeq f_{2}$.
Using the maximin criterion, the minimum utilities of drilling and not drilling are, respectively, -70 and 0 , so $f_{2} \succcurlyeq f_{1}$.
(b) Discuss the decision based on the Hurwicz criterion, for different values of the pessimism index.

Solution: Let α denote the degree of pessimism. Act f_{1} is preferred to f_{2} iff

$$
-70 \alpha+200(1-\alpha) \geq 0 \Leftrightarrow \alpha \leq \frac{20}{27} \approx 0.74
$$

(c) Based on seismic soundings, we have obtained the following mass function on $\Omega=\{D, T, G\}$:

$$
m(\{D\})=0.1, \quad m(\{T, D\})=0.4, \quad m(\{G, T\})=0.2, \quad m(\Omega)=0.3
$$

Compute the lower and upper expected utilities for each of the two acts, as well as the pignistic expected utilities.

Solution: If f_{2} is chosen, the loss is surely zero, so the three expectations are equal to zero.
For f_{1}, the induced mass function on $\mathcal{C}=\{-70,0,50,200\}$ is

$$
\begin{gathered}
m_{1}(\{-70\})=0.1, \quad m_{1}(\{-70,50\})=0.4, \quad m_{1}(\{50,200\})=0.2, \\
m_{1}(\{-70,50,200\})=0.3
\end{gathered}
$$

The lower and upper expected utilities are, respectively,

$$
\underline{\mathbb{E}}_{m_{1}}(u)=-70 \times 0.1-70 \times 0.4+50 \times 0.2-70 \times 0.3=-46
$$

and

$$
\overline{\mathbb{E}}_{m_{1}}(u)=-70 \times 0.1+50 \times 0.4+200 \times 0.2+200 \times 0.3=113 .
$$

The pignistic probability distribution corresponding to m_{1} is

$$
\begin{gathered}
p_{1}(-70)=0.1+0.4 / 2+0.3 / 3=0.4 \\
p_{1}(50)=0.4 / 2+0.2 / 2+0.3 / 3=0.4 \\
p_{1}(200)=0.2 / 2+0.3 / 3=0.2 .
\end{gathered}
$$

The pignistic expected utility for act f_{1} is, thus,

$$
\mathbb{E}_{p_{1}}(u)=-70 \times 0.4+50 \times 0.4+200 \times 0.2=32
$$

(d) Discuss the decisions made using the generalized Hurwicz criterion, as a function of the pessimism index.

Solution: Let α denote the degree of pessimism. Act f_{1} is preferred to f_{2} iff

$$
-46 \alpha+113(1-\alpha) \geq 0 \Leftrightarrow \alpha \leq \frac{113}{157} \approx 0.72 .
$$

2. We consider a classification problem with three classes $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and two attributes. The following figure shows the feature vectors for five objects.

We have partial information about the class labels of objects 1 to 4 , and we want to classify object 5 using the evidential K-nearest neighbor rule with $K=3$ and function φ defined as follows:

$$
\varphi(d)=\frac{1}{1+d} .
$$

Denoting by y_{i} the class of object i, we have the following partial class labels:

$$
y_{1} \in\left\{\omega_{1}, \omega_{2}\right\}, \quad y_{2}=\omega_{2}, \quad y_{3} \in\left\{\omega_{2}, \omega_{3}\right\}, \quad y_{4} \in\left\{\omega_{1}, \omega_{3}\right\} .
$$

This means that, for instance, we only know that object 1 belongs either to class ω_{1} or ω_{2}; we know that object 2 belongs to ω_{2} for sure, etc.
(a) We wish to classify object 5 . Compute the corresponding mass function.

Solution: The 3 nearest neighbors of object 5 are vectors 1,2 and 3 . We have

$$
\begin{gathered}
m_{1}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=1 /(1+2)=1 / 3, \quad m_{1}(\Omega)=2 / 3 \\
m_{2}\left(\left\{\omega_{2}\right\}\right)=1 /(1+1)=0.5, \quad m_{2}(\Omega)=0.5 \\
m_{3}\left(\left\{\omega_{2}, \omega_{3}\right\}\right)=0.5, \quad m_{3}(\Omega)=0.5
\end{gathered}
$$

Combining m_{1} and m_{2} yields

$$
m_{12}\left(\left\{\omega_{2}\right\}\right)=0.5, \quad m_{12}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=1 / 6, \quad m_{12}(\Omega)=1 / 3
$$

After combination with m_{3} we get

$$
m_{123}\left(\left\{\omega_{2}\right\}\right)=7 / 12, \quad m_{123}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=1 / 12, \quad m_{123}\left(\left\{\omega_{2}, \omega_{3}\right\}\right)=1 / 6, \quad m_{123}(\Omega)=1 / 6
$$

(b) We consider four acts: f_{0}, f_{1}, f_{2} and f_{3}, where f_{0} means rejection, and f_{k} assignment of object 5 to class ω_{k}. We have the following loss matrix:

	ω_{1}	ω_{2}	ω_{3}
f_{0}	0.6	0.6	0.6
f_{1}	0	1	1
f_{2}	1	0	2
f_{3}	1	0.5	0

Compute the lower and upper risks for each of the four acts. Which decision do we make for object 5 , using the pessimistic and optimistic decision rules?

Solution:

- $f_{0}:$ lower $=$ upper $=0.6$
- f_{1} :
- lower: $7 / 12+0+1 / 6+0=9 / 12=3 / 4$
- upper: $7 / 12+1 / 12+1 / 6+1 / 6=1$
- f_{2} :
- lower: $0+0+0+0=0$
- upper: $0+1 / 12+2 / 6+2 / 6=9 / 12=3 / 4$
- f_{3} :
- lower: $7 / 12 \times 0.5+1 / 12 \times 0.5+0+0=4 / 12=1 / 3$
- upper: $7 / 12 \times 0.5+1 / 12 \times 1+0.5 / 6+1 / 6=15 / 24=5 / 8$

The pessimistic rule (minimization of upper risk) selects f_{0}. The optimistic rule (minimization of lower risk) selects f_{2}.
(c) Which decision do we make for object 5 , using the pignistic decision rule?

Solution: Pignistic probabilities:

$$
p\left(\omega_{1}\right)=1 / 24+1 / 18=7 / 72 \approx 0.097, \quad p\left(\omega_{2}\right)=7 / 12+1 / 24+1 / 12+1 / 18=55 / 72 \approx 0.764
$$

$$
p\left(\omega_{3}\right)=1 / 12+1 / 18=10 / 72 \approx 0.139
$$

Risk:

- $f_{0}: 0.6$
- $f_{1}: 0.764+0.139=0.903(=65 / 72)$
- $f_{2}: 0.097+2 * 0.139=\mathbf{0 . 3 7 5}(=27 / 72)$
- $f_{3}: 0.097+0.5^{*} 0.764=0.479(=69 / 144)$

We select f_{2}.

