Theory of Belief Functions: Application to machine learning and statistical inference Lecture 1: basic concepts

Thierry Denœux

Summer 2023

Thierry Denœux

Belief functions - Basic concepts

Summer 2023 1 / 53

Outline of the course I

Course homepage:

https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf

- Roadmap:
 - Basic notions:
 - Belief functions on finite sets. Dempster's rule (lecture + exercises)
 - Decision making (lecture + exercises)
 - Pirst applications: classification and statistical inference
 - "A k-nearest neighbor classification rule based on Dempster-Shafer theory" (paper reading + exercises in R)
 - "A neural network classifier based on Dempster-Shafer theory" (paper reading + exercises in R)
 - "Constructing belief functions from sample data using multinomial confidence regions" (paper reading + exercises in R)

Advanced concepts:

- Random sets and belief functions in a general framework (lecture + exercises)
- Possibility and Random fuzzy sets
- "Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models" (paper reading + exercises)

Outline of the course II

Statistical and ML applications:

- Statistical prediction using belief functions: application to linear and logistic regression
- "Prediction of future observations using belief functions: a likelihood-based approach" (paper reading + exercises)
- "Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets: the ENNreg model" (paper reading + exercises)
- Statistical inference and learning from uncertain data:
 - "Maximum likelihood estimation from Uncertain Data in the Belief Function Framework" (paper reading + exercises)
 - "Parametric Classification with Soft Labels using the Evidential EM Algorithm" (paper reading + exercises)
- Project
- Project presentation

What we will study in this course

- A mathematical formalism called
 - Dempster-Shafer (DS) theory
 - Evidence theory
 - Theory of belief functions
- This formalism was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches such as interval analysis as special cases: it is very general.
- Many applications in AI (expert systems, machine learning), engineering (information fusion, uncertainty quantification, risk analysis), statistics (statistical estimation and prediction), etc.
- Some applications to econometrics. A new research avenue to explore!

Outline

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

-

Image: A matched black

Reminder: probability mass functions and measures

- Let Ω be a finite set (sample space, universe or discourse,...)
- A probability mass function is mapping $p: \Omega \rightarrow [0, 1]$ such that

$$\sum_{\omega\in\Omega}p(\omega)=1$$

• The corresponding probability measure is the mapping $P: 2^{\Omega} \rightarrow [0, 1]$ defined by

$$P(A) = \sum_{\omega \in A} p(\omega)$$
 for all $A \subseteq \Omega$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Properties

- $P(\emptyset) = 0, P(\Omega) = 1$
- Additivity:

$$\forall A, B \subseteq \Omega, \quad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

More generally, for any k ≥ 2 and for any family A₁,..., A_k of subsets of Ω,

$$P\left(\bigcup_{i=1}^{k} A_{i}\right) = \sum_{\emptyset \neq I \subseteq \{1,\dots,k\}} (-1)^{|I|+1} P\left(\bigcap_{i \in I} A_{i}\right)$$
(1)

イロト イヨト イヨト イヨト

Interpretations

- Objective:
 - Ω is the set of possible outcomes of a random experiment
 - $p(\omega)$ is the limit frequency of outcome ω in a series of repetitions of the random experiment
 - P(A) is the limit frequency of the event "ω ∈ A"
- Subjective:
 - Ω is the set of possible answers to some question
 - *P*(*A*) is a agent's degree of belief that the true answer belongs to *A*
 - Probability theory is the mainstream formalism for representing uncertainty in AI

Should degrees of belief be additive?

Image: A matrix

The case of complete ignorance

- To highlight the implications of the additivity assumption, it is useful to consider the extreme (but frequent) situation of complete ignorance.
- How to define a probability measure on Ω in that case?
- The only sensible solution is provided by Laplace's principle of indifference (PI): "In the absence of any relevant evidence, agents should distribute their credence (or 'degrees of belief') equally among all the possible outcomes under consideration".
- As shown by the following example, this principle leads to paradoxes.

Image: Image:

Is there life around Sirius?

- Consider the question: "Are there or are there not living beings in orbit around the star Sirius"?
- The set of possibilities can be denoted by $\Theta = \{\theta_1, \theta_2\}$, where
 - θ_1 is the possibility that there is life
 - θ_2 is the possibility that there is not
- As we are completely ignorant about this question, the probabilities should be, according to the PI:

$$p(\theta_1) = p(\theta_2) = 1/2$$

Image: Image:

Is there life around Sirius? (continued)

- We could also have considered a refined set of possibilities, such as $\Omega = \{\omega_1, \omega_2, \omega_3\}$, where
 - ω_1 corresponds to the possibility that there is life around Sirius
 - ω_2 corresponds to the possibility that there are planets but no life, and
 - ω_3 corresponds to the possibility that there are not even planets
- With this new set of probabilities, complete ignorance is represented by

$$p(\omega_1) = p(\omega_2) = p(\omega_3) = 1/3$$

• But θ_1 has the same meaning as ω_1 and θ_2 has the same meaning as $\{\omega_2, \omega_3\}$, so the probability distributions on Θ and Ω are inconsistent.

The solution: relax the additivity property

- The Dempster-Shafer theory was introduced to solve such paradoxes.
- It replaces the probability measure P by two nonadditive measures: a belief function and a plausibility function.
- The probabilistic formalism is recovered as a special case (known frequencies or proportions in a population).

Image: A matrix

Outline

Representation of evidenceMass functions

Belief and plausibility functions

Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

Image: A matched black

Mass function

Definition

- Let Ω be the finite set of possible answers to some question *X*.
- To emphasize the fact that the granularity of Ω is a matter of choice, Ω is sometimes called the frame of discernment
- A mass function is a mapping $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

and

 $m(\emptyset) = 0$

• Every subset A of Ω such that m(A) > 0 is a focal set of m

・ロト ・同ト ・ヨト ・ヨ

Mass function

Interpretation

- In DS theory, a mass function *m* on Ω is used as a representation of evidence, i.e., partial information about the question of interest.
- It is usually induced by
 - A mapping Γ from a set *S* of interpretations (or possible meanings) of the evidence
 - Known probabilities on S
 - Each probability p(s) for $s \in S$ is then transferred to subset $\Gamma(s) \subseteq \Omega$, and

$$m(A) = \sum_{\{s \in S: \Gamma(s) = A\}} p(s)$$

Image: Image:

Example: road scene analysis

Real world driving scene

Example: road scene analysis (continued)

- Let X be the contents of some region in the image, and $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information X ∈ {T, O}, but we there is a probability p = 0.1 that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

Formalization

- Here, the probability *p* is not about *X*, but about the state of a sensor.
- Let *S* = {working, broken} the set of possible sensor states.
 - If the state is "working", we know that $X \in \{T, O\}$.
 - If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function *m* on Ω, such that

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

Special cases

Logical mass function: If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_A such that $m_A(A) = 1$. Example: $m_{\{T,O\}}$ denotes the mass function such that $m_{\{T,O\}}(\{T,O\}) = 1$.

Vacuous mass function: In particular, m_{Ω} represents total ignorance; it is called the vacuous mass function

Bayesian mass function: If all focal sets of *m* are singletons, *m* is said to be Bayesian. It is equivalent to a probability mass function. Example: $m({T}) = 0.5$, $m({O}) = 0.5$.

A Dempster-Shafer mass function can thus be seen as

- A generalized set
- A generalized probability distribution

Outline

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

Defiinitions

 Given a mass function *m* on Ω, the corresponding belief and plausibility functions are mappings from 2^Ω to [0,1] defined as follows:

$$\textit{Bel}(\textit{A}) = \sum_{\textit{B} \subset \textit{A}} \textit{m}(\textit{B})$$

$${\it Pl}({\it A}) = \sum_{{\it B}\cap {\it A}
eq \emptyset} {\it m}({\it B}) = {\it 1} - {\it Bel}(\overline{{\it A}}).$$

- Interpretation:
 - Bel(A) is a measure of the strength with which A is supported by the available evidence (taking into accounts all subsets B ⊆ A); it is a degree of belief in A
 - *PI*(*A*) is a measure of the lack of support given to the complement of *A*, it is a degree of lack of belief in *A*

Elementary properties

- $Bel(\emptyset) = Pl(\emptyset) = 0$
- $Bel(\Omega) = Pl(\Omega) = 1$
- For all $A \subseteq \Omega$,

$$Bel(A) = 1 - Pl(\overline{A})$$

 $Pl(A) = 1 - Bel(\overline{A})$

• Superadditivity of *Bel*:

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

• Subadditivity of *PI*:

$$\mathsf{Pl}(\mathsf{A} \cup \mathsf{B}) \leq \mathsf{Pl}(\mathsf{A}) + \mathsf{Pl}(\mathsf{B}) - \mathsf{Pl}(\mathsf{A} \cap \mathsf{B})$$

イロト イヨト イヨト イヨト

Two-dimensional representation

- The uncertainty about a proposition A is represented by two numbers: Bel(A) and Pl(A), with $Bel(A) \le Pl(A)$
- The intervals [Bel(A), Pl(A)] have maximum length when m is vacuous: then, Bel(A) = 0 for all A ≠ Ω, and Pl(A) = 1 for all A ≠ Ø.
- The intervals [*Bel*(*A*), *Pl*(*A*)] have minimum length when *m* is Bayesian. Then,

$$Bel(A) = Pl(A) = \sum_{\omega \in A} m(\{\omega\})$$

for all A, and Bel is a probability measure.

(日)

Road scene analysis example

• We had
$$\Omega = \{G, R, T, O, S\}$$
 and

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

 What are the credibility and the plausibility that the region corresponds or does not correspond to a tree?

$$Bel(\{T\}) = 0, \quad Pl(\{T\}) = 0.9 + 0.1 = 1$$

 $Bel(\overline{\{T\}}) = 0, \quad Pl(\overline{\{T\}}) = 1$

But

$$Bel(\{T\} \cup \overline{\{T\}}) = Bel(\Omega) = 1$$

and

$$Pl({T} \cup \overline{{T}}) = Pl(\Omega) = 1$$

Image: Image:

Characterization of belief functions

Theorem

Let $F : 2^{\Omega} \to [0, 1]$. The following two statements are equivalent: Statement 1 There exists a mass function $m : 2^{\Omega} \to [0, 1]$ such that $F(A) = \sum_{B \subseteq A} m(B)$ for all $A \subseteq \Omega$ (i.e., F is a belief function). Statement 2 Function F has the following 3 properties: F(A) = C(A) = 0

$$F\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,\dots,k\}} (-1)^{|I|+1} F\left(\bigcap_{i \in I} A_{i}\right)$$
(2)

(Property (2) is called complete monotonicity).

Relations between *m*, *Bel* and *Pl*

- Let *m* be a mass function, *Bel* and *Pl* the corresponding belief and plausibility functions
- Thanks to the following equations, given any one of these functions, we can recover the other two: for all A ⊆ Ω,

$$Bel(A) = \sum_{B \subseteq A} m(B)$$

$$Pl(A) = 1 - Bel(\overline{A})$$

$$Bel(A) = 1 - Pl(\overline{A})$$

$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B)$$

• *m*, *Bel* et *Pl* are thus three equivalent representations of a piece of evidence.

Image: A matrix

Outline

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

Image: A matched black

Definition and theorem

Consonant mass functions are an important special case.

Definition (Consonant mass function)

A mass function *m* is consonant iff its focal sets are nested, i.e., for any two focal set A_i and A_j , $A_i \subseteq A_j$ or $A_j \subseteq A_i$

Theorem

Let m be a mass function, and let Bel and Pl be the corresponding belief and plausibility functions. The following statements are equivalent:

- m is consonant
- **2** For any $A, B \subseteq \Omega$, $Bel(A \cap B) = \min[Bel(A), Bel(B)]$
- So For any $A, B \subseteq \Omega$, $PI(A \cup B) = \max [PI(A), PI(B)]$

• For any $A \subseteq \Omega$, $Pl(A) = \max_{\omega \in A} pl(\omega)$, where $pl(\omega) = Pl(\{\omega\})$

(Function $pl: \Omega \rightarrow [0, 1]$ is called the contour function).

Image: A matched black

Proof of $1 \Rightarrow 2$

- Let *m* be a consonant mass function with focal sets $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_r$.
- For any $A, B \subseteq \Omega$, let i_1 and i_2 be the largest indices such that $A_i \subseteq A$ and $A_i \subseteq B$, respectively.
- Then, $A_i \subseteq A \cap B$ iff $i \leq \min(i_1, i_2)$ and

$$Bel(A \cap B) = \sum_{i=1}^{\min(i_1, i_2)} m(A_i)$$

= $\min\left(\sum_{i=1}^{i_1} m(A_i), \sum_{i=1}^{i_2} m(A_i)\right)$
= $\min(Bel(A), Bel(B)).$

・ロト ・同ト ・ヨト ・ヨ

Proof of $2 \Rightarrow 3$

Now, from the equality $\overline{A \cup B} = \overline{A} \cap \overline{B}$, we have

$$Pl(A \cup B) = 1 - Bel(\overline{A \cup B})$$

= 1 - Bel(\overline{A} \cap \overline{B})
= 1 - min(Bel(\overline{A}), Bel(\overline{B}))
= max(1 - Bel(\overline{A}), 1 - Bel(\overline{B}))
= max(Pl(A), Pl(B)).

< E

<ロト <回ト < 回ト

Proof of $3 \Rightarrow 4$

- Assume that $PI(A \cup B) = \max(PI(A), PI(B))$ for all $A, B \subseteq \Omega$.
- Let Π_n be the following property: Pl(A) = max_{ω∈A} pl(ω) for all A ⊆ Ω such that |A| ≤ n.
- We prove Π_n for all $n \ge 0$ by induction:
 - Π₁ and Π₂ trivially true.
 - Assume Π_n is true and let $A \subseteq \Omega$ such that |A| = n + 1. We can write $A = B \cup \{\omega_0\}$ with |B| = n. Consequently,

$$\begin{aligned} Pl(A) &= \max(Pl(B), pl(\omega_0)) \\ &= \max(\max_{\omega \in B} pl(\omega), pl(\omega_0)) \\ &= \max_{\omega \in A} pl(\omega) \end{aligned}$$

Proof of $4 \Rightarrow 1 I$

- Let *PI* be a plausibility function verifying $PI(A) = \max_{\omega \in A} pI(\omega)$ for all *A*.
- Let Ω = {ω₁,..., ω_n} be the frame of discernment with elements arranged by decreasing order of plausibility, i.e.,

$$1 = pl(\omega_1) \ge pl(\omega_2) \ge \ldots \ge pl(\omega_n)$$

and let A_i denote the set $\{\omega_1, \ldots, \omega_i\}$, for $1 \le i \le n$.

• Let *m* denote the following consonant mass function:

$$m(A_i) = pl(\omega_i) - pl(\omega_{i+1}), \quad 1 \le i \le n-1$$

$$m(\Omega) = pl(\omega_n).$$

Image: Image:

Example

For instance, for the following contour function defined on the frame $\Omega = \{a, b, c, d\}$:

$$\omega$$
 a b c d
pl(ω) 0.3 0.5 1 0.7

the corresponding mass function is

$$m(\{c\}) = 1 - 0.7 = 0.3$$
$$m(\{c, d\}) = 0.7 - 0.5 = 0.2$$
$$m(\{c, d, b\}) = 0.5 - 0.3 = 0.2$$
$$m(\{c, d, b, a\}) = 0.3.$$

イロト イヨト イヨト イヨト

Proof of $4 \Rightarrow 1$ (continued)

- Let *Pl_m* be the plausibility function induced by *m*.
- For any subset A of Ω , let $i_A = \min\{1 \le i \le n : \omega_i \in A\}$.
- $A_i \cap A \neq \emptyset$ iff $i \ge i_A$.
- Consequently,

$$Pl_m(A) = \sum_{i=i_A}^n m(A_i)$$

= $pl(\omega_{i_A}) - pl(\omega_{i_A+1}) + pl(\omega_{i_A+1}) - pl(\omega_{i_A+2}) + \dots - pl(\omega_n) + pl(\omega_n)$
= $pl(\omega_{i_A})$
= $\max_{\omega \in A} pl(\omega) = Pl(A),$

i.e., $PI_m = PI$.

Outline

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

< E

ヘロア ヘロア ヘビア

Outline

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

2

Dempster's ruleDefinition

- Conditioning
- Commonality function

Image: A matched black

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$m_1(\{T, O\}) = 0.9, \quad m_1(\Omega) = 0.1$$

• Now, assume that a camera returns the mass function:

$$m_2(\{G,T\}) = 0.8, \quad m_2(\Omega) = 0.2$$

• How to combine these two pieces of evidence?

Analysis

- If interpretations $s_1 \in S_1$ and $s_2 \in S_2$ both hold, then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$
- If the two pieces of evidence are independent, then the probability that s₁ and s₂ both hold is P₁({s₁})P₂({s₂})

(I)

Computation

$$\begin{array}{c|cccc} m_1 \backslash m_2 & \{T,G\} & \Omega \\ & (0.8) & (0.2) \\ \hline \{O,T\} (0.9) & \{T\} (0.72) & \{O,T\} (0.18) \\ \Omega (0.1) & \{T,G\} (0.08) & \Omega (0.02) \end{array}$$

We then get the following combined mass function,

$$m({T}) = 0.72$$

$$m({O, T}) = 0.18$$

$$m({T, G}) = 0.08$$

$$m(\Omega) = 0.02$$

()

・ロト ・日下・ ・ ヨト

Case of conflicting pieces of evidence

• If $\Gamma_1(s_1) \cap \Gamma_2(s_2) = \emptyset$, we know that s_1 and s_2 cannot hold simultaneously

• The joint probability distribution on $S_1 \times S_2$ must be conditioned to eliminate such pairs

Computation

$$\begin{array}{c|cccc} m_1 \backslash m_2 & \{G, R\} & \Omega \\ & (0.8) & (0.2) \\ \hline \{O, T\} (0.9) & \emptyset (0.72) & \{O, T\} (0.18) \\ \Omega (0.1) & \{G, R\} (0.08) & \Omega (0.02) \end{array}$$

We then get the following combined mass function,

$$m(\emptyset) = 0$$

$$m(\{O, T\}) = 0.18/0.28 = 9/14$$

$$m(\{G, R\}) = 0.08/0.28 = 4/14$$

$$m(\Omega) = 0.02/0.28 = 1/14$$

ъ

Dempster's rule

Let m₁ and m₂ be two mass functions and

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict

• If $\kappa < 1$, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C = A} m_1(B) m_2(C), \quad \forall A \neq \emptyset$$
(3)

and $(m_1 \oplus m_2)(\emptyset) = 0$

- $m_1 \oplus m_2$ is called the orthogonal sum of m_1 and m_2
- This rule can be used to combine mass functions induced by independent pieces of evidence

Another example

A		Ø	{ a }	{ b }	{ a , b }	{ C }	{ <i>a</i> , <i>c</i> }	$\{m{b},m{c}\}$	{ <i>a</i> , <i>b</i> , <i>c</i> }	
$m_1(A$)	0	0	0.5	0.2	0	0.3	0	0	
$m_2(A$)	0	0.1	0	0.4	0.5	0	0	0	
				m ₂						
					{ <i>a</i> },0.1	{6	a, b}, 0.4	{ C },	0.5	
	<i>m</i> ₁		$\{b\}, 0.5$ $m_1 \{a, b\}, 0.2$		Ø, 0.05	{	[<i>b</i> },0.2	Ø, 0 .	25	
					{ <i>a</i> },0.0	2 { <i>a</i>	, <i>b</i> },0.08	₿ Ø, 0	.1	
			$\{a, c\}$, 0.3	{ <i>a</i> },0.0	3 {	<i>a</i> },0.12	{ <i>c</i> },0	.15	

The degree of conflict is $\kappa = 0.05 + 0.25 + 0.1 = 0.4$. The combined mass function is

 $(m_1 \oplus m_2)(\{a\}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6 \approx 0.2833$ $(m_1 \oplus m_2)(\{b\}) = 0.2/0.6 = 1/3$ $(m_1 \oplus m_2)(\{a, b\}) = 0.08/0.6 \approx 0.1333$ $(m_1 \oplus m_2)(\{c\}) = 0.15/0.6 = 0.25.$

Properties

- Commutativity, associativity. Neutral element: m_?
- ② Generalization of intersection: if m_A and m_B are logical mass functions and A ∩ B ≠ Ø, then

$$m_A \oplus m_B = m_{A \cap B}$$

If either m_1 or m_2 is Bayesian, then so is $m_1 \oplus m_2$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Image: Image:

Outline

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

Image: A matched black

Dempster's rule conditioning

 Conditioning is a special case, where a mass function *m* is combined with a logical mass function *m_B*. Notation:

$$m \oplus m_B = m(\cdot \mid B)$$

• We thus have m(A | B) = 0 for any A not included in B and, for any $A \subseteq B$, $m(A | B) = (1 - \kappa)^{-1} \sum_{C \cap B = A} m(C)$,

where the degree of conflict κ is

$$\kappa = \sum_{C \cap B = \emptyset} m(C) = 1 - \sum_{C \cap B \neq \emptyset} m(C) = 1 - Pl(B).$$

(4)

Conditional plausibility function

Proposition

The plausibility function $Pl(\cdot|B)$ induced by $m(\cdot|B)$ is given by

$$PI(A \mid B) = rac{PI(A \cap B)}{PI(B)}$$

Proof: We have

$$PI(A \mid B) = \sum_{\{C:C \cap A \neq \emptyset\}} m(C|B)$$

= $PI(B)^{-1} \sum_{\{C:C \cap A \neq \emptyset\}} \sum_{\{D:D \cap B = C\}} m(D)$
= $PI(B)^{-1} \sum_{\{D:D \cap B \cap A \neq \emptyset\}} m(D) = \frac{PI(A \cap B)}{PI(B)}$

If *PI* is a probability measure, $PI(\cdot | B)$ is, thus, the conditional probability measure given *B*: Dempster's rule of combination thus extends Bayesian conditioning.

Outline

- Mass functions
- Belief and plausibility functions
- Consonant belief functions

Dempster's rule

- Definition
- Conditioning
- Commonality function

Image: A matched black

Commonality function

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$
(5)

(I)

- Q is another equivalent representation of a belief function.
- Properties: $Q(\emptyset) = 1$ and $Q(\Omega) = m(\Omega)$

Commonality function and Dempster's rule

- Let Q_1 and Q_2 be the commonality functions associated to m_1 and m_2 .
- Let $Q_1 \oplus Q_2$ be the commonality function associated to $m_1 \oplus m_2$.
- We have $(Q_1 \oplus Q_2)(\emptyset) = 1$ and, for all non empty subset A of Ω ,

$$(Q_1 \oplus Q_2)(A) = (1 - \kappa)^{-1} Q_1(A) \cdot Q_2(A).$$

Image: Image:

Proof

$$\begin{aligned} (Q_1 \oplus Q_2)(A) &= \sum_{B \supseteq A} (m_1 \oplus m_2)(B) \\ &= (1 - \kappa)^{-1} \sum_{B \supseteq A} \sum_{C \cap D = B} m_1(C) m_2(D) \\ &= (1 - \kappa)^{-1} \sum_{C \cap D \supseteq A} m_1(C) m_2(D) \\ &= (1 - \kappa)^{-1} \sum_{C \supseteq A, D \supseteq A} m_1(C) m_2(D) \\ &= (1 - \kappa)^{-1} \left(\sum_{C \supseteq A} m_1(C) \right) \left(\sum_{D \supseteq A} m_2(D) \right) \\ &= (1 - \kappa)^{-1} Q_1(A) \cdot Q_2(A). \end{aligned}$$

(日) (日) (日) (日) (日)

Product rule for commonality and contour functions

• Using (5) with $A = \emptyset$, we get

$$\sum_{\substack{\emptyset \neq B \subseteq \Omega}} (-1)^{|B|} Q(B) = -Q(\emptyset) = -1,$$
(6)

which makes it possible to compute the commonality function once commonality numbers are determined up to some multiplicative constant. (See following example)

- Given two mass functions m_1 and m_2 , we can thus combine them either using (3), or by converting them to commonality functions, multiplying them pointwise, and computing the corresponding mass function using (5).
- In particular, $pl(\omega) = Q(\{\omega\})$. Consequently,

$$pl_1 \oplus pl_2 = (1 - \kappa)^{-1} pl_1 pl_2.$$

Example (cf. Slide 43)

A	Ø	{ a }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	{ C }	{ <i>a</i> , <i>c</i> }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }
$Q_1(A)$	1	0.5	0.7	0.2	0.3	0.3	0	0
$Q_2(A)$	1	0.5	0.4	0.4	0.5	0	0	0
$Q_1(A)Q_2(A)$	1	0.25	0.28	0.08	0.15	0	0	0

$$(1 - \kappa)^{-1} = -1/(-0.25 - 0.28 - 0.15 + 0.08) = 1.6667$$

 $\Rightarrow \kappa = 1 - (1/1.6667) = 0.4$

A	Ø	{ a }	{ b }	{ <i>a</i> , <i>b</i> }	{ C }	{ <i>a</i> , <i>c</i> }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }
$(Q_1\oplus Q_2)(A)$	1	0.4167	0.4667	0.1333	0.25	0	0	0
$(m_1 \oplus m_2)(A)$	0	0.2833	0.3333	0.1333	0.25	0	0	0

イロト イヨト イヨト イヨト