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Outline of the course I

Course homepage:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf

Roadmap:
1 Basic notions:

Belief functions on finite sets. Dempster’s rule (lecture + exercises)
Decision making (lecture + exercises)

2 First applications: classification and statistical inference
“A k-nearest neighbor classification rule based on Dempster-Shafer theory”
(paper reading + exercises in R)
“A neural network classifier based on Dempster-Shafer theory” (paper reading +
exercises in R)
“Constructing belief functions from sample data using multinomial confidence
regions” (paper reading + exercises in R)

3 Advanced concepts:
Random sets and belief functions in a general framework (lecture + exercises)
Possibility and Random fuzzy sets
“Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models” (paper reading + exercises)
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Outline of the course II

4 Statistical and ML applications:
Statistical prediction using belief functions: application to linear and logistic
regression
“Prediction of future observations using belief functions: a likelihood-based
approach” (paper reading + exercises)
“Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets:
the ENNreg model” (paper reading + exercises)

5 Statistical inference and learning from uncertain data:
“Maximum likelihood estimation from Uncertain Data in the Belief Function
Framework” (paper reading + exercises)
“Parametric Classification with Soft Labels using the Evidential EM Algorithm”
(paper reading + exercises)

6 Project
7 Project presentation
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What we will study in this course

A mathematical formalism called
Dempster-Shafer (DS) theory
Evidence theory
Theory of belief functions

This formalism was introduced by A. P. Dempster in the 1960’s for
statistical inference, and developed by G. Shafer in the late 1970’s into a
general theory for reasoning under uncertainty.
DS encompasses probability theory and set-membership approaches
such as interval analysis as special cases: it is very general.
Many applications in AI (expert systems, machine learning), engineering
(information fusion, uncertainty quantification, risk analysis), statistics
(statistical estimation and prediction), etc.
Some applications to econometrics. A new research avenue to explore!
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Representation of evidence

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions
Consonant belief functions

2 Dempster’s rule
Definition
Conditioning
Commonality function
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Representation of evidence

Reminder: probability mass functions and measures

Let Ω be a finite set (sample space, universe or discourse,...)
A probability mass function is mapping p : Ω→ [0,1] such that∑

ω∈Ω

p(ω) = 1

The corresponding probability measure is the mapping P : 2Ω → [0,1]
defined by

P(A) =
∑
ω∈A

p(ω) for all A ⊆ Ω
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Representation of evidence

Properties

P(∅) = 0, P(Ω) = 1
Additivity:

∀A,B ⊆ Ω, P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

More generally, for any k ≥ 2 and for any family A1, . . . ,Ak of subsets of
Ω,

P

(
k⋃

i=1

Ai

)
=

∑
∅6=I⊆{1,...,k}

(−1)|I|+1P

(⋂
i∈I

Ai

)
(1)
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Representation of evidence

Interpretations

1 Objective:
Ω is the set of possible outcomes of a random experiment
p(ω) is the limit frequency of outcome ω in a series of repetitions of the
random experiment
P(A) is the limit frequency of the event “ω ∈ A”

2 Subjective:
Ω is the set of possible answers to some question
P(A) is a agent’s degree of belief that the true answer belongs to A
Probability theory is the mainstream formalism for representing uncertainty
in AI

Should degrees of belief be additive?
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Representation of evidence

The case of complete ignorance

To highlight the implications of the additivity assumption, it is useful to
consider the extreme (but frequent) situation of complete ignorance.
How to define a probability measure on Ω in that case?
The only sensible solution is provided by Laplace’s principle of
indifference (PI): “In the absence of any relevant evidence, agents should
distribute their credence (or ’degrees of belief’) equally among all the
possible outcomes under consideration”.
As shown by the following example, this principle leads to paradoxes.
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Representation of evidence

Is there life around Sirius?

Consider the question: “Are there or are there not living beings in orbit
around the star Sirius”?
The set of possibilities can be denoted by Θ = {θ1, θ2}, where

θ1 is the possibility that there is life
θ2 is the possibility that there is not

As we are completely ignorant about this question, the probabilities
should be, according to the PI:

p(θ1) = p(θ2) = 1/2
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Representation of evidence

Is there life around Sirius? (continued)

We could also have considered a refined set of possibilities, such as
Ω = {ω1, ω2, ω3}, where

ω1 corresponds to the possibility that there is life around Sirius
ω2 corresponds to the possibility that there are planets but no life, and
ω3 corresponds to the possibility that there are not even planets

With this new set of probabilities, complete ignorance is represented by

p(ω1) = p(ω2) = p(ω3) = 1/3

But θ1 has the same meaning as ω1 and θ2 has the same meaning as
{ω2, ω3}, so the probability distributions on Θ and Ω are inconsistent.
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Representation of evidence

The solution: relax the additivity property

The Dempster-Shafer theory was introduced to solve such paradoxes.
It replaces the probability measure P by two nonadditive measures: a
belief function and a plausibility function.
The probabilistic formalism is recovered as a special case (known
frequencies or proportions in a population).
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Representation of evidence Mass functions
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Mass functions
Belief and plausibility functions
Consonant belief functions
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Representation of evidence Mass functions

Mass function
Definition

Let Ω be the finite set of possible answers to some question X .
To emphasize the fact that the granularity of Ω is a matter of choice, Ω is
sometimes called the frame of discernment
A mass function is a mapping m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1

and
m(∅) = 0

Every subset A of Ω such that m(A) > 0 is a focal set of m
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Representation of evidence Mass functions

Mass function
Interpretation

In DS theory, a mass function m on Ω is used as a representation of
evidence, i.e., partial information about the question of interest.
It is usually induced by

A mapping Γ from a set S of interpretations (or possible meanings) of the
evidence
Known probabilities on S
Each probability p(s) for s ∈ S is then transferred to subset Γ(s) ⊆ Ω, and

m(A) =
∑

{s∈S:Γ(s)=A}

p(s)

Thierry Denœux Belief functions - Basic concepts Summer 2023 15 / 53



Representation of evidence Mass functions

Example: road scene analysis

Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments
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Representation of evidence Mass functions

Example: road scene analysis (continued)

Let X be the contents of some region in the image, and
Ω = {G,R,T ,O,S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky.
Assume that a lidar sensor (laser telemeter) returns the information
X ∈ {T ,O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).
How to represent this information by a mass function?
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Representation of evidence Mass functions

Formalization

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	
T	
O	

G	
R	

S	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ {T ,O}.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m({T ,O}) = 0.9, m(Ω) = 0.1
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Representation of evidence Mass functions

Special cases

Logical mass function: If the evidence tells us that X ∈ A for sure and nothing
more, for some A ⊆ Ω, then we have a logical mass function mA
such that mA(A) = 1. Example: m{T ,O} denotes the mass
function such that m{T ,O}({T ,O}) = 1.

Vacuous mass function: In particular, mΩ represents total ignorance; it is
called the vacuous mass function

Bayesian mass function: If all focal sets of m are singletons, m is said to be
Bayesian. It is equivalent to a probability mass function.
Example: m({T}) = 0.5, m({O}) = 0.5.

A Dempster-Shafer mass function can thus be seen as
A generalized set
A generalized probability distribution
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Representation of evidence Belief and plausibility functions
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Representation of evidence Belief and plausibility functions

Defiinitions

Given a mass function m on Ω, the corresponding belief and plausibility
functions are mappings from 2Ω to [0,1] defined as follows:

Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A6=∅

m(B) = 1− Bel(A).

Interpretation:
Bel(A) is a measure of the strength with which A is supported by the
available evidence (taking into accounts all subsets B ⊆ A); it is a degree of
belief in A
Pl(A) is a measure of the lack of support given to the complement of A, it is
a degree of lack of belief in A
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Representation of evidence Belief and plausibility functions

Elementary properties

Bel(∅) = Pl(∅) = 0
Bel(Ω) = Pl(Ω) = 1
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

Pl(A) = 1− Bel(A)

Superadditivity of Bel :

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Subadditivity of Pl :

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m is vacuous:
then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then,

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Road scene analysis example

We had Ω = {G,R,T ,O,S} and

m({T ,O}) = 0.9, m(Ω) = 0.1

What are the credibility and the plausibility that the region corresponds or
does not correspond to a tree?

Bel({T}) = 0, Pl({T}) = 0.9 + 0.1 = 1

Bel({T}) = 0, Pl({T}) = 1

But
Bel({T} ∪ {T}) = Bel(Ω) = 1

and
Pl({T} ∪ {T}) = Pl(Ω) = 1.
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Representation of evidence Belief and plausibility functions

Characterization of belief functions

Theorem

Let F : 2Ω → [0,1]. The following two statements are equivalent:
Statement 1 There exists a mass function m : 2Ω → [0,1] such that

F (A) =
∑

B⊆A m(B) for all A ⊆ Ω (i.e., F is a belief function).
Statement 2 Function F has the following 3 properties:

1 F (∅) = 0
2 F (Ω) = 1
3 For any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω,

F

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1F

(⋂
i∈I

Ai

)
(2)

(Property (2) is called complete monotonicity).
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Representation of evidence Belief and plausibility functions

Relations between m, Bel and Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
Thanks to the following equations, given any one of these functions, we
can recover the other two: for all A ⊆ Ω,

Bel(A) =
∑
B⊆A

m(B)

Pl(A) = 1− Bel(A)

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m, Bel et Pl are thus three equivalent representations of a piece of
evidence.
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Representation of evidence Consonant belief functions
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Representation of evidence Consonant belief functions

Definition and theorem

Consonant mass functions are an important special case.

Definition (Consonant mass function)

A mass function m is consonant iff its focal sets are nested, i.e., for any two
focal set Ai and Aj , Ai ⊆ Aj or Aj ⊆ Ai

Theorem
Let m be a mass function, and let Bel and Pl be the corresponding belief and
plausibility functions. The following statements are equivalent:

1 m is consonant
2 For any A,B ⊆ Ω, Bel(A ∩ B) = min [Bel(A),Bel(B)]

3 For any A,B ⊆ Ω, Pl(A ∪ B) = max [Pl(A),Pl(B)]

4 For any A ⊆ Ω, Pl(A) = maxω∈A pl(ω), where pl(ω) = Pl({ω})

(Function pl : Ω→ [0,1] is called the contour function).
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Representation of evidence Consonant belief functions

Proof of 1⇒ 2

Let m be a consonant mass function with focal sets A1 ⊆ A2 ⊆ . . . ⊆ Ar .
For any A,B ⊆ Ω, let i1 and i2 be the largest indices such that Ai ⊆ A and
Ai ⊆ B, respectively.
Then, Ai ⊆ A ∩ B iff i ≤ min(i1, i2) and

Bel(A ∩ B) =

min(i1,i2)∑
i=1

m(Ai )

= min

(
i1∑

i=1

m(Ai ),

i2∑
i=1

m(Ai )

)
= min(Bel(A),Bel(B)).
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Representation of evidence Consonant belief functions

Proof of 2⇒ 3

Now, from the equality A ∪ B = A ∩ B, we have

Pl(A ∪ B) = 1− Bel(A ∪ B)

= 1− Bel(A ∩ B)

= 1−min(Bel(A),Bel(B))

= max(1− Bel(A),1− Bel(B))

= max(Pl(A),Pl(B)).
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Representation of evidence Consonant belief functions

Proof of 3⇒ 4

Assume that Pl(A ∪ B) = max(Pl(A),Pl(B)) for all A,B ⊆ Ω.
Let Πn be the following property: Pl(A) = maxω∈A pl(ω) for all A ⊆ Ω such
that |A| ≤ n.
We prove Πn for all n ≥ 0 by induction:

Π1 and Π2 trivially true.
Assume Πn is true and let A ⊆ Ω such that |A| = n + 1. We can write
A = B ∪ {ω0} with |B| = n. Consequently,

Pl(A) = max(Pl(B), pl(ω0))

= max(max
ω∈B

pl(ω), pl(ω0))

= max
ω∈A

pl(ω)
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Representation of evidence Consonant belief functions

Proof of 4⇒ 1 I

ω1	 ω2	 ω3	 ω4	

A1	
A2	

A3	
A4=Ω

Let Pl be a plausibility function verifying Pl(A) = maxω∈A pl(ω) for all A.
Let Ω = {ω1, . . . , ωn} be the frame of discernment with elements arranged
by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn)

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Let m denote the following consonant mass function:

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1
m(Ω) = pl(ωn).
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Representation of evidence Consonant belief functions

Example

For instance, for the following contour function defined on the frame
Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

the corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Representation of evidence Consonant belief functions

Proof of 4⇒ 1 (continued)

Let Plm be the plausibility function induced by m.
For any subset A of Ω, let iA = min{1 ≤ i ≤ n : ωi ∈ A}.
Ai ∩ A 6= ∅ iff i ≥ iA.
Consequently,

Plm(A) =
n∑

i=iA

m(Ai )

= pl(ωiA )− pl(ωiA+1) + pl(ωiA+1)− pl(ωiA+2) + . . .− pl(ωn) + pl(ωn)

= pl(ωiA )

= max
ω∈A

pl(ω) = Pl(A),

i.e., Plm = Pl .
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Dempster’s rule Definition
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Dempster’s rule Definition

Road scene example continued

Variable X was defined as the type of object in some region of the image,
and the frame was Ω = {G,R,T ,O,S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky
A lidar sensor gave us the following mass function:

m1({T ,O}) = 0.9, m1(Ω) = 0.1

Now, assume that a camera returns the mass function:

m2({G,T}) = 0.8, m2(Ω) = 0.2

How to combine these two pieces of evidence?
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Dempster’s rule Definition

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
O	

G	

R	
S	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
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Dempster’s rule Definition

Computation

m1\m2 {T ,G} Ω
(0.8) (0.2)

{O,T} (0.9) {T} (0.72) {O,T} (0.18)
Ω (0.1) {T ,G} (0.08) Ω (0.02)

We then get the following combined mass function,

m({T}) = 0.72
m({O,T}) = 0.18
m({T ,G}) = 0.08

m(Ω) = 0.02
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Dempster’s rule Definition

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs
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Dempster’s rule Definition

Computation

m1\m2 {G,R} Ω
(0.8) (0.2)

{O,T} (0.9) ∅ (0.72) {O,T} (0.18)
Ω (0.1) {G,R} (0.08) Ω (0.02)

We then get the following combined mass function,

m(∅) = 0
m({O,T}) = 0.18/0.28 = 9/14
m({G,R}) = 0.08/0.28 = 4/14

m(Ω) = 0.02/0.28 = 1/14
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Dempster’s rule Definition

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅ (3)

and (m1 ⊕m2)(∅) = 0
m1 ⊕m2 is called the orthogonal sum of m1 and m2

This rule can be used to combine mass functions induced by
independent pieces of evidence
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Dempster’s rule Definition

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6 ≈ 0.2833
(m1 ⊕m2)({b}) = 0.2/0.6 = 1/3

(m1 ⊕m2)({a,b}) = 0.08/0.6 ≈ 0.1333
(m1 ⊕m2)({c}) = 0.15/0.6 = 0.25.
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Dempster’s rule Definition

Properties

1 Commutativity, associativity. Neutral element: m?

2 Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

3 If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Dempster’s rule Conditioning
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Dempster’s rule Conditioning

Dempster’s rule conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mB. Notation:

m ⊕mB = m(· | B)

We thus have m(A | B) = 0 for any A not included in B and, for any
A ⊆ B,

m(A | B) = (1− κ)−1
∑

C∩B=A

m(C), (4)

where the degree of conflict κ is

κ =
∑

C∩B=∅

m(C) = 1−
∑

C∩B 6=∅

m(C) = 1− Pl(B).
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Dempster’s rule Conditioning

Conditional plausibility function

Proposition

The plausibility function Pl(·|B) induced by m(·|B) is given by

Pl(A | B) =
Pl(A ∩ B)

Pl(B)

Proof: We have

Pl(A | B) =
∑

{C:C∩A 6=∅}

m(C|B)

= Pl(B)−1
∑

{C:C∩A 6=∅}

∑
{D:D∩B=C}

m(D)

= Pl(B)−1
∑

{D:D∩B∩A6=∅}

m(D) =
Pl(A ∩ B)

Pl(B)

If Pl is a probability measure, Pl(· | B) is, thus, the conditional probability
measure given B: Dempster’s rule of combination thus extends Bayesian
conditioning.
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Dempster’s rule Commonality function
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Dempster’s rule Commonality function

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B) (5)

Q is another equivalent representation of a belief function.
Properties: Q(∅) = 1 and Q(Ω) = m(Ω)
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Dempster’s rule Commonality function

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have (Q1 ⊕Q2)(∅) = 1 and, for all non empty subset A of Ω,

(Q1 ⊕Q2)(A) = (1− κ)−1Q1(A) ·Q2(A).
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Dempster’s rule Commonality function

Proof

(Q1 ⊕Q2)(A) =
∑
B⊇A

(m1 ⊕m2)(B)

= (1− κ)−1
∑
B⊇A

∑
C∩D=B

m1(C)m2(D)

= (1− κ)−1
∑

C∩D⊇A

m1(C)m2(D)

= (1− κ)−1
∑

C⊇A,D⊇A

m1(C)m2(D)

= (1− κ)−1

∑
C⊇A

m1(C)

∑
D⊇A

m2(D)


= (1− κ)−1Q1(A) ·Q2(A).
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Dempster’s rule Commonality function

Product rule for commonality and contour functions

Using (5) with A = ∅, we get∑
∅6=B⊆Ω

(−1)|B|Q(B) = −Q(∅) = −1, (6)

which makes it possible to compute the commonality function once
commonality numbers are determined up to some multiplicative constant.
(See following example)
Given two mass functions m1 and m2, we can thus combine them either
using (3), or by converting them to commonality functions, multiplying
them pointwise, and computing the corresponding mass function using
(5).
In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 = (1− κ)−1pl1pl2.
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Dempster’s rule Commonality function

Example (cf. Slide 43)

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
Q1(A) 1 0.5 0.7 0.2 0.3 0.3 0 0
Q2(A) 1 0.5 0.4 0.4 0.5 0 0 0

Q1(A)Q2(A) 1 0.25 0.28 0.08 0.15 0 0 0

(1− κ)−1 = −1/(−0.25− 0.28− 0.15 + 0.08) = 1.6667
⇒ κ = 1− (1/1.6667) = 0.4

A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
(Q1 ⊕Q2)(A) 1 0.4167 0.4667 0.1333 0.25 0 0 0
(m1 ⊕m2)(A) 0 0.2833 0.3333 0.1333 0.25 0 0 0
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