Theory of Belief Functions: Application to machine learning and statistical inference
 Lecture 1: basic concepts

Thierry Denœux

Summer 2023

Outline of the course I

- Course homepage:

```
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/bf
```

- Roadmap:
(1) Basic notions:
- Belief functions on finite sets. Dempster's rule (lecture + exercises)
- Decision making (lecture + exercises)
(2) First applications: classification and statistical inference
- "A k-nearest neighbor classification rule based on Dempster-Shafer theory" (paper reading + exercises in R)
- "A neural network classifier based on Dempster-Shafer theory" (paper reading + exercises in R)
- "Constructing belief functions from sample data using multinomial confidence regions" (paper reading + exercises in R)
(3) Advanced concepts:
- Random sets and belief functions in a general framework (lecture + exercises)
- Possibility and Random fuzzy sets
- "Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy, sets: general framework and practical models" (paper reading + exercises)

Outline of the course II

(4) Statistical and ML applications:

- Statistical prediction using belief functions: application to linear and logistic regression
- "Prediction of future observations using belief functions: a likelihood-based approach" (paper reading + exercises)
- "Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets: the ENNreg model" (paper reading + exercises)
(5) Statistical inference and learning from uncertain data:
- "Maximum likelihood estimation from Uncertain Data in the Belief Function Framework" (paper reading + exercises)
- "Parametric Classification with Soft Labels using the Evidential EM Algorithm" (paper reading + exercises)
(6) Project
(7) Project presentation

What we will study in this course

- A mathematical formalism called
- Dempster-Shafer (DS) theory
- Evidence theory
- Theory of belief functions
- This formalism was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches such as interval analysis as special cases: it is very general.
- Many applications in AI (expert systems, machine learning), engineering (information fusion, uncertainty quantification, risk analysis), statistics (statistical estimation and prediction), etc.
- Some applications to econometrics. A new research avenue to explore!

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Reminder: probability mass functions and measures

- Let Ω be a finite set (sample space, universe or discourse,...)
- A probability mass function is mapping $p: \Omega \rightarrow[0,1]$ such that

$$
\sum_{\omega \in \Omega} p(\omega)=1
$$

- The corresponding probability measure is the mapping $P: 2^{\Omega} \rightarrow[0,1]$ defined by

$$
P(A)=\sum_{\omega \in A} p(\omega) \quad \text { for all } A \subseteq \Omega
$$

Properties

- $P(\emptyset)=0, P(\Omega)=1$
- Additivity:

$$
\forall A, B \subseteq \Omega, \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- More generally, for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} of subsets of Ω,

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{k} A_{i}\right)=\sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|/|+1} P\left(\bigcap_{i \in I} A_{i}\right) \tag{1}
\end{equation*}
$$

Interpretations

(1) Objective:

- Ω is the set of possible outcomes of a random experiment
- $p(\omega)$ is the limit frequency of outcome ω in a series of repetitions of the random experiment
- $P(A)$ is the limit frequency of the event " $\omega \in A$ "
(2) Subjective:
- Ω is the set of possible answers to some question
- $P(A)$ is a agent's degree of belief that the true answer belongs to A
- Probability theory is the mainstream formalism for representing uncertainty in Al

Should degrees of belief be additive?

The case of complete ignorance

- To highlight the implications of the additivity assumption, it is useful to consider the extreme (but frequent) situation of complete ignorance.
- How to define a probability measure on Ω in that case?
- The only sensible solution is provided by Laplace's principle of indifference (PI): "In the absence of any relevant evidence, agents should distribute their credence (or 'degrees of belief') equally among all the possible outcomes under consideration".
- As shown by the following example, this principle leads to paradoxes.

Is there life around Sirius?

- Consider the question: "Are there or are there not living beings in orbit around the star Sirius"?
- The set of possibilities can be denoted by $\Theta=\left\{\theta_{1}, \theta_{2}\right\}$, where
- θ_{1} is the possibility that there is life
- θ_{2} is the possibility that there is not
- As we are completely ignorant about this question, the probabilities should be, according to the PI:

$$
p\left(\theta_{1}\right)=p\left(\theta_{2}\right)=1 / 2
$$

Is there life around Sirius? (continued)

- We could also have considered a refined set of possibilities, such as $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, where
- ω_{1} corresponds to the possibility that there is life around Sirius
- ω_{2} corresponds to the possibility that there are planets but no life, and
- ω_{3} corresponds to the possibility that there are not even planets
- With this new set of probabilities, complete ignorance is represented by

$$
p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=p\left(\omega_{3}\right)=1 / 3
$$

- But θ_{1} has the same meaning as ω_{1} and θ_{2} has the same meaning as $\left\{\omega_{2}, \omega_{3}\right\}$, so the probability distributions on Θ and Ω are inconsistent.

The solution: relax the additivity property

- The Dempster-Shafer theory was introduced to solve such paradoxes.
- It replaces the probability measure P by two nonadditive measures: a belief function and a plausibility function.
- The probabilistic formalism is recovered as a special case (known frequencies or proportions in a population).

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Mass function

Definition

- Let Ω be the finite set of possible answers to some question X.
- To emphasize the fact that the granularity of Ω is a matter of choice, Ω is sometimes called the frame of discernment
- A mass function is a mapping $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

and

$$
m(\emptyset)=0
$$

- Every subset A of Ω such that $m(A)>0$ is a focal set of m

Mass function

Interpretation

- In DS theory, a mass function m on Ω is used as a representation of evidence, i.e., partial information about the question of interest.
- It is usually induced by
- A mapping Γ from a set S of interpretations (or possible meanings) of the evidence
- Known probabilities on S
- Each probability $p(s)$ for $s \in S$ is then transferred to subset $\Gamma(s) \subseteq \Omega$, and

$$
m(A)=\sum_{\{s \in S: \Gamma(s)=A\}} p(s)
$$

Example: road scene analysis

Example: road scene analysis (continued)

- Let X be the contents of some region in the image, and $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information $X \in\{T, O\}$, but we there is a probability $p=0.1$ that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

Formalization

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in\{T, O\}$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function m on Ω, such that

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

Special cases

Logical mass function: If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_{A} such that $m_{A}(A)=1$. Example: $m_{\{T, O\}}$ denotes the mass function such that $m_{\{T, O\}}(\{T, O\})=1$.
Vacuous mass function: In particular, m_{Ω} represents total ignorance; it is called the vacuous mass function
Bayesian mass function: If all focal sets of m are singletons, m is said to be
Bayesian. It is equivalent to a probability mass function.
Example: $m(\{T\})=0.5, m(\{O\})=0.5$.
A Dempster-Shafer mass function can thus be seen as

- A generalized set
- A generalized probability distribution

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Defiinitions

- Given a mass function m on Ω, the corresponding belief and plausibility functions are mappings from 2^{Ω} to $[0,1]$ defined as follows:

$$
\begin{gathered}
B e l(A)=\sum_{B \subseteq A} m(B) \\
P l(A)=\sum_{B \cap A \neq \emptyset} m(B)=1-\operatorname{Bel}(\bar{A}) .
\end{gathered}
$$

- Interpretation:
- $\operatorname{Bel}(A)$ is a measure of the strength with which A is supported by the available evidence (taking into accounts all subsets $B \subseteq A$); it is a degree of belief in A
- $P I(A)$ is a measure of the lack of support given to the complement of A, it is a degree of lack of belief in \bar{A}

Elementary properties

- $\operatorname{Bel}(\emptyset)=P I(\emptyset)=0$
- $\operatorname{Bel}(\Omega)=\operatorname{Pl}(\Omega)=1$
- For all $A \subseteq \Omega$,

$$
\begin{aligned}
& \operatorname{Bel}(A)=1-P l(\bar{A}) \\
& P I(A)=1-\operatorname{Bel}(\bar{A})
\end{aligned}
$$

- Superadditivity of Bel:

$$
\operatorname{Bel}(A \cup B) \geq \operatorname{Bel}(A)+\operatorname{Bel}(B)-\operatorname{Bel}(A \cap B)
$$

- Subadditivity of PI:

$$
P l(A \cup B) \leq P l(A)+P l(B)-P l(A \cap B)
$$

Two-dimensional representation

- The uncertainty about a proposition A is represented by two numbers: $\operatorname{Bel}(A)$ and $P l(A)$, with $\operatorname{Bel}(A) \leq P I(A)$
- The intervals $[\operatorname{Bel}(A), P I(A)]$ have maximum length when m is vacuous: then, $\operatorname{Bel}(A)=0$ for all $A \neq \Omega$, and $P I(A)=1$ for all $A \neq \emptyset$.
- The intervals $[\operatorname{Bel}(A), P I(A)]$ have minimum length when m is Bayesian. Then,

$$
\operatorname{Be} I(A)=P I(A)=\sum_{\omega \in A} m(\{\omega\})
$$

for all A, and $B e l$ is a probability measure.

Road scene analysis example

- We had $\Omega=\{G, R, T, O, S\}$ and

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

- What are the credibility and the plausibility that the region corresponds or does not correspond to a tree?

$$
\begin{gathered}
\operatorname{Be}(\{T\})=0, \quad P l(\{T\})=0.9+0.1=1 \\
\operatorname{Bel}(\overline{\{T\}})=0, \quad P l(\overline{\{T\}})=1
\end{gathered}
$$

But

$$
\operatorname{Bel}(\{T\} \cup \overline{\{T\}})=\operatorname{Bel}(\Omega)=1
$$

and

$$
P I(\{T\} \cup \overline{\{T\}})=P I(\Omega)=1 .
$$

Characterization of belief functions

Theorem

Let $F: 2^{\Omega} \rightarrow[0,1]$. The following two statements are equivalent:
Statement 1 There exists a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that $F(A)=\sum_{B \subseteq A} m(B)$ for all $A \subseteq \Omega$ (i.e., F is a belief function).
Statement 2 Function F has the following 3 properties:
(1) $F(\emptyset)=0$
(2) $F(\Omega)=1$
(3) For any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω},

$$
\begin{equation*}
F\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} F\left(\bigcap_{i \in I} A_{i}\right) \tag{2}
\end{equation*}
$$

(Property (2) is called complete monotonicity).

Relations between $m, B e l$ and $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions
- Thanks to the following equations, given any one of these functions, we can recover the other two: for all $A \subseteq \Omega$,

$$
\begin{aligned}
\operatorname{Bel}(A) & =\sum_{B \subseteq A} m(B) \\
P l(A) & =1-\operatorname{Bel}(\bar{A}) \\
\operatorname{Bel}(A) & =1-P I(\bar{A}) \\
m(A) & =\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B)
\end{aligned}
$$

- $m, B e l$ et $P l$ are thus three equivalent representations of a piece of evidence.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Definition and theorem

Consonant mass functions are an important special case.

Definition (Consonant mass function)

A mass function m is consonant iff its focal sets are nested, i.e., for any two focal set A_{i} and $A_{j}, A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$

Theorem

Let m be a mass function, and let Bel and PI be the corresponding belief and plausibility functions. The following statements are equivalent:
(1) m is consonant
(2) For any $A, B \subseteq \Omega, \operatorname{Bel}(A \cap B)=\min [\operatorname{Bel}(A), \operatorname{Bel}(B)]$
(3) For any $A, B \subseteq \Omega, P l(A \cup B)=\max [P I(A), P l(B)]$
(9) For any $A \subseteq \Omega, P l(A)=\max _{\omega \in A} p l(\omega)$, where $p l(\omega)=P I(\{\omega\})$
(Function $\mathrm{pl}: \Omega \rightarrow[0,1]$ is called the contour function).

Proof of $1 \Rightarrow 2$

- Let m be a consonant mass function with focal sets $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{r}$.
- For any $A, B \subseteq \Omega$, let i_{1} and i_{2} be the largest indices such that $A_{i} \subseteq A$ and $A_{i} \subseteq B$, respectively.
- Then, $A_{i} \subseteq A \cap B$ iff $i \leq \min \left(i_{1}, i_{2}\right)$ and

$$
\begin{aligned}
\operatorname{Bel}(A \cap B) & =\sum_{i=1}^{\min \left(i_{1}, i_{2}\right)} m\left(A_{i}\right) \\
& =\min \left(\sum_{i=1}^{i_{1}} m\left(A_{i}\right), \sum_{i=1}^{i_{2}} m\left(A_{i}\right)\right) \\
& =\min (\operatorname{Bel}(A), \operatorname{Bel}(B)) .
\end{aligned}
$$

Proof of $2 \Rightarrow 3$

Now, from the equality $\overline{A \cup B}=\bar{A} \cap \bar{B}$, we have

$$
\begin{aligned}
P l(A \cup B) & =1-\operatorname{Bel}(\overline{A \cup B}) \\
& =1-\operatorname{Bel}(\bar{A} \cap \bar{B}) \\
& =1-\min (\operatorname{Bel}(\bar{A}), \operatorname{Bel}(\bar{B})) \\
& =\max (1-\operatorname{Bel}(\bar{A}), 1-\operatorname{Bel}(\bar{B})) \\
& =\max (P l(A), P l(B)) .
\end{aligned}
$$

Proof of $3 \Rightarrow 4$

- Assume that $P l(A \cup B)=\max (P l(A), P l(B))$ for all $A, B \subseteq \Omega$.
- Let Π_{n} be the following property: $P I(A)=\max _{\omega \in A} p l(\omega)$ for all $A \subseteq \Omega$ such that $|A| \leq n$.
- We prove Π_{n} for all $n \geq 0$ by induction:
- Π_{1} and Π_{2} trivially true.
- Assume Π_{n} is true and let $A \subseteq \Omega$ such that $|A|=n+1$. We can write $A=B \cup\left\{\omega_{0}\right\}$ with $|B|=n$. Consequently,

$$
\begin{aligned}
P l(A) & =\max \left(P l(B), p l\left(\omega_{0}\right)\right) \\
& =\max \left(\max _{\omega \in B} p l(\omega), p l\left(\omega_{0}\right)\right) \\
& =\max _{\omega \in A} p l(\omega)
\end{aligned}
$$

Proof of $4 \Rightarrow 1$ I

- Let $P l$ be a plausibility function verifying $P I(A)=\max _{\omega \in A} p l(\omega)$ for all A.
- Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the frame of discernment with elements arranged by decreasing order of plausibility, i.e.,

$$
1=p \prime\left(\omega_{1}\right) \geq p \prime\left(\omega_{2}\right) \geq \ldots \geq p \prime\left(\omega_{n}\right)
$$

and let A_{i} denote the set $\left\{\omega_{1}, \ldots, \omega_{i}\right\}$, for $1 \leq i \leq n$.

- Let m denote the following consonant mass function:

$$
\begin{aligned}
m\left(A_{i}\right) & =p l\left(\omega_{i}\right)-p l\left(\omega_{i+1}\right), \quad 1 \leq i \leq n-1 \\
m(\Omega) & =p l\left(\omega_{n}\right) .
\end{aligned}
$$

Example

For instance, for the following contour function defined on the frame $\Omega=\{a, b, c, d\}$:

ω	a	b	c	d
$p l(\omega)$	0.3	0.5	1	0.7

the corresponding mass function is

$$
\begin{aligned}
m(\{c\}) & =1-0.7=0.3 \\
m(\{c, d\}) & =0.7-0.5=0.2 \\
m(\{c, d, b\}) & =0.5-0.3=0.2 \\
m(\{c, d, b, a\}) & =0.3
\end{aligned}
$$

Proof of $4 \Rightarrow 1$ (continued)

- Let $P I_{m}$ be the plausibility function induced by m.
- For any subset A of Ω, let $i_{A}=\min \left\{1 \leq i \leq n: \omega_{i} \in A\right\}$.
- $A_{i} \cap A \neq \emptyset$ iff $i \geq i_{A}$.
- Consequently,

$$
\begin{aligned}
P I_{m}(A) & =\sum_{i=i_{A}}^{n} m\left(A_{i}\right) \\
& =p l\left(\omega_{i_{A}}\right)-p l\left(\omega_{i_{A}+1}\right)+p l\left(\omega_{i_{A}+1}\right)-p l\left(\omega_{i_{A}+2}\right)+\ldots-p l\left(\omega_{n}\right)+p l\left(\omega_{n}\right) \\
& =p l\left(\omega_{i_{A}}\right) \\
& =\max _{\omega \in A} p I(\omega)=P I(A),
\end{aligned}
$$

i.e., $P I_{m}=P I$.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$
m_{1}(\{T, O\})=0.9, \quad m_{1}(\Omega)=0.1
$$

- Now, assume that a camera returns the mass function:

$$
m_{2}(\{G, T\})=0.8, \quad m_{2}(\Omega)=0.2
$$

- How to combine these two pieces of evidence?

Analysis

- If interpretations $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ both hold, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
- If the two pieces of evidence are independent, then the probability that s_{1} and s_{2} both hold is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$

Computation

$m_{1} \backslash m_{2}$	$\{T, G\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\{T\}(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{T, G\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\{T\}) & =0.72 \\
m(\{O, T\}) & =0.18 \\
m(\{T, G\}) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that s_{1} and s_{2} cannot hold simultaneously
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs

Computation

$m_{1} \backslash m_{2}$	$\{G, R\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\emptyset(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{G, R\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(\{O, T\}) & =0.18 / 0.28=9 / 14 \\
m(\{G, R\}) & =0.08 / 0.28=4 / 14 \\
m(\Omega) & =0.02 / 0.28=1 / 14
\end{aligned}
$$

Dempster's rule

- Let m_{1} and m_{2} be two mass functions and

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict

- If $\kappa<1$, then m_{1} and m_{2} can be combined as

$$
\begin{equation*}
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset \tag{3}
\end{equation*}
$$

and $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$

- $m_{1} \oplus m_{2}$ is called the orthogonal sum of m_{1} and m_{2}
- This rule can be used to combine mass functions induced by independent pieces of evidence

Another example

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$m_{1}(A)$	0	0	0.5	0.2	0	0.3	0	0
$m_{2}(A)$	0	0.1	0	0.4	0.5	0	0	0

		m_{2}		
		$\{a\}, 0.1$	$\{a, b\}, 0.4$	$\{c\}, 0.5$
m_{1}	$\{b\}, 0.5$	$\emptyset, 0.05$	$\{b\}, 0.2$	$\emptyset, 0.25$
	$\{a, 0.2$	$\{a\}, 0.02$	$\{a, b\}, 0.08$	$\emptyset, 0.1$
	$\{a, c\}, 0.3$	$\{a\}, 0.03$	$\{a\}, 0.12$	$\{c\}, 0.15$

The degree of conflict is $\kappa=0.05+0.25+0.1=0.4$. The combined mass function is

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a\}) & =(0.02+0.03+0.12) / 0.6=0.17 / 0.6 \approx 0.2833 \\
\left(m_{1} \oplus m_{2}\right)(\{b\}) & =0.2 / 0.6=1 / 3 \\
\left(m_{1} \oplus m_{2}\right)(\{a, b\}) & =0.08 / 0.6 \approx 0.1333 \\
\left(m_{1} \oplus m_{2}\right)(\{c\}) & =0.15 / 0.6=0.25 .
\end{aligned}
$$

Properties

(1) Commutativity, associativity. Neutral element: $m_{\text {? }}$
(2) Generalization of intersection: if m_{A} and m_{B} are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{A} \oplus m_{B}=m_{A \cap B}
$$

(3) If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Dempster's rule conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function m_{B}. Notation:

$$
m \oplus m_{B}=m(\cdot \mid B)
$$

- We thus have $m(A \mid B)=0$ for any A not included in B and, for any $A \subseteq B$,

$$
\begin{equation*}
m(A \mid B)=(1-\kappa)^{-1} \sum_{C \cap B=A} m(C), \tag{4}
\end{equation*}
$$

where the degree of conflict κ is

$$
\kappa=\sum_{C \cap B=\emptyset} m(C)=1-\sum_{C \cap B \neq \emptyset} m(C)=1-P /(B) .
$$

Conditional plausibility function

Proposition

The plausibility function $P I(\cdot \mid B)$ induced by $m(\cdot \mid B)$ is given by

$$
P I(A \mid B)=\frac{P l(A \cap B)}{P l(B)}
$$

Proof: We have

$$
\begin{aligned}
P I(A \mid B) & =\sum_{\{C: C \cap A \neq \emptyset\}} m(C \mid B) \\
& =P I(B)^{-1} \sum_{\{C: C \cap A \neq \emptyset\}} \sum_{\{D: D \cap B=C\}} m(D) \\
& =P I(B)^{-1} \sum_{\{D: D \cap B \cap A \neq \emptyset\}} m(D)=\frac{P I(A \cap B)}{P I(B)}
\end{aligned}
$$

If $P l$ is a probability measure, $P I(\cdot \mid B)$ is, thus, the conditional probability measure given B : Dempster's rule of combination thus extends Bayesian conditioning.

Outline

(1) Representation of evidence

- Mass functions
- Belief and plausibility functions
- Consonant belief functions
(2) Dempster's rule
- Definition
- Conditioning
- Commonality function

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
\begin{equation*}
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B) \tag{5}
\end{equation*}
$$

- Q is another equivalent representation of a belief function.
- Properties: $Q(\emptyset)=1$ and $Q(\Omega)=m(\Omega)$

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let $Q_{1} \oplus Q_{2}$ be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have $\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1$ and, for all non empty subset A of Ω,

$$
\left(Q_{1} \oplus Q_{2}\right)(A)=(1-\kappa)^{-1} Q_{1}(A) \cdot Q_{2}(A)
$$

Proof

$$
\begin{aligned}
\left(Q_{1} \oplus Q_{2}\right)(A) & =\sum_{B \supseteq A}\left(m_{1} \oplus m_{2}\right)(B) \\
& =(1-\kappa)^{-1} \sum_{B \supseteq A} \sum_{C \cap D=B} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1} \sum_{C \cap D \supseteq A} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1} \sum_{C \supseteq A, D \supseteq A} m_{1}(C) m_{2}(D) \\
& =(1-\kappa)^{-1}\left(\sum_{C \supseteq A} m_{1}(C)\right)\left(\sum_{D \supseteq A} m_{2}(D)\right) \\
& =(1-\kappa)^{-1} Q_{1}(A) \cdot Q_{2}(A) .
\end{aligned}
$$

Product rule for commonality and contour functions

- Using (5) with $A=\emptyset$, we get

$$
\begin{equation*}
\sum_{\emptyset \neq B \subseteq \Omega}(-1)^{|B|} Q(B)=-Q(\emptyset)=-1 \tag{6}
\end{equation*}
$$

which makes it possible to compute the commonality function once commonality numbers are determined up to some multiplicative constant. (See following example)

- Given two mass functions m_{1} and m_{2}, we can thus combine them either using (3), or by converting them to commonality functions, multiplying them pointwise, and computing the corresponding mass function using (5).
- In particular, $p /(\omega)=Q(\{\omega\})$. Consequently,

$$
p l_{1} \oplus p l_{2}=(1-\kappa)^{-1} p l_{1} p l_{2} .
$$

Example (cf. Slide 43)

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$Q_{1}(A)$	1	0.5	0.7	0.2	0.3	0.3	0	0
$Q_{2}(A)$	1	0.5	0.4	0.4	0.5	0	0	0
$Q_{1}(A) Q_{2}(A)$	1	0.25	0.28	0.08	0.15	0	0	0

$$
\begin{aligned}
(1-\kappa)^{-1}=-1 /(-0.25-0.28-0.15+0.08) & =1.6667 \\
\Rightarrow & \kappa=1-(1 / 1.6667)=0.4
\end{aligned}
$$

A	\emptyset	$\{a\}$	$\{b\}$	$\{a, b\}$	$\{c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
$\left(Q_{1} \oplus Q_{2}\right)(A)$	1	0.4167	0.4667	0.1333	0.25	0	0	0
$\left(m_{1} \oplus m_{2}\right)(A)$	0	0.2833	0.3333	0.1333	0.25	0	0	0

