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Decision analysis

Example of decision problem under uncertainty

Act Good Economic Poor Economic
(Purchase) Conditions Conditions

Apartment building 50,000 30,000
Office building 100,000 -40,000

Warehouse 30,000 10,000
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Decision analysis

Formal framework
Acts, outcomes, states of nature

A decision problem can be seen as a situation in which a decision-maker
(DM) has to choose a course of action (an act) in some set
F = {f1, . . . , fn}
An act may have different consequences (outcomes), depending on the
state of nature
Denoting by Ω = {ω1, . . . , ωr} the set of states of nature and by C the set
of consequences (or outcomes), an act can be formalized as a mapping f
from Ω to C
In this lecture, the three sets Ω, C and F will be assumed to be finite
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Decision analysis

Formal framework
Utilities

The desirability of the consequences can often be modeled by a
numerical utility function u : C → R, which assigns a numerical value to
each consequence
The higher this value, the more desirable is the consequence for the DM
In some problems, the consequences can be evaluated in terms of
monetary value. The utilities can then be defined as the payoffs, or a
function thereof
If the actions are indexed by i and the states of nature by j , we will denote
by uij the quantity u[fi (ωj )]

The n × r matrix U = (uij ) will be called a payoff or utility matrix
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Decision analysis

Payoff matrix

Act Good Economic Poor Economic
(Purchase) Conditions (ω1) Conditions (ω2)

Apartment building (f1) 50,000 30,000
Office building (f2) 100,000 -40,000

Warehouse (f3) 30,000 10,000
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Decision analysis

Formal framework
Preferences

If the true state of nature ω is known, the desirability of an act f can be
deduced from that of its consequence f (ω)

Typically, the state of nature is unknown. Based on partial information, it
is usually assumed that the DM can express preferences among acts,
which may be represented mathematically by a preference relation < on
F
This relation is interpreted as follows: given two acts f and g, f < g
means that f is found by the DM to be at least as desirable as g
We also define

The strict preference relation as f � g iff f < g and not(g < f ) (meaning that
f is strictly more desirable than g) and
The indifference relation f ∼ g iff f < g and g < f (meaning that f and g are
equally desirable)
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Decision analysis

Decision problems

The decision problem can be formalized as building a preference relation
among acts, from a utility matrix and some description of uncertainty, and
finding the maximal elements of this relation
Depending on the nature of the available information, different decision
problems arise:

1 Decision-making under ignorance
2 Decision-making with probabilities
3 Decision-making with belief functions
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Decision analysis Decision-making under complete ignorance

Problem and non-domination principle

We assume that the DM is totally ignorant of the state of nature: all the
information given to the DM is the utility matrix U
A act fi is said to be dominated by fk if the outcomes of fk are at least as
desirable as those of fi for all states, and strictly more desirable for at
least one state

∀j , ukj ≥ uij and ∃j , ukj > uij

Non-domination principle: an act cannot be chosen if it is dominated by
another one
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Decision analysis Decision-making under complete ignorance

Example of a dominated act

Act Good Economic Poor Economic
(Purchase) Conditions (ω1) Conditions (ω2)

Apartment building (f1) 50,000 30,000
Office building (f2) 100,000 -40,000

Warehouse (f3) 30,000 10,000
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Decision analysis Decision-making under complete ignorance

Criteria for rational choice

After all dominated acts have been removed, there remains the problem
of ordering them by desirability, and of finding the set of most desirable
acts
Several criteria of “rational choice” have been proposed to derive a
preference relation over acts, including:

1 Maximax criterion
fi � fk iff max

j
uij ≥ max

j
ukj .

2 Maximin (Wald) criterion

fi � fk iff min
j

uij ≥ min
j

ukj .

3 Laplace criterion

fi � fk iff
1
r

∑
j

uij ≥
1
r

∑
j

ukj .
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Decision analysis Decision-making under complete ignorance

Example

Act ω1 ω2 ave max min
Apartment (f1) 50,000 30,000 40,000 50,000 30,000

Office (f2) 100,000 -40,000 30,000 100,000 -40,000
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Decision analysis Decision-making under complete ignorance

Hurwicz criterion

Hurwicz criterion: fi � fk iff

αmin
j

uij + (1− α) max
j

uij ≥ αmin
j

ukj + (1− α) max
j

ukj

where α is a parameter in [0,1], called the pessimism index
Boils down to

the maximax criterion if α = 0
the maximin criterion if α = 1

α describes the DM’s attitude toward ambiguity.
Formal justification given by Arrow and Hurwicz (1972).
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Decision analysis Decision-making with probabilities

Lottery

Let us now consider the situation where uncertainty about the state of
nature is quantified by a probability distribution π on Ω.
These probabilities can be objective (decision under risk) or subjective.
An act f : Ω→ C induces a probability distribution pf on the set C of
consequences (assumed to be finite), called a lottery:

∀c ∈ C, pf (c) =
∑

{ω:f (ω)=c}

π(ω).
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Decision analysis Decision-making with probabilities

Maximum Expected Utility principle

Given a utility function u : C → R, the expected utility for a lottery p is

Ep(u) =
∑
c∈C

u(c)p(c).

Maximum Expected Utility (MEU) principle: a lottery pi is more desirable
than a lottery pk if it has a higher expected utility:

pi � pk ⇔ Epi (u) ≥ Epk (u).

The MEU principle was first axiomatized by von Neumann and
Morgenstern (1944).
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Decision analysis Decision-making with probabilities

Example

Act ω1 ω2

Apartment (f1) 50,000 30,000
Office (f2) 100,000 -40,000

Assume that there is 60% chance that the economic situation will be poor
(ω2).
Act f1 induces the lottery p1 such that p1(50,000) = 0.4 and
p1(30,000) = 0.6. Act f2 induces the lottery p2 such that
p2(100,000) = 0.4 and p2(−40,000) = 0.6.
The expected utilities are

Ep1 (u) = 50,000× 0.4 + 30,000× 0.6 = 38,000
Ep2 (u) = 100,000× 0.4− 40,000× 0.6 = 16,000

Act f1 is thus more desirable according to the maximum expected utility
criterion.
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Decision analysis Decision-making with belief functions

How belief functions come into the picture

Belief functions become components of a decision problem in any of the
following two situations (or both)

1 The DM’s subjective beliefs concerning the state of nature are described
by a belief function BelΩ on Ω

2 The DM is not able to precisely describe the outcomes of some acts
under each state of nature
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Decision analysis Decision-making with belief functions

Case 1: uncertainty described by a belief function

Let mΩ be a mass function on Ω

Any act f : Ω→ C carries mΩ to the set C of consequences, yielding a
mass function mCf , which quantifies the DM’s beliefs about the outcome of
act f
Each mass mΩ(A) is transferred to f (A)

mCf (B) =
∑

{A⊆Ω:f (A)=B}

mΩ(A)

for any B ⊆ C
mCf is a credibilistic lottery corresponding to act f
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Decision analysis Decision-making with belief functions

Case 2: partial knowledge of outcomes

In that case, an act may formally be represented by a multi-valued
mapping f : Ω→ 2C , assigning a set of possible consequences f (ω) ⊆ C
to each state of nature ω
Given a probability measure P on Ω, f then induces the following mass
function mCf on C,

mCf (B) =
∑

{ω∈Ω:f (ω)=B}

p(ω)

for all B ⊆ C
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Decision analysis Decision-making with belief functions

Example

Let Ω = {ω1, ω2, ω3} and mΩ the following mass function

mΩ({ω1, ω2}) = 0.3, mΩ({ω2, ω3}) = 0.2
mΩ({ω3}) = 0.4, mΩ(Ω) = 0.1

Let C = {c1, c2, c3} and f the act

f (ω1) = {c1}, f (ω2) = {c1, c2}, f (ω3) = {c2, c3}

To compute mCf , we transfer the masses as follows

mΩ({ω1, ω2}) = 0.3→ f (ω1) ∪ f (ω2) = {c1, c2}
mΩ({ω2, ω3}) = 0.2→ f (ω2) ∪ f (ω3) = {c1, c2, c3}

mΩ({ω3}) = 0.4→ f (ω3) = {c2, c3}
mΩ(Ω) = 0.1→ f (ω1) ∪ f (ω2) ∪ f (ω3) = {c1, c2, c3}

Finally, we obtain the following mass function on C

mC({c1, c2}) = 0.3, mC({c2, c3}) = 0.4, mC(C) = 0.3

Thierry Denœux Belief functions - Basic concepts Summer 2023 24 / 72



Decision analysis Decision-making with belief functions

Decision problem

In the two situations considered above, we can assign to each act f a
credibilistic lottery, defined as a mass function on C
Given a utility function u on C, we then need to extend the MEU model
Several such extensions will now be reviewed
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Decision analysis Decision-making with belief functions

Upper and lower expectations

Let m be a mass function on C, and u a utility function C → R
The lower and upper expectations of u are defined, respectively, as the
averages of the minima and the maxima of u within each focal set of m

Em(u) =
∑
A⊆C

m(A) min
c∈A

u(c)

Em(u) =
∑
A⊆C

m(A) max
c∈A

u(c)

It is clear that Em(u) ≤ Em(u), with the inequality becoming an equality
when m is Bayesian, in which case the lower and upper expectations
collapse to the usual expectation
If m = mA is logical with focal set A, then Em(u) and Em(u) are,
respectively, the minimum and the maximum of u in A

Thierry Denœux Belief functions - Basic concepts Summer 2023 26 / 72



Decision analysis Decision-making with belief functions

Corresponding decision criteria

Having defined the notions of lower and upper expectations, we can
define two preference relations among credibilistic lotteries as

m1<m2 iff Em1
(u) ≥ Em2

(u)

and
m1<m2 iff Em1 (u) ≥ Em2 (u)

Relation < corresponds to a pessimistic (or conservative) attitude of the
DM. When m is logical, it corresponds to the maximin criterion
Symmetrically, < corresponds to an optimistic attitude and extends the
maximax criterion
Both criteria boil down to the MEU criterion when mass functions are
Bayesian.
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Decision analysis Decision-making with belief functions

Generalized Hurwicz criterion

The Hurwicz criterion can be generalized as

Em,α(u) =
∑
A⊆C

m(A)

(
αmin

c∈A
u(c) + (1− α) max

c∈A
u(c)

)
= αEm(u) + (1− α)E(u)

where α ∈ [0,1] is a pessimism index
This criterion was first introduced and justified axiomatically by Jaffray
(1988)
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Decision analysis Decision-making with belief functions

Transferable belief model

A completely different approach to decision-making with belief function
was advocated by Smets, as part of the Transferable Belief Model
Smets defended a two-level mental model

1 A credal level, where an agent’s beliefs are represented by belief functions,
and

2 A pignistic level, where decisions are made by maximizing the EU with
respect to a probability measure derived from a belief function

The rationale for introducing probabilities at the decision level is the
avoidance of Dutch books
Smets argued that the belief-probability transformation T should be
linear, i.e., it should verify

T (αm1 + (1− α)m2) = αT (m1) + (1− α)T (m2),

for any mass functions m1 and m2 and for any α ∈ [0,1]
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Decision analysis Decision-making with belief functions

Pignistic transformation

The only linear belief-probability transformation T is the pignistic
transformation, with pm = T (m) given by

pm(c) =
∑

{A⊆C:c∈A}

m(A)

|A|
, ∀c ∈ C

The expected utility w.r.t. the pignistic probability is

Ep(u) =
∑
c∈C

pm(c)u(c) =
∑
A⊆C

m(A)

(
1
|A|
∑
c∈A

u(c)

)

The maximum pignistic expected utility criterion thus extends the Laplace
criterion
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Decision analysis Decision-making with belief functions

Summary

non-probabilized belief functions probabilized
maximin ←→ lower expectation
maximax ←→ upper expectation
Laplace ←→ pignistic expectation expected utility
Hurwicz ←→ generalized Hurwicz
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Evidential classification

Classification problem

?

A population is partitioned in c groups or
classes
Let Ω = {ω1, . . . , ωc} denote the set of
classes
Each instance is described by

A feature vector x ∈ Rp

A class label y ∈ Ω

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict the
class label of a new instance described
by x

The program that maps feature vectors to classes is called a classifier.
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Evidential classification

Example: expression recognition

joy     surprise sadness 

disgust anger   fear    
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Evidential classification

Evidential classifier

Sometimes, the class cannot be predicted from the feature vector with
high certainty.
Assessing the uncertainty in the classification is an important issue.
Most traditional classifiers represent uncertainty by computing a
conditional probability distribution P(·|x)

An evidential classifier represents classification uncertain using belief
functions.
There are several methods to construct evidential classifiers. We will see
two of them:

The evidential K -NN classifier
The evidential neural network classifier
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Evidential classification Evidential K -NN classifier

Principle

Xi

di

X

Let NK (x) ⊂ L denote the set of the K
nearest neighbors of x in L, based on some
distance measure
Each xi ∈ NK (x) can be considered as a
piece of evidence regarding the class of x
The strength of this evidence decreases
with the distance di between x and xi
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Evidential classification Evidential K -NN classifier

Definition

The evidence of (xi , yi ) can be represented by

mi ({ωk}) = ϕk (di ) yik , k = 1, . . . , c
mi (Ω) = 1− ϕk (di )

where yik = I(yi = ωk ) and ϕk , k = 1, . . . , c are decreasing functions from
[0,+∞) to [0,1] such that limd→+∞ ϕk (d) = 0
The evidence of the K nearest neighbors of x is pooled using Dempster’s
rule of combination

m =
⊕

xi∈NK (x)

mi

The focal sets of m are the singletons and Ω.
A decision can be made by selecting the class with the highest plausibility
(see below).
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Evidential classification Evidential K -NN classifier

Learning

Choice of functions ϕk : for instance, ϕk (d) = α exp(−γk d2).
Parameter γ = (γ1, . . . , γc) can be learnt from the data by minimizing the
following cost function

C(γ) =
n∑

i=1

c∑
k=1

(pl(−i)(ωk )− yik )2,

where pl(−i) is the contour function obtained by classifying xi using its K
nearest neighbors in the learning set.
Function C(γ) can be minimized by an iterative nonlinear optimization
algorithm.
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Evidential classification Evidential K -NN classifier

Example 1: Vehicles dataset

The data were used to distinguish 3D objects within a 2-D silhouette of
the objects.
Four classes: bus, Chevrolet van, Saab 9000 and Opel Manta.
846 instances, 18 numeric attributes.
The first 564 objects are training data, the rest are test data.

Thierry Denœux Belief functions - Basic concepts Summer 2023 40 / 72



Evidential classification Evidential K -NN classifier

Vehicles datasets: result
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Evidential classification Evidential K -NN classifier

Example 2: Ionosphere dataset

This dataset was collected by a radar system and consists of phased
array of 16 high-frequency antennas with a total transmitted power of the
order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. "Good" radar returns
are those showing evidence of some type of structure in the ionosphere.
"Bad" returns are those that do not.
There are 351 instances and 34 numeric attributes. The first 175
instances are training data, the rest are test data.
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Evidential classification Evidential K -NN classifier

Ionosphere datasets: result
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Evidential classification Evidential K -NN classifier

Implementation in R

library("evclass")

data("ionosphere")
xapp<-ionosphere$x[1:176,]
yapp<-ionosphere$y[1:176]
xtst<-ionosphere$x[177:351,]
ytst<-ionosphere$y[177:351]

opt<-EkNNfit(xapp,yapp,K=10)
class<-EkNNval(xapp,yapp,xtst,K=10,ytst,opt$param)

> class$err
0.07428571
> table(ytst,class$ypred)
ytst 1 2
1 106 6
2 7 56
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Evidential classification Evidential K -NN classifier

Face data

Projec'on	in	a	5D	
subspace	(LDA)	

eviden'al	
classifica'on	 decision	

216 images 70× 60 (36 per expression)
144 for learning, 72 for testing
5 features extracted by linear discriminant
analysis
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Evidential classification Evidential K -NN classifier

Face data: training
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> print(val$err)
0.1527778
> table(ytst,val$ypred)

ytst 1 2 3 4 5 6
1 10 0 0 0 0 0
2 0 14 0 0 0 0
3 0 0 11 0 4 0
4 0 1 1 7 0 0
5 0 0 0 0 11 0
6 2 0 1 0 2 8
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Evidential classification Evidential K -NN classifier

Results
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Evidential classification Evidential K -NN classifier

Results
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Evidential classification Evidential K -NN classifier

Results

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

peur

J
S

T
D

C
P

?

mass

0.0 0.2 0.4 0.6 0.8 1.0

Thierry Denœux Belief functions - Basic concepts Summer 2023 49 / 72



Evidential classification Evidential K -NN classifier

Results
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Evidential classification Evidential K -NN classifier

Results
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Evidential classification Evidential K -NN classifier

Results
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Evidential classification Evidential neural network classifier
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Evidential classification Evidential neural network classifier

Principle

pi
di

X

The learning set is summarized by r
prototypes.
Each prototype pi has membership
degree uik to each class ωk , with∑c

k=1 uik = 1.
Each prototype pi is a piece of evidence
about the class of x, whose reliability
decreases with the distance di between
x and pi .
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Evidential classification Evidential neural network classifier

Propagation equations

Mass function induced by prototype pi :

mi ({ωk}) = αiuik exp(−γid2
i ), k = 1, . . . , c

mi (Ω) = 1− αi exp(−γid2
i )

Combination:

m =
r⊕

i=1

mi

The combined mass function m has as focal sets the singletons {ωk},
k = 1, . . . , c and Ω.
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Evidential classification Evidential neural network classifier

Neural network implementation

…
…

…
… …

1

xj

pij

mi
uik

m

1

-1
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Evidential classification Evidential neural network classifier

Learning

The parameters are the
The prototypes pi , i = 1, . . . , r (rp parameters)
The membership degrees uik , i = 1, . . . , r , k = 1 . . . , c (rc parameters)
The αi and γi , i = 1 . . . , r (2r parameters).

Let θ denote the vector of all parameters. It can be estimated by
minimizing a cost function such as

C(θ) =
n∑

i=1

c∑
k=1

(plik − yik )2

︸ ︷︷ ︸
error

+µ
r∑

i=1

αi︸ ︷︷ ︸
regularization

where plik is the output plausibility for instance i and class k , and µ is a
regularization coefficient (hyperparameter).
The hyperparameter µ can be optimized by cross-validation.
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Evidential classification Evidential neural network classifier

Implementation in R

library("evclass")

data(glass)
xtr<-glass$x[1:89,]
ytr<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]

param0<-proDSinit(xtr,ytr,nproto=7)
fit<-proDSfit(x=xtr,y=ytr,param=param0)
val<-proDSval(xtst,fit$param,ytst)

> print(val$err)
0.3333333 > table(ytst,val$ypred)
ytst 1 2 3 4
1 30 6 4 0
2 6 27 1 3
3 4 3 1 0
4 0 5 0 6

Thierry Denœux Belief functions - Basic concepts Summer 2023 58 / 72



Evidential classification Evidential neural network classifier

Example
Mass on {ω1}

m({ω1})
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Evidential classification Evidential neural network classifier

Example
Mass on {ω2}

m({ω2})
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Evidential classification Evidential neural network classifier

Example
Mass on {ω3}

m({ω3})
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Evidential classification Evidential neural network classifier

Example
Mass on Ω

m(Ω)
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Evidential classification Decision analysis

Outline

1 Decision analysis
Decision-making under complete ignorance
Decision-making with probabilities
Decision-making with belief functions

2 Evidential classification
Evidential K -NN classifier
Evidential neural network classifier
Decision analysis
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Evidential classification Decision analysis

Simple decision setting

We have seen that, to formalize the decision problem, we need to define:
1 The set of consequences
2 The set of acts
3 The utility function
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Evidential classification Decision analysis

Simple decision setting

Let
C = {correct, error}
F = {f1, . . . , fc} with fk = assignment to class ωk ,

fk (ωk ) = correct, fk (ω`) = error, ∀` 6= k

u(correct) = 1, u(error) = 0

In classification, we more often use the notion of loss, to be minimized.
Here, the loss function can be defined as

λ(correct) = 0, λ(error) = 1.

The expected loss is called the risk.
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Evidential classification Decision analysis

Simple decision setting (continued)

Given a mass function m on Ω, act fk induces the following mass mk on C:

mk ({correct}) = m({ωk}) = Bel({ωk})

mk ({error}) =
∑
ωk 6∈A

m(A) = 1− Pl({ωk})

mk (C) =
∑

ωk∈A,|A|>1

m(A)

The lower and upper risk are

Emk
(λ) = mk ({correct})× 0 + mk ({error})× 1 + mk (C)× 0

= 1− Pl({ωk})
Emk (λ) = mk ({correct})× 0 + mk ({error})× 1 + mk (C)× 1

= 1− Bel({ωk})

When the focal sets of m are {ωk}, k = 1, . . . , c and Ω, the different
decision rules (optimistic, pessimistic, Hurwicz, pignistic) are equivalent.
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Evidential classification Decision analysis

Implementation in R

param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)

val<-proDSval(xtst,fit$param)
L<-1-diag(c)
D<-decision(val$m,L=L,rule=’upper’)
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Evidential classification Decision analysis

Example

Lower/Upper risk, λ0=1
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Evidential classification Decision analysis

Decision with rejection

Let us now assume
C = {correct, error, reject}
F = {f0, f1, . . . , fc}, where f0 denotes rejection,

f0(ωk ) = reject, ∀k

and fk = assignment to class ωk , as before.
λ(correct) = 0, λ(error) = 1, λ(reject) = λ0

We can carry out the analysis as before. In this case, the different
decision rules generally lead to different decisions.
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Evidential classification Decision analysis

Implementation in R

param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)

val<-proDSval(xtst,fit$param)
L<-cbind(1-diag(c),rep(0.3,c))
D1<-decision(val$m,L=L,rule=’upper’)
D2<-decision(val$m,L=L,rule=’lower’)
D3<-decision(val$m,L=L,rule=’pignistic’)
D4<-decision(val$m,L=L,rule=’hurwicz’,rho=0.5)
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Evidential classification Decision analysis

Example
Lower/upper risk, λ0 = 0.4

Lower/upper risk, λ0=0.4
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Evidential classification Decision analysis

Example
Hurwicz strategy (α = 0.5), λ0 = 0.4

Hurwicz, ρ=0.5, λ0=0.4
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