Theory of Belief Functions: Application to machine learning and statistical inference Lecture 2: Decision analysis

Thierry Denœux

Summer 2023

Thierry Denœux

Belief functions - Basic concepts

Image: A matrix

Summer 2023 1 / 72

Outline

Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Outline

Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Example of decision problem under uncertainty

Act	Good Economic	Poor Economic
(Purchase)	Conditions	Conditions
Apartment building	50,000	30,000
Office building	100,000	-40,000
Warehouse	30,000	10,000

-

Formal framework

Acts, outcomes, states of nature

- A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action (an act) in some set $\mathcal{F} = \{f_1, \dots, f_n\}$
- An act may have different consequences (outcomes), depending on the state of nature
- Denoting by Ω = {ω₁,..., ω_r} the set of states of nature and by C the set of consequences (or outcomes), an act can be formalized as a mapping f from Ω to C
- In this lecture, the three sets $\Omega,\,\mathcal{C}$ and \mathcal{F} will be assumed to be finite

() < </p>

Formal framework

- The desirability of the consequences can often be modeled by a numerical utility function *u* : C → ℝ, which assigns a numerical value to each consequence
- The higher this value, the more desirable is the consequence for the DM
- In some problems, the consequences can be evaluated in terms of monetary value. The utilities can then be defined as the payoffs, or a function thereof
- If the actions are indexed by *i* and the states of nature by *j*, we will denote by *u_{ij}* the quantity *u*[*f_i*(ω_j)]
- The $n \times r$ matrix $U = (u_{ij})$ will be called a payoff or utility matrix

Payoff matrix

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f_3)	30,000	10,000

<ロ> <同> <同> < 同> < 同>

Formal framework

Preferences

- If the true state of nature ω is known, the desirability of an act f can be deduced from that of its consequence f(ω)
- Typically, the state of nature is unknown. Based on partial information, it is usually assumed that the DM can express preferences among acts, which may be represented mathematically by a preference relation \succeq on \mathcal{F}
- This relation is interpreted as follows: given two acts *f* and *g*, *f* ≽ *g* means that *f* is found by the DM to be at least as desirable as *g*
- We also define
 - The strict preference relation as $f \succ g$ iff $f \succcurlyeq g$ and $not(g \succcurlyeq f)$ (meaning that f is strictly more desirable than g) and
 - The indifference relation *f* ~ *g* iff *f* ≽ *g* and *g* ≽ *f* (meaning that *f* and *g* are equally desirable)

(D) (A) (A) (A)

Decision problems

- The decision problem can be formalized as building a preference relation among acts, from a utility matrix and some description of uncertainty, and finding the maximal elements of this relation
- Depending on the nature of the available information, different decision problems arise:
 - Decision-making under ignorance
 - 2 Decision-making with probabilities
 - Decision-making with belief functions

Image: Image:

Outline

Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Problem and non-domination principle

- We assume that the DM is totally ignorant of the state of nature: all the information given to the DM is the utility matrix *U*
- A act f_i is said to be dominated by f_k if the outcomes of f_k are at least as desirable as those of f_i for all states, and strictly more desirable for at least one state

$$orall j, \; u_{kj} \geq u_{ij} \; ext{and} \; \exists j, \; u_{kj} > u_{ij}$$

 Non-domination principle: an act cannot be chosen if it is dominated by another one

Example of a dominated act

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f3)	30,000	10,000

ъ

<ロト < 回ト < 回ト < 三ト

Criteria for rational choice

- After all dominated acts have been removed, there remains the problem of ordering them by desirability, and of finding the set of most desirable acts
- Several criteria of "rational choice" have been proposed to derive a preference relation over acts, including:

Maximax criterion

$$f_i \succeq f_k \text{ iff } \max_j u_{ij} \ge \max_j u_{kj}.$$

Maximin (Wald) criterion

$$f_i \succeq f_k \text{ iff } \min_j u_{ij} \ge \min_j u_{kj}.$$

Laplace criterion

$$f_i \succeq f_k \text{ iff } \frac{1}{r} \sum_j u_{ij} \geq \frac{1}{r} \sum_j u_{kj}.$$

Example

Act	ω_1	ω_2	ave	max	min
Apartment (f ₁)	50,000	30,000	40,000	50,000	30,000
Office (f ₂)	100,000	-40,000	30,000	100,000	-40,000

Thierry Denœux

Belief functions - Basic concepts

▲ ■ → ■ → Q へ
 Summer 2023 14/72

<ロ> <同> <同> < 同> < 同>

Hurwicz criterion

• Hurwicz criterion: $f_i \succeq f_k$ iff

$$\alpha \min_{j} u_{ij} + (1 - \alpha) \max_{j} u_{ij} \ge \alpha \min_{j} u_{kj} + (1 - \alpha) \max_{j} u_{kj}$$

where α is a parameter in [0, 1], called the pessimism index

- Boils down to
 - the maximax criterion if $\alpha = \mathbf{0}$
 - the maximin criterion if $\alpha = 1$
- α describes the DM's attitude toward ambiguity.
- Formal justification given by Arrow and Hurwicz (1972).

Outline

Decision analysis

- ۲
- Decision-making with probabilities ۲

- Evidential K-NN classifier
- Evidential neural network classifier
- ۲

Lottery

- Let us now consider the situation where uncertainty about the state of nature is quantified by a probability distribution π on Ω.
- These probabilities can be objective (decision under risk) or subjective.
- An act *f* : Ω → C induces a probability distribution *p_f* on the set C of consequences (assumed to be finite), called a lottery:

$$orall oldsymbol{c} \in \mathcal{C}, \quad oldsymbol{p}_f(oldsymbol{c}) = \sum_{\{\omega: f(\omega) = oldsymbol{c}\}} \pi(\omega).$$

Maximum Expected Utility principle

• Given a utility function $u : C \to \mathbb{R}$, the expected utility for a lottery p is

$$\mathbb{E}_{
ho}(u) = \sum_{c \in \mathcal{C}} u(c)
ho(c).$$

 Maximum Expected Utility (MEU) principle: a lottery p_i is more desirable than a lottery p_k if it has a higher expected utility:

$$p_i \succeq p_k \Leftrightarrow \mathbb{E}_{p_i}(u) \ge \mathbb{E}_{p_k}(u).$$

 The MEU principle was first axiomatized by von Neumann and Morgenstern (1944).

(日)

Example

Act	ω_1	ω_2
Apartment (f_1)	50,000	30,000
Office (f_2)	100,000	-40,000

- Assume that there is 60% chance that the economic situation will be poor (ω_2) .
- Act f_1 induces the lottery p_1 such that $p_1(50,000) = 0.4$ and $p_1(30,000) = 0.6$. Act f_2 induces the lottery p_2 such that $p_2(100,000) = 0.4$ and $p_2(-40,000) = 0.6$.
- The expected utilities are

$$\mathbb{E}_{p_1}(u) = 50,000 \times 0.4 + 30,000 \times 0.6 = 38,000$$
$$\mathbb{E}_{p_2}(u) = 100,000 \times 0.4 - 40,000 \times 0.6 = 16,000$$

Act f₁ is thus more desirable according to the maximum expected utility

Outline

Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

How belief functions come into the picture

Belief functions become components of a decision problem in any of the following two situations (or both)

- The DM's subjective beliefs concerning the state of nature are described by a belief function Bel^Ω on Ω
- The DM is not able to precisely describe the outcomes of some acts under each state of nature

Case 1: uncertainty described by a belief function

- Let m^{Ω} be a mass function on Ω
- Any act f : Ω → C carries m^Ω to the set C of consequences, yielding a mass function m^C_f, which quantifies the DM's beliefs about the outcome of act f
- Each mass $m^{\Omega}(A)$ is transferred to f(A)

$$m_f^{\mathcal{C}}(B) = \sum_{\{A \subseteq \Omega: f(A) = B\}} m^{\Omega}(A)$$

for any $B \subseteq C$

m^C_f is a credibilistic lottery corresponding to act *f*

Case 2: partial knowledge of outcomes

- In that case, an act may formally be represented by a multi-valued mapping f : Ω → 2^C, assigning a set of possible consequences f(ω) ⊆ C to each state of nature ω
- Given a probability measure *P* on Ω, *f* then induces the following mass function *m*^C_f on C,

$$m^{\mathcal{C}}_{f}(\mathcal{B}) = \sum_{\{\omega \in \Omega: f(\omega) = \mathcal{B}\}} p(\omega)$$

for all $B \subseteq C$

Example

• Let $\Omega = \{\omega_1, \omega_2, \omega_3\}$ and m^{Ω} the following mass function

$$m^{\Omega}(\{\omega_1, \omega_2\}) = 0.3, \quad m^{\Omega}(\{\omega_2, \omega_3\}) = 0.2 m^{\Omega}(\{\omega_3\}) = 0.4, \qquad m^{\Omega}(\Omega) = 0.1$$

• Let $C = \{c_1, c_2, c_3\}$ and f the act

$$f(\omega_1) = \{c_1\}, \quad f(\omega_2) = \{c_1, c_2\}, \quad f(\omega_3) = \{c_2, c_3\}$$

• To compute m_t^c , we transfer the masses as follows

$$\begin{split} m^{\Omega}(\{\omega_{1},\omega_{2}\}) &= 0.3 \to f(\omega_{1}) \cup f(\omega_{2}) = \{c_{1},c_{2}\}\\ m^{\Omega}(\{\omega_{2},\omega_{3}\}) &= 0.2 \to f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\}\\ m^{\Omega}(\{\omega_{3}\}) &= 0.4 \to f(\omega_{3}) = \{c_{2},c_{3}\}\\ m^{\Omega}(\Omega) &= 0.1 \to f(\omega_{1}) \cup f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\} \end{split}$$

• Finally, we obtain the following mass function on $\ensuremath{\mathcal{C}}$

$$m^{\mathcal{C}}(\{c_1, c_2\}) = 0.3, \quad m^{\mathcal{C}}(\{c_2, c_3\}) = 0.4, \quad m^{\mathcal{C}}(\mathcal{C}) = 0.3$$

Decision problem

- In the two situations considered above, we can assign to each act f a credibilistic lottery, defined as a mass function on C
- Given a utility function u on C, we then need to extend the MEU model
- Several such extensions will now be reviewed

Upper and lower expectations

- Let *m* be a mass function on C, and *u* a utility function $C \to \mathbb{R}$
- The lower and upper expectations of *u* are defined, respectively, as the averages of the minima and the maxima of *u* within each focal set of *m*

$$\underline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \min_{c \in A} u(c)$$
$$\overline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \max_{c \in A} u(c)$$

- It is clear that $\underline{\mathbb{E}}_m(u) \leq \overline{\mathbb{E}}_m(u)$, with the inequality becoming an equality when *m* is Bayesian, in which case the lower and upper expectations collapse to the usual expectation
- If $m = m_A$ is logical with focal set A, then $\mathbb{E}_m(u)$ and $\mathbb{E}_m(u)$ are, respectively, the minimum and the maximum of u in A

Corresponding decision criteria

 Having defined the notions of lower and upper expectations, we can define two preference relations among credibilistic lotteries as

$$m_1 \geq m_2$$
 iff $\underline{\mathbb{E}}_{m_1}(u) \geq \underline{\mathbb{E}}_{m_2}(u)$

and

$$m_1 \overleftarrow{\succ} m_2$$
 iff $\overline{\mathbb{E}}_{m_1}(u) \geq \overline{\mathbb{E}}_{m_2}(u)$

- Relation <u>></u> corresponds to a pessimistic (or conservative) attitude of the DM. When *m* is logical, it corresponds to the maximin criterion
- Both criteria boil down to the MEU criterion when mass functions are Bayesian.

Generalized Hurwicz criterion

• The Hurwicz criterion can be generalized as

$$\mathbb{E}_{m,\alpha}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\alpha \min_{c \in A} u(c) + (1 - \alpha) \max_{c \in A} u(c) \right)$$
$$= \alpha \mathbb{E}_m(u) + (1 - \alpha) \mathbb{E}(u)$$

where $\alpha \in [0, 1]$ is a pessimism index

 This criterion was first introduced and justified axiomatically by Jaffray (1988)

Transferable belief model

- A completely different approach to decision-making with belief function was advocated by Smets, as part of the Transferable Belief Model
- Smets defended a two-level mental model
 - A credal level, where an agent's beliefs are represented by belief functions, and
 - A pignistic level, where decisions are made by maximizing the EU with respect to a probability measure derived from a belief function
- The rationale for introducing probabilities at the decision level is the avoidance of Dutch books
- Smets argued that the belief-probability transformation *T* should be linear, i.e., it should verify

$$T(\alpha m_1 + (1 - \alpha)m_2) = \alpha T(m_1) + (1 - \alpha)T(m_2),$$

for any mass functions m_1 and m_2 and for any $\alpha \in [0, 1]$

Pignistic transformation

• The only linear belief-probability transformation T is the pignistic transformation, with $p_m = T(m)$ given by

$$p_m(c) = \sum_{\{A \subseteq \mathcal{C}: c \in A\}} \frac{m(A)}{|A|}, \quad \forall c \in \mathcal{C}$$

The expected utility w.r.t. the pignistic probability is

$$\mathbb{E}_{p}(u) = \sum_{c \in \mathcal{C}} p_{m}(c)u(c) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\frac{1}{|A|} \sum_{c \in A} u(c)\right)$$

• The maximum pignistic expected utility criterion thus extends the Laplace criterion

イロト イヨト イヨト イヨ

Summary

non-probabilized		belief functions	probabilized
maximin	\longleftrightarrow	lower expectation	
maximax	\longleftrightarrow	upper expectation	
Laplace	\longleftrightarrow	pignistic expectation	expected utility
Hurwicz	\longleftrightarrow	generalized Hurwicz	

<ロ> <同> <同> < 同> < 同>

Outline

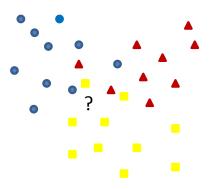
Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Classification problem



- A population is partitioned in *c* groups or classes
- Let $\Omega = \{\omega_1, \dots, \omega_c\}$ denote the set of classes
- Each instance is described by
 - A feature vector $\mathbf{x} \in \mathbb{R}^{p}$
 - A class label $y \in \Omega$
- Problem: given a learning set $\mathcal{L} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, predict the class label of a new instance described by \mathbf{x}
- The program that maps feature vectors to classes is called a classifier.

Example: expression recognition

surprise

sadness

disgust

anger

fear

・ロ・・ 日本・ ・ 回・

Summer 2023 34 / 72

Belief functions - Basic concepts

Evidential classifier

- Sometimes, the class cannot be predicted from the feature vector with high certainty.
- Assessing the uncertainty in the classification is an important issue.
- Most traditional classifiers represent uncertainty by computing a conditional probability distribution P(·|x)
- An evidential classifier represents classification uncertain using belief functions.
- There are several methods to construct evidential classifiers. We will see two of them:
 - The evidential K-NN classifier
 - The evidential neural network classifier

Outline

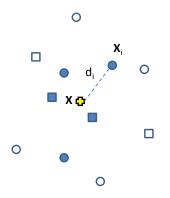
Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Principle



- Let N_K(x) ⊂ L denote the set of the K nearest neighbors of x in L, based on some distance measure
- Each x_i ∈ N_K(x) can be considered as a piece of evidence regarding the class of x

Image: A matrix

• The strength of this evidence decreases with the distance *d_i* between **x** and **x**_{*i*}

Definition

• The evidence of (**x**_{*i*}, *y*_{*i*}) can be represented by

$$m_i(\{\omega_k\}) = \varphi_k(d_i) y_{ik}, \quad k = 1, \dots, c$$
$$m_i(\Omega) = 1 - \varphi_k(d_i)$$

where $y_{ik} = l(y_i = \omega_k)$ and φ_k , k = 1, ..., c are decreasing functions from $[0, +\infty)$ to [0, 1] such that $\lim_{d\to +\infty} \varphi_k(d) = 0$

• The evidence of the *K* nearest neighbors of **x** is pooled using Dempster's rule of combination

$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_{\mathcal{K}}(\mathbf{x})} m_i$$

- The focal sets of *m* are the singletons and Ω.
- A decision can be made by selecting the class with the highest plausibility (see below).

(日)

Learning

- Choice of functions φ_k : for instance, $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.
- Parameter $\gamma = (\gamma_1, \dots, \gamma_c)$ can be learnt from the data by minimizing the following cost function

$$C(\boldsymbol{\gamma}) = \sum_{i=1}^{n} \sum_{k=1}^{c} (pl_{(-i)}(\omega_k) - y_{ik})^2,$$

where $pl_{(-i)}$ is the contour function obtained by classifying \mathbf{x}_i using its *K* nearest neighbors in the learning set.

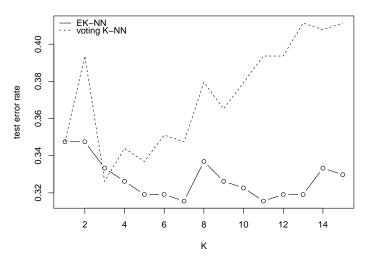
 Function C(γ) can be minimized by an iterative nonlinear optimization algorithm.

Example 1: Vehicles dataset

- The data were used to distinguish 3D objects within a 2-D silhouette of the objects.
- Four classes: bus, Chevrolet van, Saab 9000 and Opel Manta.
- 846 instances, 18 numeric attributes.
- The first 564 objects are training data, the rest are test data.

Vehicles datasets: result

Vehicles data

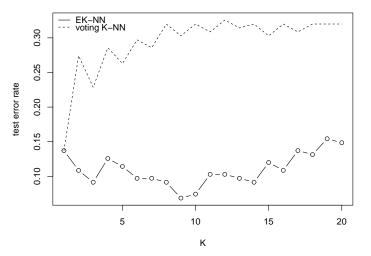


Example 2: Ionosphere dataset

- This dataset was collected by a radar system and consists of phased array of 16 high-frequency antennas with a total transmitted power of the order of 6.4 kilowatts.
- The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not.
- There are 351 instances and 34 numeric attributes. The first 175 instances are training data, the rest are test data.

lonosphere datasets: result

lonosphere data



Implementation in R

```
library("evclass")
```

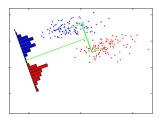
```
data("ionosphere")
xapp<-ionosphere$x[1:176,]
yapp<-ionosphere$y[1:176]
xtst<-ionosphere$x[177:351,]
ytst<-ionosphere$y[177:351]</pre>
```

```
opt<-EkNNfit(xapp,yapp,K=10)
class<-EkNNval(xapp,yapp,xtst,K=10,ytst,opt$param)</pre>
```

```
> class$err
0.07428571
> table(ytst,class$ypred)
ytst 1 2
1 106 6
2 7 56
```

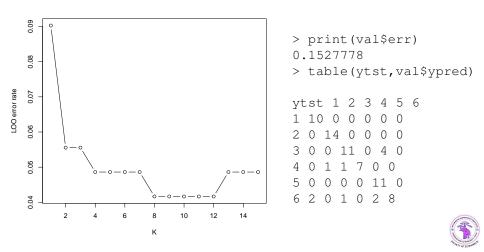

イロト イヨト イヨト イヨト

Face data



- 216 images 70 × 60 (36 per expression)
- 144 for learning, 72 for testing
- 5 features extracted by linear discriminant analysis

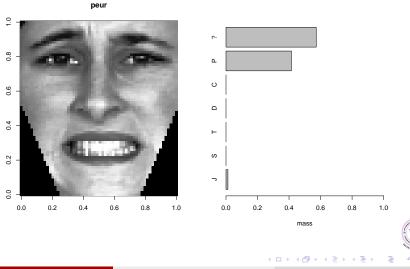
Face data: training



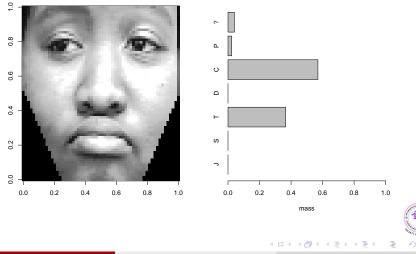


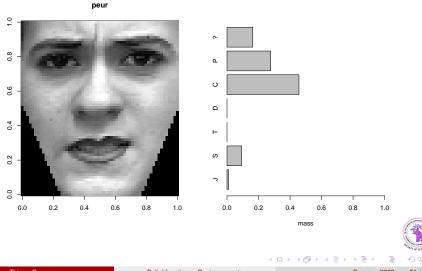
tristesse



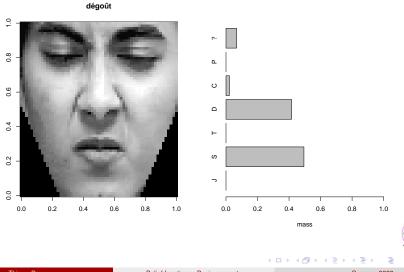


Thierry Denœux





Thierry Denœux



Outline

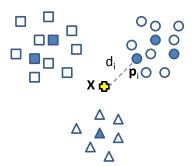
Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Principle



- The learning set is summarized by *r* prototypes.
- Each prototype \mathbf{p}_i has membership degree u_{ik} to each class ω_k , with $\sum_{k=1}^{c} u_{ik} = 1$.
- Each prototype p_i is a piece of evidence about the class of x, whose reliability decreases with the distance d_i between x and p_i.

Propagation equations

Mass function induced by prototype p_i:

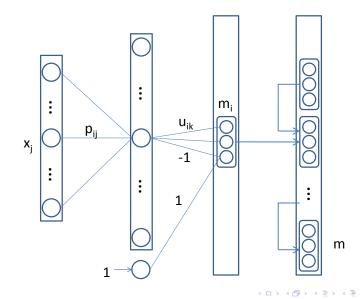
$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i d_i^2), \quad k = 1, \dots, c$$
$$m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i d_i^2)$$

Combination:

$$m = \bigoplus_{i=1}^{r} m_i$$

 The combined mass function *m* has as focal sets the singletons {ω_k}, k = 1,..., c and Ω.

Neural network implementation



Learning

- The parameters are the
 - The prototypes \mathbf{p}_i , i = 1, ..., r (*rp* parameters)
 - The membership degrees u_{ik} , i = 1, ..., r, k = 1, ..., c (*rc* parameters)
 - The α_i and γ_i , $i = 1 \dots, r$ (2*r* parameters).
- Let θ denote the vector of all parameters. It can be estimated by minimizing a cost function such as

$$C(\boldsymbol{\theta}) = \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{c} (pl_{ik} - y_{ik})^{2}}_{\text{error}} + \mu \sum_{\substack{i=1 \\ \text{regularization}}}^{r} \alpha_{i}$$

where pl_{ik} is the output plausibility for instance *i* and class *k*, and μ is a regularization coefficient (hyperparameter).

• The hyperparameter μ can be optimized by cross-validation.

Implementation in R

```
library("evclass")
```

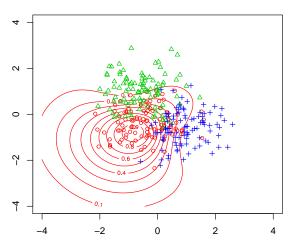
```
data(glass)
xtr<-glass$x[1:89,]
ytr<-glass$y[1:89]
xtst<-glass$x[90:185,]
vtst<-glass$v[90:185]</pre>
```

```
param0<-proDSinit(xtr,ytr,nproto=7)
fit<-proDSfit(x=xtr,y=ytr,param=param0)
val<-proDSval(xtst,fit$param,ytst)</pre>
```

```
> print(val$err)
0.3333333 > table(ytst,val$ypred)
ytst 1 2 3 4
1 30 6 4 0
2 6 27 1 3
3 4 3 1 0
4 0 5 0 6
```


イロト イヨト イヨト イヨト

Example Mass on $\{\omega_1\}$



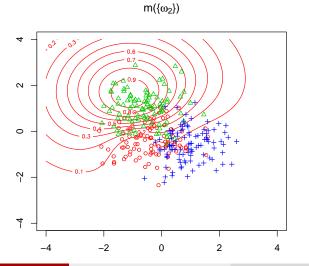
 $m(\{\omega_1\})$

Thierry Denœux

Belief functions - Basic concepts

Summer 2023 59 / 72

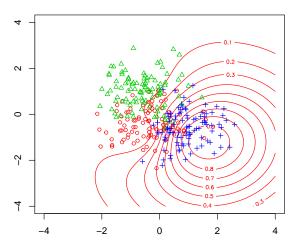
Example Mass on { ω_2 }



Thierry Denœux

Summer 2023 60 / 72

Example Mass on { ω_3 }



$m(\{\omega_3\})$

Thierry Denœux

Belief functions - Basic concepts

Summer 2023 61 / 72

Example Mass on Ω

0.6 ·0.7 4 0.1 0, °0.0 2 0 2 °., 0.8 0.7 - 0.6 -0.1 4 0.6 2 -2

Thierry Denœux

Summer 2023 62 / 72

 $m(\Omega)$

Outline

Decision analysis

- Decision-making under complete ignorance
- Decision-making with probabilities
- Decision-making with belief functions

Evidential classification

- Evidential K-NN classifier
- Evidential neural network classifier
- Decision analysis

Simple decision setting

We have seen that, to formalize the decision problem, we need to define:

- The set of consequences
- The set of acts
- The utility function

Simple decision setting

Let

- $C = \{\text{correct}, \text{error}\}$
- $\mathcal{F} = \{f_1, \ldots, f_c\}$ with f_k = assignment to class ω_k ,
 - $f_k(\omega_k) = \text{correct}, \quad f_k(\omega_\ell) = \text{error}, \ \forall \ell \neq k$
- *u*(correct) = 1, *u*(error) = 0
- In classification, we more often use the notion of loss, to be minimized. Here, the loss function can be defined as

$$\lambda$$
(correct) = 0, λ (error) = 1.

The expected loss is called the risk.

イロト イヨト イヨト イヨト

Simple decision setting (continued)

• Given a mass function m on Ω , act f_k induces the following mass m_k on C:

$$m_{k}(\{\text{correct}\}) = m(\{\omega_{k}\}) = Bel(\{\omega_{k}\})$$
$$m_{k}(\{\text{error}\}) = \sum_{\omega_{k} \notin A} m(A) = 1 - Pl(\{\omega_{k}\})$$
$$m_{k}(\mathcal{C}) = \sum_{\omega_{k} \in A, |A| > 1} m(A)$$

• The lower and upper risk are

$$\mathbb{E}_{m_k}(\lambda) = m_k(\{\text{correct}\}) \times 0 + m_k(\{\text{error}\}) \times 1 + m_k(\mathcal{C}) \times 0$$

= 1 - Pl({\u03c6}\u03c6)
\bar{\bar{\mathbb{E}}}_{m_k}(\lambda) = m_k(\{\text{correct}\}) \times 0 + m_k(\{\text{error}\}) \times 1 + m_k(\mathcal{C}) \times 1
= 1 - Bel({\u03c6}\u03c6)

When the focal sets of *m* are {ω_k}, k = 1,..., c and Ω, the different decision rules (optimistic, pessimistic, Hurwicz, pignistic) are equivalent.

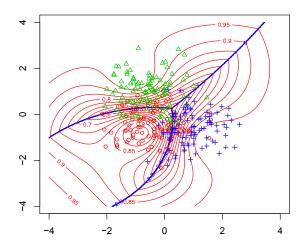
Implementation in R

```
param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)</pre>
```

```
val<-proDSval(xtst,fit$param)
L<-1-diag(c)
D<-decision(val$m,L=L,rule='upper')</pre>
```


(I)

Example



Decision with rejection

Let us now assume

- $C = \{correct, error, reject\}$
- $\mathcal{F} = \{f_0, f_1, \dots, f_c\}$, where f_0 denotes rejection,

$$f_0(\omega_k) = \text{reject}, \quad \forall k$$

and f_k = assignment to class ω_k , as before.

- λ (correct) = 0, λ (error) = 1, λ (reject) = λ_0
- We can carry out the analysis as before. In this case, the different decision rules generally lead to different decisions.

Implementation in R

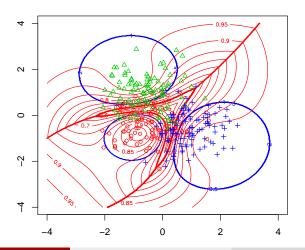
```
param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)</pre>
```

```
val<-proDSval(xtst,fit$param)
L<-cbind(1-diag(c),rep(0.3,c))
D1<-decision(val$m,L=L,rule='upper')
D2<-decision(val$m,L=L,rule='lower')
D3<-decision(val$m,L=L,rule='pignistic')
D4<-decision(val$m,L=L,rule='hurwicz',rho=0.5)</pre>
```


Example

Lower/upper risk, $\lambda_0 = 0.4$

Lower/upper risk, $\lambda_0=0.4$

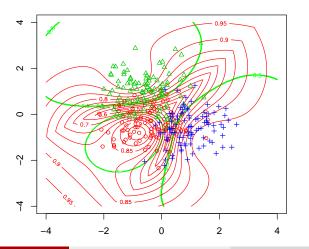


Thierry Denœux

Summer 2023 71 / 72

Example Hurwicz strategy ($\alpha = 0.5$), $\lambda_0 = 0.4$

Hurwicz, ρ =0.5, λ_0 =0.4



Thierry Denœux

Summer 2023 72 / 72