Theory of Belief Functions: Application to machine learning and statistical inference Lecture 2: Decision analysis

Thierry Denœux

Summer 2023

Image: A matrix

Decision-making under complete ignorance

Decision-making with probabilities

Decision-making with belief functions

Image: A matrix

Example of decision problem under uncertainty

Act	Good Economic	Poor Economic
(Purchase)	Conditions	Conditions
Apartment building	50,000	30,000
Office building	100,000	-40,000
Warehouse	30,000	10,000

(D) (A) (A) (A)

Formal framework

Acts, outcomes, states of nature

- A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action (an act) in some set $\mathcal{F} = \{f_1, \dots, f_n\}$
- An act may have different consequences (outcomes), depending on the state of nature
- Denoting by Ω = {ω₁,..., ω_r} the set of states of nature and by C the set of consequences (or outcomes), an act can be formalized as a mapping f from Ω to C
- In this lecture, the three sets Ω , C and \mathcal{F} will be assumed to be finite

ヘロン ヘロン ヘビン・

Formal framework

- The desirability of the consequences can often be modeled by a numerical utility function *u* : C → ℝ, which assigns a numerical value to each consequence
- The higher this value, the more desirable is the consequence for the DM
- In some problems, the consequences can be evaluated in terms of monetary value. The utilities can then be defined as the payoffs, or a function thereof
- If the actions are indexed by *i* and the states of nature by *j*, we will denote by *u_{ij}* the quantity *u*[*f_i*(ω_j)]
- The $n \times r$ matrix $U = (u_{ij})$ will be called a payoff or utility matrix

Image: A math a math

Payoff matrix

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f ₃)	30,000	10,000

Thierry Denœux

Belief functions - Basic concepts

▲口→ ▲圖→ ▲理→ ▲理→

Formal framework

Preferences

- If the true state of nature ω is known, the desirability of an act f can be deduced from that of its consequence f(ω)
- Typically, the state of nature is unknown. Based on partial information, it is usually assumed that the DM can express preferences among acts, which may be represented mathematically by a preference relation \succeq on \mathcal{F}
- This relation is interpreted as follows: given two acts *f* and *g*, *f* ≽ *g* means that *f* is found by the DM to be at least as desirable as *g*
- We also define
 - The strict preference relation as $f \succ g$ iff $f \succcurlyeq g$ and $not(g \succcurlyeq f)$ (meaning that f is strictly more desirable than g) and
 - The indifference relation *f* ~ *g* iff *f* ≽ *g* and *g* ≽ *f* (meaning that *f* and *g* are equally desirable)

ヘロト ヘヨト ヘヨト ヘヨ

- The decision problem can be formalized as building a preference relation among acts, from a utility matrix and some description of uncertainty, and finding the maximal elements of this relation
- Depending on the nature of the available information, different decision problems arise:
 - Decision-making under ignorance
 - 2 Decision-making with probabilities
 - Decision-making with belief functions

Outline

Decision-making under complete ignorance

2 Decision-making with probabilities

ecision-making with belief functions

Problem and non-domination principle

- We assume that the DM is totally ignorant of the state of nature: all the information given to the DM is the utility matrix *U*
- A act f_i is said to be dominated by f_k if the outcomes of f_k are at least as desirable as those of f_i for all states, and strictly more desirable for at least one state

$$orall j, \; u_{kj} \geq u_{ij} \; ext{and} \; \exists j, \; u_{kj} > u_{ij}$$

 Non-domination principle: an act cannot be chosen if it is dominated by another one

Example of a dominated act

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f ₃)	30,000	10,000

ъ

<ロト <回ト < 回ト

Criteria for rational choice

- After all dominated acts have been removed, there remains the problem of ordering them by desirability, and of finding the set of most desirable acts
- Several criteria of "rational choice" have been proposed to derive a preference relation over acts, including:

Laplace criterion

$$f_i \succeq f_k \text{ iff } \frac{1}{r} \sum_j u_{ij} \geq \frac{1}{r} \sum_j u_{kj}.$$

2 Maximax criterion

$$f_i \succeq f_k$$
 iff $\max_j u_{ij} \ge \max_j u_{kj}$.

Maximin (Wald) criterion

$$f_i \succeq f_k \text{ iff } \min_j u_{ij} \ge \min_j u_{kj}$$

Example

Act	ω_1	ω_2	ave	max	min
Apartment (f ₁)	50,000	30,000	40,000	50,000	30,000
Office (f ₂)	100,000	-40,000	30,000	100,00	-40,000

▲口→ ▲圖→ ▲理→ ▲理→

Hurwicz criterion

• Hurwicz criterion: $f_i \succeq f_k$ iff

$$\alpha \min_{j} u_{ij} + (1 - \alpha) \max_{j} u_{ij} \ge \alpha \min_{j} u_{kj} + (1 - \alpha) \max_{j} u_{kj}$$

where α is a parameter in [0, 1], called the pessimism index

- Boils down to
 - the maximax criterion if $\alpha = 0$
 - the maximin criterion if $\alpha = 1$
- α describes the DM's attitude toward ambiguity.
- Formal justification given by Arrow and Hurwicz (1972).

Outline

Decision-making with probabilities

ecision-making with belief functions

Lottery

- Let us now consider the situation where uncertainty about the state of nature is quantified by a probability distribution π on Ω.
- These probabilities can be objective (decision under risk) or subjective.
- An act *f* : Ω → C induces a probability measure *p* on the set C of consequences (assumed to be finite), called a lottery:

$$orall oldsymbol{c} \in \mathcal{C}, \quad oldsymbol{p}(oldsymbol{c}) = \sum_{\{\omega: f(\omega) = oldsymbol{c}\}} \pi(\omega).$$

Maximum Expected Utility principle

• Given a utility function $u : C \to \mathbb{R}$, the expected utility for a lottery p is

$$\mathbb{E}_{p}(u) = \sum_{c \in \mathcal{C}} u(c)p(c).$$

 Maximum Expected Utility (MEU) principle: a lottery p_i is more desirable than a lottery p_k if it has a higher expected utility:

$$p_i \succeq p_k \Leftrightarrow \mathbb{E}_{p_i}(u) \ge \mathbb{E}_{p_k}(u).$$

 The MEU principle was first axiomatized by von Neumann and Morgenstern (1944).

・ロト ・同ト ・ヨト ・ヨ

Example

Act	ω_1	ω_2
Apartment (f ₁)	50,000	30,000
Office (f_2)	100,000	-40,000

- Assume that there is 60% chance that the economic situation will be poor (ω_2) .
- Act f_1 induces the lottery p_1 such that $p_1(50,000) = 0.4$ and $p_1(30,000) = 0.6$. Act f_2 induces the lottery p_2 such that $p_2(100,000) = 0.4$ and $p_2(-40,000) = 0.6$.
- The expected utilities are

$$\begin{split} \mathbb{E}_{p_1}(u) &= 50,000 \times 0.4 + 30,000 \times 0.6 = 38,000 \\ \mathbb{E}_{p_2}(u) &= 100,000 \times 0.4 - 40,000 \times 0.6 = 16,000 \end{split}$$

Act f₁ is thus more desirable according to the maximum expected utility
criterion.

Outline

2) Decision-making with probabilities

Decision-making with belief functions

How belief functions come into the picture

Belief functions become components of a decision problem in any of the following two situations (or both)

- The decision maker's subjective beliefs concerning the state of nature are described by a belief function Bel^Ω on Ω
- The DM is not able to precisely describe the outcomes of some acts under each state of nature

Case 1: uncertainty described by a belief function

- Let m^{Ω} be a mass function on Ω
- Any act *f* : Ω → C carries *m*^Ω to the set C of consequences, yielding a mass function *m*^C_f, which quantifies the DM's beliefs about the outcome of act *f*
- Each mass $m^{\Omega}(A)$ is transferred to f(A)

$$m_f^{\mathcal{C}}(B) = \sum_{\{A \subseteq \Omega: f(A) = B\}} m^{\Omega}(A)$$

for any $B \subseteq C$

m^C_f is a credibilistic lottery corresponding to act *f*

Case 2: partial knowledge of outcomes

- In that case, an act may formally be represented by a multi-valued mapping f : Ω → 2^C, assigning a set of possible consequences f(ω) ⊆ C to each state of nature ω
- Given a probability measure *P* on Ω, *f* then induces the following mass function *m*^C_f on C,

$$m^{\mathcal{C}}_{f}(\mathcal{B}) = \sum_{\{\omega \in \Omega: f(\omega) = \mathcal{B}\}} p(\omega)$$

for all $B \subseteq C$

Example

• Let $\Omega = \{\omega_1, \omega_2, \omega_3\}$ and m^{Ω} the following mass function

$$m^{\Omega}(\{\omega_1, \omega_2\}) = 0.3, \quad m^{\Omega}(\{\omega_2, \omega_3\}) = 0.2 m^{\Omega}(\{\omega_3\}) = 0.4, \qquad m^{\Omega}(\Omega) = 0.1$$

• Let $C = \{c_1, c_2, c_3\}$ and f the act

$$f(\omega_1) = \{c_1\}, \quad f(\omega_2) = \{c_1, c_2\}, \quad f(\omega_3) = \{c_2, c_3\}$$

• To compute m_t^c , we transfer the masses as follows

$$\begin{split} m^{\Omega}(\{\omega_{1},\omega_{2}\}) &= 0.3 \to f(\omega_{1}) \cup f(\omega_{2}) = \{c_{1},c_{2}\}\\ m^{\Omega}(\{\omega_{2},\omega_{3}\}) &= 0.2 \to f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\}\\ m^{\Omega}(\{\omega_{3}\}) &= 0.4 \to f(\omega_{3}) = \{c_{2},c_{3}\}\\ m^{\Omega}(\Omega) &= 0.1 \to f(\omega_{1}) \cup f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\} \end{split}$$

• Finally, we obtain the following mass function on $\ensuremath{\mathcal{C}}$

$$m^{\mathcal{C}}(\{c_1, c_2\}) = 0.3, \quad m^{\mathcal{C}}(\{c_2, c_3\}) = 0.4, \quad m^{\mathcal{C}}(\mathcal{C}) = 0.3$$

Decision problem

- In the two situations considered above, we can assign to each act f a credibilistic lottery, defined as a mass function on C
- Given a utility function *u* on *C*, we then need to extend the MEU model
- Several such extensions will now be reviewed

Upper and lower expectations

- Let *m* be a mass function on C, and *u* a utility function $C \to \mathbb{R}$
- The lower and upper expectations of *u* are defined, respectively, as the averages of the minima and the maxima of *u* within each focal set of *m*

$$\underline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \min_{c \in A} u(c)$$
$$\overline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \max_{c \in A} u(c)$$

- It is clear that $\underline{\mathbb{E}}_m(u) \leq \overline{\mathbb{E}}_m(u)$, with the inequality becoming an equality when *m* is Bayesian, in which case the lower and upper expectations collapse to the usual expectation
- If $m = m_A$ is logical with focal set A, then $\mathbb{E}_m(u)$ and $\mathbb{E}_m(u)$ are, respectively, the minimum and the maximum of u in A

Corresponding decision criteria

 Having defined the notions of lower and upper expectations, we can define two preference relations among credibilistic lotteries as

$$m_1 \geq m_2$$
 iff $\mathbb{E}_{m_1}(u) \geq \mathbb{E}_{m_2}(u)$

and

$$m_1 \succcurlyeq m_2 \text{ iff } \overline{\mathbb{E}}_{m_1}(u) \geq \overline{\mathbb{E}}_{m_2}(u)$$

- Relation <u>></u> corresponds to a pessimistic (or conservative) attitude of the DM. When *m* is logical, it corresponds to the maximin criterion
- Symmetrically, ≽ corresponds to an optimistic attitude and extends the maximax criterion
- Both criteria boil down to the MEU criterion when *m* is Bayesian

Generalized Hurwicz criterion

• The Hurwicz criterion can be generalized as

$$\mathbb{E}_{m,\alpha}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\alpha \min_{c \in A} u(c) + (1 - \alpha) \max_{c \in A} u(c) \right)$$
$$= \alpha \mathbb{E}_m(u) + (1 - \alpha) \mathbb{E}(u)$$

where $\alpha \in [0, 1]$ is a pessimism index

 This criterion was first introduced and justified axiomatically by Jaffray (1988)

Transferable belief model

- A completely different approach to decision-making with belief function was advocated by Smets, as part of the Transferable Belief Model
- Smets defended a two-level mental model
 - A credal level, where an agent's beliefs are represented by belief functions, and
 - A pignistic level, where decisions are made by maximizing the EU with respect to a probability measure derived from a belief function
- The rationale for introducing probabilities at the decision level is the avoidance of Dutch books
- Smets argued that the belief-probability transformation *T* should be linear, i.e., it should verify

$$T(\alpha m_1 + (1 - \alpha)m_2) = \alpha T(m_1) + (1 - \alpha)T(m_2),$$

for any mass functions m_1 and m_2 and for any $\alpha \in [0, 1]$

Pignistic transformation

• The only linear belief-probability transformation T is the pignistic transformation, with $p_m = T(m)$ given by

$$p_m(c) = \sum_{\{A \subseteq \mathcal{C}: c \in A\}} \frac{m(A)}{|A|}, \quad \forall c \in \mathcal{C}$$

The expected utility w.r.t. the pignistic probability is

$$\mathbb{E}_{p}(u) = \sum_{c \in \mathcal{C}} p_{m}(c)u(c) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\frac{1}{|A|} \sum_{c \in A} u(c)\right)$$

 The maximum pignistic expected utility criterion thus extends the Laplace criterion

Summary

non-probabilized		belief functions	probabilized
maximin	\longleftrightarrow	lower expectation	
maximax	\longleftrightarrow	upper expectation	
Laplace	\longleftrightarrow	pignistic expectation	expected utility
Hurwicz	\longleftrightarrow	generalized Hurwicz	

▲口→ ▲圖→ ▲理→ ▲理→