Theory of Belief Functions: Application to machine learning and statistical inference Lecture 3: Multinomial predictive belief function

Thierry Denœux

Summer 2023

Thierry Denœux

Lecture 3: Multinomial predictive belief function

Image: A matrix

Summer 2023 1 / 21

The problem

- Research on Belief Functions (Dempster-Shafer theory) → developing new tools for manipulating belief functions:
 - Combination rules,
 - Propagation in evidential networks,
 - General Bayesian Theorem, ...
- Where do the belief functions come from?
 - Expert opinions: belief function elicitation (see paper by Ben Yaghlane *et al.* in this conference);
 - Data: the topic of this talk.

Introductory example

- Consider an urn with white (ξ₁), red (ξ₂) and black (ξ₃) balls in proportions p₁, p₂ and p₃.
- Let X ∈ X = {ξ₁, ξ₂, ξ₃} be the color of a ball that will be drawn from the urn: belief on X?
- Two cases:
 - We know the proportions p_k : then $Bel^{\mathcal{X}}(\{\xi_k\}) = p_k$ (Hacking's Principle);
 - We have observed the result of *n* drawings from the urn with replacement, e.g. 5 white balls, 3 red balls and 2 black balls.
- How to build a belief function from data in the 2nd case ?

Formalization

- Discrete variable $X \in \mathcal{X} = \{\xi_1, \dots, \xi_K\}$ defined as the result of a random experiment.
- X is characterized by an unknown frequency (probability) distribution \mathbb{P}_X .
- $\mathbb{P}_{X}(A)$: limit frequency of the event $A \subseteq \mathcal{X}$ in an infinite sequence of trials.
- We have observed a realization \mathbf{x}_n of an iid random sample $X_n = (X_1, \dots, X_n)$ with parent distribution \mathbb{P}_X .
- Problem: build a belief function Bel^X [x_n] with well-defined properties with respect to the unknown frequency distribution P_X → predictive belief function.

ヘロト ヘヨト ヘヨト ヘヨ

Previous work

• Dempster (1966) provided a solution for the case K = 2:

$$m^{\mathcal{X}}(\{\xi_1\}) = \frac{N_1}{n+1}, \quad m^{\mathcal{X}}(\{\xi_2\}) = \frac{N_2}{n+1},$$
$$m^{\mathcal{X}}(\mathcal{X}) = \frac{1}{n+1},$$

with $N_k = \#\{i | X_i = \xi_k\}, N_1 + N_2 = n$.

- Same result obtained by Smets (1994) in the TBM framework.
- Both approaches become intractable when K > 2.

• • • • • • • • • • • • • •

Previous work (cont.)

- Same problem tackled by Walley (1996) in the imprecise probability framework → Imprecise Dirichlet Model (IDM).
- The obtained lower probability measure happens to be a belief function, with mass function:

$$m^{\mathcal{X}}(\{\xi_k\}|\mathbf{N}, s) = \frac{N_k}{n+s}, \quad k = 1, \dots, K,$$

$$m^{\mathcal{X}}(\mathcal{X}|\mathbf{N}, s) = \frac{s}{s+n},$$

with $N_k = \#\{i | X_i = \xi_k\}$ and s > 0.

Well justified in the IP framework, not in the BF framework.

New approach

- Let Bel^X [x_n] be the BF on X after observing a realization x_n of random sample X_n = (X₁,..., X_n).
- Which properties should $Bel^{\mathcal{X}}[\mathbf{x}_n]$ verify with respect to \mathbb{P}_X ?
- Hacking's principle (1965): if \mathbb{P}_X is know, then $Bel^{\mathcal{X}}[\mathbf{x}_n] = \mathbb{P}_X$.
- Weak version:

$$\forall A \subseteq \mathcal{X}, \quad Bel^{\mathcal{X}}[\mathbf{X}_n](A) \stackrel{P}{\longrightarrow} \mathbb{P}_X(A), \text{ as } n \to \infty.$$

(Requirement R_1)

New approach (continued)

Least Commitment Principle: for fixed *n*, *Bel*^𝔅 [**x**_n] should be less informative that ℙ_𝑋:

$$Bel^{\mathcal{X}}[\mathbf{x}_n](A) \leq \mathbb{P}_X(A), \quad \forall A \subseteq \mathcal{X}.$$

- This condition is too restrictive (it leads to the vacuous BF).
- Weaker condition (Requirement *R*₂):

 $\mathbb{P}(\operatorname{Bel}^{\mathcal{X}}[\mathbf{X}_n] \leq \mathbb{P}_X) \geq 1 - \alpha,$

for some $\alpha \in (0, 1)$.

ヘロト 人間 とくほとくほ

Meaning of Requirement R₂

$$\begin{split} \mathbf{x}_n &= (x_1, \dots, x_n) \to \mathcal{Bel}^{\mathcal{X}}[\mathbf{x}_n] \\ \mathbf{x}'_n &= (x'_1, \dots, x'_n) \to \mathcal{Bel}^{\mathcal{X}}[\mathbf{x}'_n] \\ \mathbf{x}''_n &= (x''_1, \dots, x''_n) \to \mathcal{Bel}^{\mathcal{X}}[\mathbf{x}''_n] \end{split}$$

.

- As the number of realizations of the random sample tends to ∞, the proportion of belief functions less committed than P_X should tend to 1 − α.
- To achieve this property: use of a multinomial confidence region.

Multinomial Confidence Region

- Let $N_k = \#\{i | X_i = \xi_k\}$. Vector $\mathbf{N} = (N_1, \dots, N_K)$ has a multinomial distribution $\mathcal{M}(n, p_1, \dots, p_K)$, with $p_k = \mathbb{P}_X(\{\xi_k\})$.
- Let S(N) ⊆ [0,1]^K a random region of [0,1]^K. It is a confidence region for p at level 1 − α if

$$\mathbb{P}(\mathcal{S}(\mathbf{N}) \ni \mathbf{p}) \geq 1 - \alpha.$$

- S(N) is an asymptotic confidence region if the above inequality holds in the limit as n → ∞.
- Simultaneous confidence intervals: $S(\mathbf{N}) = [P_1^-, P_1^+] \times \ldots \times [P_K^-, P_K^+]$

Multinomial Confidence Region (cont.)

• Goodman's simultaneous confidence intervals:

$$P_k^- = \frac{b + 2N_k - \sqrt{\Delta_k}}{2(n+b)},$$
$$P_k^+ = \frac{b + 2N_k + \sqrt{\Delta_k}}{2(n+b)},$$
with $b = \chi_{1;1-\alpha/K}^2$ and $\Delta_k = b\left(b + \frac{4N_k(n-N_k)}{n}\right).$

- 220 psychiatric patients categorized as either neurotic, depressed, schizophrenic or having a personality disorder.
- Observed counts: **n** = (91, 49, 37, 43).
- Goodman' confidence intervals at confidence level $1 \alpha = 0.95$:

Diagnosis	N _k /n	P_k^-	P_k^+
Neurotic	0.41	0.33	0.50
Depressed	0.22	0.16	0.30
Schizophrenic	0.17	0.11	0.24
Personality disorder	0.20	0.14	0.27

From ConfidenceRegions to Lower Probabilities

- To each p = (p₁,..., p_K) corresponds a probability measure ℙ_X.
- Consequently, S(N) may be seen as defining a family of probability measures, uniquely defined by the following lower probability measure:

$$\mathcal{P}^{-}(\mathcal{A}) = \max\left(\sum_{\xi_k \in \mathcal{A}} \mathcal{P}_k^{-}, 1 - \sum_{\xi_k
ot \in \mathcal{A}} \mathcal{P}_k^{+}
ight)$$

- P^- satisfies requirements R_1 and R_2 :
 - $P^-(A) \xrightarrow{P} \mathbb{P}_X(A)$ as $n \to \infty$, for all $A \subseteq \mathcal{X}$,
 - $\mathbb{P}(P^- \leq \mathbb{P}_X) \geq 1 \alpha$.

From lower probabilities to belief functions Case $K \leq 3$

- Is P⁻ a belief function ?
- If K = 2 or K = 3, P^- is a belief function.
- Case *K* = 2:

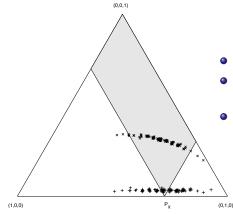
$$m^{\mathcal{X}}(\{\xi_1\}) = P_1^-, \quad m^{\mathcal{X}}(\{\xi_2\}) = P_2^-, \quad m^{\mathcal{X}}(\mathcal{X}) = 1 - P_1^- - P_2^-.$$

• With Goodman intervals:

$$m(\{\xi_1\}) \approx \widehat{p} - u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$
$$m(\{\xi_2\}) \approx 1 - \widehat{p} - u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$
$$m(\mathcal{X}) \approx 2u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},$$

where $\widehat{p} = N_1/n$.

Simulation example



- $K = 2, p_1 = \mathbb{P}_X(\{\xi_1\}) = 0.3.$
- 100 realizations of a random sample of size n = 30.
- 100 predictive belief functions at level $1 \alpha = 0.95$.

Image: Image:

From lower probabilities to belief functions Case K > 3

 If K > 3, P[−] is not a belief function in general. We can find the most committed belief function satisfying Bel ≤ P[−] by solving the following linear optimization problem:

$$\max_{m} J(m) = \sum_{A \subseteq \mathcal{X}} Bel(A) = \sum_{A \subseteq \mathcal{X}} \sum_{B \subseteq A} m(B)$$

subject to the constraints:

$$\sum_{B\subseteq A} m(B) \leq P^{-}(A), \quad \forall A \subset \mathcal{X}$$

$$\sum_{A\subseteq\mathcal{X}} m(A) = 1, \quad m(A) \ge 0, \quad \forall A \subseteq \mathcal{X}$$

 The solution satisfies requirements R₁ and R₂: it is a predictive belief function (at confidence level 1 – α).

Example: Psychiatric Data

A	$P^{-}(A)$	$Bel^{\mathcal{X}*}(A)$	$m^{\mathcal{X}*}(A)$
$\{\xi_1\}$	0.33	0.33	0.33
$\{\xi_2\}$	0.16	0.14	0.14
$\{\xi_1,\xi_2\}$	0.50	0.50	0.021
$\{\xi_3\}$	0.11	0.097	0.097
$\{\xi_1,\xi_3\}$	0.45	0.45	0.020
$\{\xi_2,\xi_3\}$	0.28	0.28	0.036
÷	÷	÷	÷
$\{\xi_1, \xi_3, \xi_4\}$	0.70	0.66	0.038
$\{\xi_2,\xi_3,\xi_4\}$	0.50	0.48	0.019
\mathcal{X}	1	1	0

Thierry Denœux

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Case of ordered data

- Assume \mathcal{X} is ordered: $\xi_1 < \ldots < \xi_K$.
- The focal sets of $Bel^{\mathcal{X}}[\mathbf{x}_n]$ can be constrained to be intervals $A_{k,r} = \{\xi_k, \dots, \xi_r\}.$
- Under this additional constraint, an analytical solution to the previous optimization problem can be found:

$$m^{\mathcal{X}*}(A_{k,k})=P_k^-$$

$$m^{\mathcal{X}*}(A_{k,k+1}) = P^{-}(A_{k,k+1}) - P^{-}(A_{k+1,k+1}) - P^{-}(A_{k,k}),$$

$$m^{\mathcal{X}*}(A_{k,r}) = P^{-}(A_{k,r}) - P^{-}(A_{k+1,r}) - P^{-}(A_{k,r-1}) + P^{-}(A_{k+1,r-1})$$

for $r > k + 1$, and $m^{\mathcal{X}*}(B) = 0$, for all $B \notin \mathcal{I}$.

Example: rain data

 January precipitation in Arizona (in inches), recorded during the period 1895-2004.

class ξ_k	n _k	n _k /n	p_k^-	p_k^+
< 0.75	48	0.44	0.32	0.56
[0.75, 1.25)	17	0.15	0.085	0.27
[1.25, 1.75)	19	0.17	0.098	0.29
[1.75, 2.25)	11	0.10	0.047	0.20
[2.25, 2.75)	6	0.055	0.020	0.14
≥ 2.75	9	0.082	0.035	0.18

 Degree of belief that the precipitation in Arizona next January will exceed, say, 2.25 inches?

Rain data: Result

$m(A_{k,r})$	1	2	3	4	5	6
1	0.32	0	0	0.13	0.11	0
2	-	0.085	0	0	0.012	0.14
3	-	-	0.098	0	0	0
4	-	-	-	0.047	0	0
5	-	-	-	-	0.020	0
6	-	-	-	-	-	0.035

- We get $Bel^{\mathcal{X}}(X \ge 2.25) = Bel^{\mathcal{X}*}(\{\xi_5, \xi_6\}) = 0.055$ and $pl(X \ge 2.25) = 0.317$.
- In 95 % of cases, the interval [Bel^X(A), Pl^X(A)] computed using this method contains P_X(A).

Conclusions

- A "frequentist" approach, based on multinomial confidence regions, for building a belief function quantifying the uncertainty about a discrete random variable X with unknown probability distribution, based on observed data.
- Two "reasonable" properties of the solution with respect to the true frequency distribution \mathbb{P}_X :
 - it is less committed than \mathbb{P}_X with some user-defined probability, and
 - it converges towards \mathbb{P}_X in probability as the size of the sample tends to infinity.
- Another approach based on the likelihood function will be described later.

