Theory of Belief Functions: Application to machine learning and statistical inference

Lecture 3: Multinomial predictive belief function

Thierry Denœux

Summer 2023

The problem

- Research on Belief Functions (Dempster-Shafer theory) \rightarrow developing new tools for manipulating belief functions:
- Combination rules,
- Propagation in evidential networks,
- General Bayesian Theorem, ...
- Where do the belief functions come from?
- Expert opinions: belief function elicitation (see paper by Ben Yaghlane et al. in this conference);
- Data: the topic of this talk.

Introductory example

- Consider an urn with white $\left(\xi_{1}\right)$, red $\left(\xi_{2}\right)$ and black $\left(\xi_{3}\right)$ balls in proportions p_{1}, p_{2} and p_{3}.
- Let $X \in \mathcal{X}=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ be the color of a ball that will be drawn from the urn: belief on X ?
- Two cases:
(1) We know the proportions p_{k} : then bel $^{\mathcal{X}}\left(\left\{\xi_{k}\right\}\right)=p_{k}$ (Hacking's Principle);
(2) We have observed the result of n drawings from the urn with replacement, e.g. 5 white balls, 3 red balls and 2 black balls.
- How to build a belief function from data in the 2nd case ?

Formalization

- Discrete variable $X \in \mathcal{X}=\left\{\xi_{1}, \ldots, \xi_{K}\right\}$ defined as the result of a random experiment.
- X is characterized by an unknown frequency (probability) distribution \mathbb{P}_{X}.
- $\mathbb{P}_{X}(A)$: limit frequency of the event $A \subseteq \mathcal{X}$ in an infinite sequence of trials.
- We have observed a realization \mathbf{x}_{n} of an iid random sample $X_{n}=\left(X_{1}, \ldots, X_{n}\right)$ with parent distribution \mathbb{P}_{X}.
- Problem: build a belief function be $l^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ with well-defined properties with respect to the unknown frequency distribution $\mathbb{P}_{X} \rightarrow$ predictive belief function.

Previous work

- Dempster (1966) provided a solution for the case $K=2$:

$$
\begin{gathered}
m^{\mathcal{X}}\left(\left\{\xi_{1}\right\}\right)=\frac{N_{1}}{n+1}, \quad m^{\mathcal{X}}\left(\left\{\xi_{2}\right\}\right)=\frac{N_{2}}{n+1}, \\
m^{\mathcal{X}}(\mathcal{X})=\frac{1}{n+1},
\end{gathered}
$$

with $N_{k}=\#\left\{i \mid X_{i}=\xi_{k}\right\}, N_{1}+N_{2}=n$.

- Same result obtained by Smets (1994) in the TBM framework.
- Both approaches become intractable when $K>2$.

Previous work (cont.)

- Same problem tackled by Walley (1996) in the imprecise probability framework \rightarrow Imprecise Dirichlet Model (IDM).
- The obtained lower probability measure happens to be a belief function, with mass function:

$$
\begin{aligned}
m^{\mathcal{X}}\left(\left\{\xi_{k}\right\} \mid \mathbf{N}, s\right) & =\frac{N_{k}}{n+s}, \quad k=1, \ldots, K, \\
m^{\mathcal{X}}(\mathcal{X} \mid \mathbf{N}, s) & =\frac{s}{s+n},
\end{aligned}
$$

with $N_{k}=\#\left\{i \mid X_{i}=\xi_{k}\right\}$ and $s>0$.

- Well justified in the IP framework, not in the BF framework.

New approach

- Let bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ be the BF on X after observing a realization \mathbf{x}_{n} of random sample $\mathbf{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$.
- Which properties should bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ verify with respect to \mathbb{P}_{X} ?
- Hacking's principle (1965): if \mathbb{P}_{X} is know, then bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]=\mathbb{P}_{X}$.
- Weak version:

$$
\forall A \subseteq \mathcal{X}, \quad \text { be } I^{\mathcal{X}}\left[\mathbf{X}_{n}\right](A) \xrightarrow{P} \mathbb{P}_{X}(A), \text { as } n \rightarrow \infty .
$$

(Requirement R_{1})

New approach (continued)

- Least Commitment Principle: for fixed n, bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ should be less informative that \mathbb{P}_{X} :

$$
b e l^{\mathcal{X}}\left[\mathbf{x}_{n}\right](A) \leq \mathbb{P}_{X}(A), \quad \forall A \subseteq \mathcal{X}
$$

- This condition is too restrictive (it leads to the vacuous BF).
- Weaker condition (Requirement R_{2}):

$$
\mathbb{P}\left(\text { be } l^{\mathcal{X}}\left[\mathbf{X}_{n}\right] \leq \mathbb{P}_{X}\right) \geq 1-\alpha,
$$

for some $\alpha \in(0,1)$.

Meaning of Requirement R_{2}

$$
\begin{aligned}
& \mathbf{x}_{n}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}\right] \\
& \mathbf{x}_{n}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}^{\prime}\right] \\
& \mathbf{x}_{n}^{\prime \prime}=\left(x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right) \rightarrow \operatorname{bel}^{\mathcal{X}}\left[\mathbf{x}_{n}^{\prime \prime}\right]
\end{aligned}
$$

- As the number of realizations of the random sample tends to ∞, the proportion of belief functions less committed than \mathbb{P}_{X} should tend to $1-\alpha$.
- To achieve this property: use of a multinomial confidence region.

Multinomial Confidence Region

- Let $N_{k}=\#\left\{i \mid X_{i}=\xi_{k}\right\}$. Vector $\mathbf{N}=\left(N_{1}, \ldots, N_{K}\right)$ has a multinomial distribution $\mathcal{M}\left(n, p_{1}, \ldots, p_{K}\right)$, with $p_{k}=\mathbb{P}_{X}\left(\left\{\xi_{k}\right\}\right)$.
- Let $\mathcal{S}(\mathbf{N}) \subseteq[0,1]^{K}$ a random region of $[0,1]^{K}$. It is a confidence region for \mathbf{p} at level $1-\alpha$ if

$$
\mathbb{P}(\mathcal{S}(\mathbf{N}) \ni \mathbf{p}) \geq 1-\alpha
$$

- $\mathcal{S}(\mathbf{N})$ is an asymptotic confidence region if the above inequality holds in the limit as $n \rightarrow \infty$.
- Simultaneous confidence intervals: $\mathcal{S}(\mathbf{N})=\left[P_{1}^{-}, P_{1}^{+}\right] \times \ldots \times\left[P_{K}^{-}, P_{K}^{+}\right]$

Multinomial Confidence Region (cont.)

- Goodman's simultaneous confidence intervals:

$$
\begin{aligned}
& P_{k}^{-}=\frac{b+2 N_{k}-\sqrt{\Delta_{k}}}{2(n+b)}, \\
& P_{k}^{+}=\frac{b+2 N_{k}+\sqrt{\Delta_{k}}}{2(n+b)},
\end{aligned}
$$

with $b=\chi_{1 ; 1-\alpha / K}^{2}$ and $\Delta_{k}=b\left(b+\frac{4 N_{k}\left(n-N_{k}\right)}{n}\right)$.

Example

- 220 psychiatric patients categorized as either neurotic, depressed, schizophrenic or having a personality disorder.
- Observed counts: $\mathbf{n}=(91,49,37,43)$.
- Goodman' confidence intervals at confidence level $1-\alpha=0.95$:

Diagnosis	N_{k} / n	P_{k}^{-}	P_{k}^{+}
Neurotic	0.41	0.33	0.50
Depressed	0.22	0.16	0.30
Schizophrenic	0.17	0.11	0.24
Personality disorder	0.20	0.14	0.27

From ConfidenceRegions to Lower Probabilities

- To each $\mathbf{p}=\left(p_{1}, \ldots, p_{K}\right)$ corresponds a probability measure \mathbb{P}_{X}.
- Consequently, $\mathcal{S}(\mathbf{N})$ may be seen as defining a family of probability measures, uniquely defined by the following lower probability measure:

$$
P^{-}(A)=\max \left(\sum_{\xi_{k} \in A} P_{k}^{-}, 1-\sum_{\xi_{k} \notin A} P_{k}^{+}\right)
$$

- P^{-}satisfies requirements R_{1} and R_{2} :
- $P^{-}(A) \xrightarrow{P} \mathbb{P}_{X}(A)$ as $n \rightarrow \infty$, for all $A \subseteq \mathcal{X}$,
- $\mathbb{P}\left(P^{-} \leq \mathbb{P}_{X}\right) \geq 1-\alpha$.

From lower probabilities to belief functions

Case $K \leq 3$

- Is P^{-}a belief function?
- If $K=2$ or $K=3, P^{-}$is a belief function.
- Case $K=2$:

$$
m^{\mathcal{X}}\left(\left\{\xi_{1}\right\}\right)=P_{1}^{-}, \quad m^{\mathcal{X}}\left(\left\{\xi_{2}\right\}\right)=P_{2}^{-}, \quad m^{\mathcal{X}}(\mathcal{X})=1-P_{1}^{-}-P_{2}^{-} .
$$

- With Goodman intervals:

$$
\begin{aligned}
m\left(\left\{\xi_{1}\right\}\right) & \approx \widehat{p}-u_{1-\alpha / 2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \\
m\left(\left\{\xi_{2}\right\}\right) & \approx 1-\widehat{p}-u_{1-\alpha / 2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \\
m(\mathcal{X}) & \approx 2 u_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\widehat{p})}{n}},
\end{aligned}
$$

where $\widehat{p}=N_{1} / n$.

Simulation example

From lower probabilities to belief functions

Case $K>3$

- If $K>3, P^{-}$is not a belief function in general. We can find the most committed belief function satisfying bel $\leq P^{-}$by solving the following linear optimization problem:

$$
\max _{m} J(m)=\sum_{A \subseteq \Omega} b e l(A)=\sum_{A \subseteq \Omega} \sum_{B \subseteq A} m(B)
$$

under the constraints:

$$
\begin{gathered}
\sum_{B \subseteq A} m(B) \leq P^{-}(A), \quad \forall A \subset \Omega, \\
\sum_{A \subseteq \Omega} m(A)=1, \quad m(A) \geq 0, \quad \forall A \subseteq \Omega .
\end{gathered}
$$

- The solution satisfies requirements R_{1} and R_{2} : it is a predictive belief function (at confidence level $1-\alpha$).

Example: Psychiatric Data

A	$P^{-}(A)$	bel $^{\mathcal{X} *}(A)$	$m^{\mathcal{X}^{*}}(A)$
$\left\{\xi_{1}\right\}$	0.33	0.33	0.33
$\left\{\xi_{2}\right\}$	0.16	0.14	0.14
$\left\{\xi_{1}, \xi_{2}\right\}$	0.50	0.50	0.021
$\left\{\xi_{3}\right\}$	0.11	0.097	0.097
$\left\{\xi_{1}, \xi_{3}\right\}$	0.45	0.45	0.020
$\left\{\xi_{2}, \xi_{3}\right\}$	0.28	0.28	0.036
\vdots	\vdots	\vdots	\vdots
$\left\{\xi_{1}, \xi_{3}, \xi_{4}\right\}$	0.70	0.66	0.038
$\left\{\xi_{2}, \xi_{3}, \xi_{4}\right\}$	0.50	0.48	0.019
\mathcal{X}	1	1	0

Case of ordered data

- Assume \mathcal{X} is ordered: $\xi_{1}<\ldots<\xi_{K}$.
- The focal sets of bel ${ }^{\mathcal{X}}\left[\mathbf{x}_{n}\right]$ can be constrained to be intervals $A_{k, r}=\left\{\xi_{k}, \ldots, \xi_{r}\right\}$.
- Under this additional constraint, an analytical solution to the previous optimization problem can be found:

$$
\begin{gathered}
m^{\mathcal{X} *}\left(A_{k, k}\right)=P_{k}^{-} \\
m^{\mathcal{X} *}\left(A_{k, k+1}\right)=P^{-}\left(A_{k, k+1}\right)-P^{-}\left(A_{k+1, k+1}\right)-P^{-}\left(A_{k, k}\right), \\
m^{\mathcal{X} *}\left(A_{k, r}\right)=P^{-}\left(A_{k, r}\right)-P^{-}\left(A_{k+1, r}\right)-P^{-}\left(A_{k, r-1}\right)+P^{-}\left(A_{k+1, r-1}\right)
\end{gathered}
$$

for $r>k+1$, and $m^{\mathcal{X} *}(B)=0$, for all $B \notin \mathcal{I}$.

Example: rain data

- January precipitation in Arizona (in inches), recorded during the period 1895-2004.

class ξ_{k}	n_{k}	n_{k} / n	p_{k}^{-}	p_{k}^{+}
<0.75	48	0.44	0.32	0.56
$[0.75,1.25)$	17	0.15	0.085	0.27
$[1.25,1.75)$	19	0.17	0.098	0.29
$[1.75,2.25)$	11	0.10	0.047	0.20
$[2.25,2.75)$	6	0.055	0.020	0.14
≥ 2.75	9	0.082	0.035	0.18

- Degree of belief that the precipitation in Arizona next January will exceed, say, 2.25 inches?

Rain data: Result

$m\left(A_{k, r}\right)$	1	2	3	4	5	6
1	0.32	0	0	0.13	0.11	0
2	-	0.085	0	0	0.012	0.14
3	-	-	0.098	0	0	0
4	-	-	-	0.047	0	0
5	-	-	-	-	0.020	0
6	-	-	-	-	-	0.035

- We get bel ${ }^{\mathcal{X}}(X \geq 2.25)=$ bel $^{\mathcal{X} *}\left(\left\{\xi_{5}, \xi_{6}\right\}\right)=0.055$ and $p l(X \geq 2.25)=0.317$.
- In 95% of cases, the interval $\left[b e I^{\mathcal{X}}(A), p I^{\mathcal{X}}(A)\right]$ computed using this method contains $\mathbb{P}_{X}(A)$.

Conclusions

- A "frequentist" approach, based on multinomial confidence regions, for building a belief function quantifying the uncertainty about a discrete random variable X with unknown probability distribution, based on observed data.
- Two "reasonable" properties of the solution with respect to the true frequency distribution \mathbb{P}_{X} :
- it is less committed than \mathbb{P}_{X} with some user-defined probability, and
- it converges towards \mathbb{P}_{X} in probability as the size of the sample tends to infinity.
- Another approach based on the likelihood function will be described later.

