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The problem

Research on Belief Functions (Dempster-Shafer theory)→ developing
new tools for manipulating belief functions:

Combination rules,
Propagation in evidential networks,
General Bayesian Theorem, ...

Where do the belief functions come from?
Expert opinions: belief function elicitation (see paper by Ben Yaghlane et al.
in this conference);
Data: the topic of this talk.
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Introductory example

Consider an urn with white (ξ1), red (ξ2) and black (ξ3) balls in proportions
p1, p2 and p3.
Let X ∈ X = {ξ1, ξ2, ξ3} be the color of a ball that will be drawn from the
urn: belief on X?
Two cases:

1 We know the proportions pk : then belX ({ξk}) = pk ( Hacking’s Principle);
2 We have observed the result of n drawings from the urn with replacement,

e.g. 5 white balls, 3 red balls and 2 black balls.

How to build a belief function from data in the 2nd case ?
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Formalization

Discrete variable X ∈ X = {ξ1, . . . , ξK} defined as the result of a random
experiment.
X is characterized by an unknown frequency (probability) distribution PX .
PX (A): limit frequency of the event A ⊆ X in an infinite sequence of trials.
We have observed a realization xn of an iid random sample
Xn = (X1, . . . ,Xn) with parent distribution PX .
Problem: build a belief function belX [xn] with well-defined properties
with respect to the unknown frequency distribution PX → predictive belief
function.
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Previous work

Dempster (1966) provided a solution for the case K = 2:

mX ({ξ1}) =
N1

n + 1
, mX ({ξ2}) =

N2

n + 1
,

mX (X ) =
1

n + 1
,

with Nk = #{i |Xi = ξk}, N1 + N2 = n.
Same result obtained by Smets (1994) in the TBM framework.
Both approaches become intractable when K > 2.
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Previous work (cont.)

Same problem tackled by Walley (1996) in the imprecise probability
framework→ Imprecise Dirichlet Model (IDM).
The obtained lower probability measure happens to be a belief function,
with mass function:

mX ({ξk}|N, s) =
Nk

n + s
, k = 1, . . . ,K ,

mX (X|N, s) =
s

s + n
,

with Nk = #{i |Xi = ξk} and s > 0.
Well justified in the IP framework, not in the BF framework.
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New approach

Let belX [xn] be the BF on X after observing a realization xn of random
sample Xn = (X1, . . . ,Xn).
Which properties should belX [xn] verify with respect to PX ?
Hacking’s principle (1965): if PX is know, then belX [xn] = PX .
Weak version:

∀A ⊆ X , belX [Xn](A)
P−→ PX (A), as n→∞.

(Requirement R1)
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New approach (continued)

Least Commitment Principle: for fixed n, belX [xn] should be less
informative that PX :

belX [xn](A) ≤ PX (A), ∀A ⊆ X .

This condition is too restrictive (it leads to the vacuous BF).
Weaker condition (Requirement R2):

P(belX [Xn] ≤ PX ) ≥ 1− α,

for some α ∈ (0,1).
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Meaning of Requirement R2

xn = (x1, . . . , xn)→ belX [xn]

x′n = (x ′1, . . . , x
′
n)→ belX [x′n]

x′′n = (x ′′1 , . . . , x
′′
n )→ belX [x′′n ]

...

As the number of realizations of the random sample tends to∞, the
proportion of belief functions less committed than PX should tend to 1−α.
To achieve this property: use of a multinomial confidence region.
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Multinomial Confidence Region

Let Nk = #{i |Xi = ξk}. Vector N = (N1, . . . ,NK ) has a multinomial
distributionM(n,p1, . . . ,pK ), with pk = PX ({ξk}).
Let S(N) ⊆ [0,1]K a random region of [0,1]K . It is a confidence region for
p at level 1− α if

P(S(N) 3 p) ≥ 1− α.

S(N) is an asymptotic confidence region if the above inequality holds in
the limit as n→∞.
Simultaneous confidence intervals: S(N) = [P−1 ,P

+
1 ]× . . .× [P−K ,P

+
K ]
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Multinomial Confidence Region (cont.)

Goodman’s simultaneous confidence intervals:

P−k =
b + 2Nk −

√
∆k

2(n + b)
,

P+
k =

b + 2Nk +
√

∆k

2(n + b)
,

with b = χ2
1;1−α/K and ∆k = b

(
b + 4Nk (n−Nk )

n

)
.
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Example

220 psychiatric patients categorized as either neurotic, depressed,
schizophrenic or having a personality disorder.
Observed counts: n = (91,49,37,43).
Goodman’ confidence intervals at confidence level 1− α = 0.95:

Diagnosis Nk/n P−k P+
k

Neurotic 0.41 0.33 0.50
Depressed 0.22 0.16 0.30
Schizophrenic 0.17 0.11 0.24
Personality disorder 0.20 0.14 0.27
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From ConfidenceRegions to Lower Probabilities

To each p = (p1, . . . ,pK ) corresponds a probability measure PX .
Consequently, S(N) may be seen as defining a family of probability
measures, uniquely defined by the following lower probability measure:

P−(A) = max

∑
ξk∈A

P−k ,1−
∑
ξk 6∈A

P+
k


P− satisfies requirements R1 and R2:

P−(A) P−→ PX (A) as n→∞, for all A ⊆ X ,
P(P− ≤ PX ) ≥ 1− α.
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From lower probabilities to belief functions
Case K ≤ 3

Is P− a belief function ?
If K = 2 or K = 3, P− is a belief function.
Case K = 2:

mX ({ξ1}) = P−1 , mX ({ξ2}) = P−2 , mX (X ) = 1− P−1 − P−2 .

With Goodman intervals:

m({ξ1}) ≈ p̂ − u1−α/2

√
p̂(1− p̂)

n

m({ξ2}) ≈ 1− p̂ − u1−α/2

√
p̂(1− p̂)

n

m(X ) ≈ 2u1−α/2

√
p̂(1− p̂)

n
,

where p̂ = N1/n.
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Simulation example

(1,0,0) (0,1,0)

(0,0,1)

PX

K = 2, p1 = PX ({ω1}) = 0.3.
100 realizations of a random sample of
size n = 30.
100 predictive belief functions at level
1− α = 0.95.
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From lower probabilities to belief functions
Case K > 3

If K > 3, P− is not a belief function in general. We can find the most
committed belief function satisfying bel ≤ P− by solving the following
linear optimization problem:

max
m

J(m) =
∑
A⊆Ω

bel(A) =
∑
A⊆Ω

∑
B⊆A

m(B)

under the constraints:∑
B⊆A

m(B) ≤ P−(A), ∀A ⊂ Ω,

∑
A⊆Ω

m(A) = 1, m(A) ≥ 0, ∀A ⊆ Ω .

The solution satisfies requirements R1 and R2: it is a predictive belief
function (at confidence level 1− α).
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Example: Psychiatric Data

A P−(A) belX∗(A) mX∗(A)
{ξ1} 0.33 0.33 0.33
{ξ2} 0.16 0.14 0.14
{ξ1, ξ2} 0.50 0.50 0.021
{ξ3} 0.11 0.097 0.097
{ξ1, ξ3} 0.45 0.45 0.020
{ξ2, ξ3} 0.28 0.28 0.036

...
...

...
...

{ξ1, ξ3, ξ4} 0.70 0.66 0.038
{ξ2, ξ3, ξ4} 0.50 0.48 0.019
X 1 1 0
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Case of ordered data

Assume X is ordered: ξ1 < . . . < ξK .
The focal sets of belX [xn] can be constrained to be intervals
Ak,r = {ξk , . . . , ξr}.
Under this additional constraint, an analytical solution to the previous
optimization problem can be found:

mX∗(Ak,k ) = P−k ,

mX∗(Ak,k+1) = P−(Ak,k+1)− P−(Ak+1,k+1)− P−(Ak,k ),

mX∗(Ak,r ) = P−(Ak,r )− P−(Ak+1,r )− P−(Ak,r−1) + P−(Ak+1,r−1)

for r > k + 1, and mX∗(B) = 0, for all B 6∈ I.
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Example: rain data

January precipitation in Arizona (in inches), recorded during the period
1895-2004.

class ξk nk nk/n p−k p+
k

< 0.75 48 0.44 0.32 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.17 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,2.75) 6 0.055 0.020 0.14
≥ 2.75 9 0.082 0.035 0.18

Degree of belief that the precipitation in Arizona next January will exceed,
say, 2.25 inches?
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Rain data: Result

m(Ak,r ) 1 2 3 4 5 6
1 0.32 0 0 0.13 0.11 0
2 - 0.085 0 0 0.012 0.14
3 - - 0.098 0 0 0
4 - - - 0.047 0 0
5 - - - - 0.020 0
6 - - - - - 0.035

We get belX (X ≥ 2.25) = belX∗({ξ5, ξ6}) = 0.055 and
pl(X ≥ 2.25) = 0.317.
In 95 % of cases, the interval [belX (A),plX (A)] computed using this
method contains PX (A).
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Conclusions

A “frequentist” approach, based on multinomial confidence regions, for
building a belief function quantifying the uncertainty about a discrete
random variable X with unknown probability distribution, based on
observed data.
Two “reasonable” properties of the solution with respect to the true
frequency distribution PX :

it is less committed than PX with some user-defined probability, and
it converges towards PX in probability as the size of the sample tends to
infinity.

Another approach based on the likelihood function will be described later.
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