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The problem

@ Research on Belief Functions (Dempster-Shafer theory) — developing
new tools for manipulating belief functions:
o Combination rules,
@ Propagation in evidential networks,
o General Bayesian Theorem, ...

@ Where do the belief functions come from?

o Expert opinions: belief function elicitation (see paper by Ben Yaghlane et al.
in this conference);
e Data: the topic of this talk.
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Introductory example

@ Consider an urn with white (&), red (&2) and black (£3) balls in proportions
pi, p2 and ps.

@ Let X € X = {&1,&, &} be the color of a ball that will be drawn from the
urn: belief on X?

@ Two cases:

@ We know the proportions px: then bel™ ({¢x}) = p« ( Hacking’s Principle);
@ We have observed the result of n drawings from the urn with replacement,
e.g. 5 white balls, 3 red balls and 2 black balls.

@ How to build a belief function from data in the 2nd case ?
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I
Formalization

@ Discrete variable X € X = {4, ..., &k} defined as the result of a random
experiment.

@ X is characterized by an unknown frequency (probability) distribution Py.
@ Px(A): limit frequency of the event A C X in an infinite sequence of trials.

@ We have observed a realization x,, of an iid random sample
Xn = (Xi,..., Xy) with parent distribution Py.

@ Problem: build a belief function bel* [x,] with well-defined properties
with respect to the unknown frequency distribution Px — predictive belief
function.
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Previous work

@ Dempster (1966) provided a solution for the case K = 2:

ma)) = o M) = - e
() =

with Ny = #{I|)(, = gk}, Ni +No = n.
@ Same result obtained by Smets (1994) in the TBM framework.
@ Both approaches become intractable when K > 2.
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Previous work (cont.)

@ Same problem tackled by Walley (1996) in the imprecise probability
framework — Imprecise Dirichlet Model (IDM).

@ The obtained lower probability measure happens to be a belief function,
with mass function:

Ni

X(U&IN,s) = k=1,....K

MGG = T k=1 K,
mY(XIN,s) = —>
S+n

with N = #{i|X; = &} and s > 0.
@ Well justified in the IP framework, not in the BF framework.

Thierry Denceux Lecture 3: Multinomial predictive belief function Summer 2023 6/21



|
New approach

@ Let bel*[x,] be the BF on X after observing a realization x,, of random
sample X, = (X, ..., Xp).

@ Which properties should bel”* [x,] verify with respect to Px ?
@ Hacking's principle (1965): if Px is know, then bel” [x,] = Px.
@ Weak version:

VAC X, bel*[Xq)(A) 5 Px(A), as n — oc.

(Requirement Ry)
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New approach (continued)

@ Least Commitment Principle: for fixed n, bel*[x,] should be less
informative that Py:

bel™[x,](A) < Px(A), VAC X.

@ This condition is too restrictive (it leads to the vacuous BF).
@ Weaker condition (Requirement Ry):

P(bel®[X,] <Px) >1—a,

for some o € (0, 1).
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Meaning of Requirement R»

Xp = (X1,...,X) — bel™[x,]
X, = (X{,...,x},) — bel*[x}]

Xp = (x{,...,x}) — bel™[x}]

@ As the number of realizations of the random sample tends to ~o, the
proportion of belief functions less committed than Px should tendto 1 — a.

@ To achieve this property: use of a multinomial confidence region.
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Multinomial Confidence Region

o Let N = #{i|Xi = &}. Vector N = (N, ..., Nk) has a multinomial
distribution M(n, p1, ..., pk), with px = Px({&}).

@ Let S(N) C [0, 1]X a random region of [0, 1]¥. Itis a confidence region for
p atlevel 1 — « if
P(S(N)>p)>1—-a.

@ S(N) is an asymptotic confidence region if the above inequality holds in
the limit as n — oc.

@ Simultaneous confidence intervals: S(N) = [Py, P{] x ... x [Py, P
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Multinomial Confidence Region (cont.)

@ Goodman’s simultaneous confidence intervals:

P—_b+2Nk_\/Ak
kK= 2(n+b)
P+_b+2Nk+\/Ak
kK= 2(n+b)

with b= x3,_, x and Ax = b (b+ M{;Nﬁ)
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Example

@ 220 psychiatric patients categorized as either neurotic, depressed,
schizophrenic or having a personality disorder.

@ Observed counts: n = (91,49, 37,43).

@ Goodman’ confidence intervals at confidence level 1 — o« = 0.95:

Diagnosis Ne/n P P/

Neurotic 0.41 0.33 0.50

Depressed 022 0.16 0.30

Schizophrenic 0.17 0.11 0.24

Personality disorder 0.20 0.14 0.27
Lecture 3: Multinomial predictive belief function

O\
A

W
L\l

-~

Summer 2023 12/21



-
From ConfidenceRegions to Lower Probabilities

@ Toeach p = (py,...,pk) corresponds a probability measure Py.

@ Consequently, S(N) may be seen as defining a family of probability
measures, uniquely defined by the following lower probability measure:

P=(Ay=max | Y P 1-> Pf
EkEA EkZA

@ P~ satisfies requirements Ry and R.:

o P (A) L5 Px(A)as n— oo, forall AC X,
o P(P~<Px)>1-a.

Thierry Denceux Lecture 3: Multinomial predictive belief function Summer 2023 13/21



From lower probabilities to belief functions
Case K <3

@ Is P~ a belief function ?
@ If K=2o0r K =3, P is a belief function.
@ Case K=2:

m*({&h) =Py, m*({&}) =Py, m¥(X)=1-P —P;.

@ With Goodman intervals:

m({&}) =P — Ui_ay2 p(1 n_ p)
m{&h) ~ 1 —P—tr_ujoy) U - p)
m(X) ~ 2042 p(1 = P).
where p = N;/n. ~1 ,:;
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Simulation example

(0,0,1)

o K= 2, P = Px({W1}) =0.3.

@ 100 realizations of a random sample of
size n = 30.

@ 100 predictive belief functions at level
1—a=0.95.

(1,0,0) Py (0,1,0)
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From lower probabilities to belief functions
Case K > 3

@ If K > 3, P~ is not a belief function in general. We can find the most
committed belief function satisfying bel < P~ by solving the following
linear optimization problem:

max J(m Zbe/ ZZmB

ACQ ACQ BCA

under the constraints:

ACQ

@ The solution satisfies requirements Ry and Ry: it is a predictive belief =<
function (at confidence level 1 — «). N\

Thierry Denceux Lecture 3: Multinomial predictive belief function Summer 2023 16/21



-
Example: Psychiatric Data

A P=(A) bel**(A) m**(A)
{&} 0.33 0.33 0.33
{&) 0.16 0.14 0.14

{&, &} 0.50 0.50 0.021
{&} 0.11 0.097 0.097

{&1, &) 0.45 0.45 0.020
{&, &} 0.28 0.28 0.036

{&1,&3,&}) 0.70 0.66 0.038
{&,8&3,8})  0.50 0.48 0.019
X 1 1 0
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Case of ordered data

@ Assume X is ordered: & < ... < &k.
@ The focal sets of bel* [x,] can be constrained to be intervals

A = {&ks - &)
@ Under this additional constraint, an analytical solution to the previous
optimization problem can be found:

m**(Acx) = Py ,
m™** (Ax, k+1) = Pi(Ak k+1) — P (Axs1,641) — P (A k),
m** (Acr) = P~ (Acr) — P~ (Aksrr) — P (Akr—1) + P~ (Akt,r—1)
forr > k+1,and m**(B) =0, for all B¢ T.
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Example: rain data

@ January precipitation in Arizona (in inches), recorded during the period

1895-2004.
classé&  nx  n/n pg [
< 0.75 48 044 032 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.7 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,275) 6 0.055 0.020 0.14
>2.75 9 0.082 0.035 0.18

@ Degree of belief that the precipitation in Arizona next January will exceed,

say, 2.25 inches?
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N
Rain data: Result

mAk,) | 1 2 3 4 5 6
1 032 0 0 013 041 0
2 - 0085 0 0 0012 014
3 - - 0098 0 0 0
4 - - - 0047 O 0
5 - - - - 0020 ©
6 - - - - - 0035

@ We get bel* (X > 2.25) = bel**({¢&s,&}) = 0.055 and
pl(X > 2.25) = 0.317.

@ In 95 % of cases, the interval [bel* (A), p/* (A)] computed using this
method contains Px(A).
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Conclusions

@ A “frequentist” approach, based on multinomial confidence regions, for
building a belief function quantifying the uncertainty about a discrete
random variable X with unknown probability distribution, based on
observed data.

@ Two “reasonable” properties of the solution with respect to the true
frequency distribution Py:

e itis less committed than Px with some user-defined probability, and
e it converges towards Py in probability as the size of the sample tends to
infinity.

@ Another approach based on the likelihood function will be described later.
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