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Uncertainty

Topic of this course: modeling and propagation of uncertainty.

“There are some things that you know to be true, and others that you
know to be false; yet, despite this extensive knowledge that you have,
there remain many things whose truth or falsity is not known to you. We
say that you are uncertain about them. You are uncertain, to varying
degrees, about everything in the future; much of the past is hidden from
you; and there is a lot of the present about which you do not have full
information. Uncertainty is everywhere and you cannot escape from it.”

Dennis Lindley, “Understanding uncertainty”.

Classical formalisms:
1 Probabilities
2 Sets
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Inability of probabilities to represent ignorance

Consider the question: “Are there or are there not living beings in orbit
around the star Sirius”?
The set of possibilities can be denoted by Θ = {θ1, θ2}, where

θ1 is the possibility that there is life
θ2 is the possibility that there is not

As we are completely ignorant about this question, the probabilities
should be

p(θ1) = p(θ2) = 1/2
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Inability of probabilities to represent ignorance
(continued)

We could also have considered a refined set of possibilities, such as
Ω = {ω1, ω2, ω3}, where

ω1 corresponds to the possibility that there is life around Sirius
ω2 corresponds to the possibility that there are planets but no life, and
ω3 corresponds to the possibility that there are not even planets

With this new set of probabilities, complete ignorance is represented by

p(ω1) = p(ω2) = p(ω3) = 1/3

But θ1 has the same meaning as ω1 and θ2 has the same meaning as
{ω2, ω3}, so the probability distributions on Θ and Ω are inconsistent.
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Inability of sets to express doubt

Sometimes, uncertain information about a variable X can be expressed
by a set A.
For instance: what is the temperature in this room?
In particular, interval analysis uses intervals, which can be propagated in
equations.
For instance, if X ∈ [x , x ] and Y ∈ [y , y ], then

X + Y ∈ [x + y , x + y ]

The meaning of X ∈ [x , x ] is that X is guaranteed to belong to this
interval.
As we cannot express doubt, we need to be very conservative and select
wide intervals. These intervals grow even bigger when they are
propagated in equations, making the final results sometimes useless.
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What we will study in this course

A mathematical formalism called
Dempster-Shafer (DS) theory
Evidence theory
Theory of belief functions

This formalism was introduced by A. P. Dempster in the 1960’s for
statistical inference, and developed by G. Shafer in the late 1970’s into a
general theory for reasoning under uncertainty.
DS encompasses probability theory and set-membership approaches
such as interval analysis as special cases: it is very general.
Many applications in AI (expert systems, machine learning), engineering
(information fusion, uncertainty quantification, risk analysis), etc.
Recently, there has been a revived interested in its application to
Statistical Inference and Computational Statistics (classification,
clustering).
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Representation of evidence Mass functions

Mass function
Definition

Let X be a variable taking one and only one value in a finite set Ω, called
the frame of discernment
Evidence (uncertain information) about X can be represented by a mass
function m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1

Every subset A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
throughout this course, unless otherwise specified.
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Representation of evidence Mass functions

Example

Consider the road scene analysis example. Let X be the type of object in
some region of the image, and Ω = {G,R,T ,O,S}, corresponding to the
possibilities Grass, Road, Tree/Bush, Obstacle, Sky
Assume that a lidar sensor (laser telemeter) returns the information
X ∈ {T ,O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).
How to represent this information by a mass function?
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Representation of evidence Mass functions

Analysis

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	
T	
O	

G	
R	

S	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ {T ,O}.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m({T ,O}) = 0.9, m(Ω) = 0.1

Thierry Denœux BF - Basic notions August 2019 11 / 72



Representation of evidence Mass functions

Source

A mass function m on Ω may be viewed as arising from
A set S = {s1, . . . , sr} of states (interpretations)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m
Meaning: under interpretation si , the evidence tells us that X ∈ Γ(si ), and
nothing more. The probability P({si}) is transferred to Ai = Γ(si )

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence
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Representation of evidence Mass functions

Mass functions
Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function mA such that mA(A) = 1

mA is equivalent to A
Special case: m?, the vacuous mass function, represents total ignorance

If all focal sets of m are singletons and m is said to be Bayesian. It is
equivalent to a probability distribution
A Dempster-Shafer mass function can thus be seen as

a generalized set
a generalized probability distribution
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Representation of evidence Belief and plausibility functions
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Representation of evidence Belief and plausibility functions

Belief function

If the evidence tells us that the truth is in B, and B ⊆ A, we say that the
evidence supports A.

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

Given a normalized mass function
m, the probability that the
evidence supports B is thus

Bel(A) =
∑
B⊆A

m(B)

The number Bel(A) is called the
credibility of A, or the degree of
belief in A, and the function
A→ Bel(A) is called a belief
function.

Property: Bel(∅) = 0, Bel(Ω) = 1.
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Representation of evidence Belief and plausibility functions

Plausibility function

If the evidence does not support A, it is consistent with A.

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The probability that the evidence
is consistent with B is thus

Pl(A) = 1− Bel(A)

=
∑

B∩A 6=∅

m(B).

The number Pl(A) is called the
plausibility of A, and the function
A→ Pl(A) is called a plausibility
function.

Property: Pl(∅) = 0, Pl(Ω) = 1.
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m = m? is
vacuous: then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then,

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Road scene analysis example

We had Ω = {G,R,T ,O,S} and

m({T ,O}) = 0.9, m(Ω) = 0.1

What are the credibility and the plausibility that the region corresponds /
does not correspond to a tree?

Bel({T}) = 0, Pl({T}) = 0.9 + 0.1 = 1

Bel({T}) = 0, Pl({T}) = 1

But Bel({T} ∪ {T}) = Bel(Ω) = 1 and Pl({T} ∪ {T}) = Pl(Ω) = 1.
We observe that

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)
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Representation of evidence Belief and plausibility functions

Characterization of belief and plausibility functions
Belief function

Function Bel is a completely monotone capacity: it verifies Bel(∅) = 0,
Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω

Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω
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Representation of evidence Belief and plausibility functions

Characterization of belief and plausibility functions
Plausibility function

A function Pl : 2Ω → [0,1] is a plausibility function iff it is a completely
alternating capacity, i.e., iff it satisfies the following conditions:

1 Pl(∅) = 0;
2 Pl(Ω) = 1;
3 For any k ≥ 2 and any collection A1, . . . ,Ak of subsets of Ω,

Pl

(
k⋂

i=1

Ai

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
.
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Representation of evidence Belief and plausibility functions

Relations between m, Bel et Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel et Pl are thus three equivalent representations of
a piece of evidence or, equivalently
a state of belief induced by this evidence
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Representation of evidence Consonant belief functions
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Representation of evidence Consonant belief functions

Consonant mass function

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant
The following relations then hold, for all A,B ⊆ Ω,

Bel(A ∩ B) = min (Bel(A),Bel(B))

Pl(A ∪ B) = max (Pl(A),Pl(B))

Pl is said to be a possibility measure, and Bel is the dual necessity
measure
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Representation of evidence Consonant belief functions

Proof
For any A,B ⊆ Ω, let i1 and i2 be the largest indices such that Ai ⊆ A and
Ai ⊆ B, respectively. Then, Ai ⊆ A ∩ B iff i ≤ min(i1, i2) and

Bel(A ∩ B) =

min(i1,i2)∑
i=1

m(Ai )

= min

(
i1∑

i=1

m(Ai ),

i2∑
i=1

m(Ai )

)
= min(Bel(A),Bel(B)).

Now, from the equality A ∪ B = A ∩ B, we have

Pl(A ∪ B) = 1− Bel(A ∪ B)

= 1− Bel(A ∩ B)

= 1−min(Bel(A),Bel(B))

= max(1− Bel(A),1− Bel(B))

= max(Pl(A),Pl(B)).
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Representation of evidence Consonant belief functions

Contour function

The contour function of a belief function Bel is defined by

pl(ω) = Pl({ω}), ∀ω ∈ Ω

When Bel is consonant, it can be recovered from its contour function,

Pl(A) = max
ω∈A

pl(ω).

Bel(A) = 1− Pl(A) = 1−max
ω 6∈A

pl(ω) = min
ω 6∈A

(1− pl(ω)).

Thierry Denœux BF - Basic notions August 2019 25 / 72



Representation of evidence Consonant belief functions

From the contour function to the mass function

ω1	 ω2	 ω3	 ω4	

A1	
A2	

A3	
A4=Ω

Let pl be a contour function on the frame Ω = {ω1, . . . , ωn}, with elements
arranged by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Then, the corresponding mass function m is

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1,
m(Ω) = pl(ωn).
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Representation of evidence Consonant belief functions

Example

Consider, for instance, the following contour distribution defined on the
frame Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Representation of evidence Refinement and coarsening
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Representation of evidence Refinement and coarsening

Example

Let us come back to the road scene analysis example, with
Ω = {G,R,T ,O,S}.
Assume that we have a vegetation detector, which can determine if a
region of the image contains vegetation or not. For this detector, the
frame of discernment is Θ = {V ,¬V}, where V means that there is
vegetation, and ¬V means that there is no vegetation.
We have the correspondence

V → {G,T}
¬V → {R,O,S}

The elements of Ω can be obtained by splitting some or all of the
elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening
of Ω
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Representation of evidence Refinement and coarsening

General definition

Θ	
 Ω	

θ1	  

θ2	  
θ3	  

ρ	


Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping ρ : 2Θ → 2Ω

(called a refining) such that:
{ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and
For all A ⊆ Ω, ρ(A) =

⋃
θ∈A ρ({θ}).
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Representation of evidence Refinement and coarsening

Vacuous extension

In the road scene example, assume that the vegetation detector provide
the following mass function on Θ:

mΘ({V}) = 0.6, mΘ({¬V}) = 0.3, mΘ(Θ) = 0.1

How to express mΘ in Ω?
Solution: for all A ⊆ Θ, we transfer the mass mΘ(A) to ρ(A). Here,

mΘ({V}) = 0.6 → ρ({V}) = {G,T}
mΘ({¬V}) = 0.3 → ρ({¬V}) = {R,O,S}

mΘ(Θ) = 0.1 → ρ(Θ) = Ω

We finally the following mass function on Ω,

mΘ↑Ω({G,T}) = 0.6, mΘ↑Ω({R,O,S}) = 0.3, mΘ↑Ω(Ω) = 0.1.

mΘ↑Ω is called the vacuous extension of mΘ in Ω.
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Representation of evidence Refinement and coarsening

Expression of information in a coarser frame

Let us now assume that we have the following mass function on Ω,

mΩ({T}) = 0.4, mΩ({T ,O}) = 0.3, mΩ({R,S}) = 0.3.

How to express mΩ in Θ?
We cannot do it without loss of information, because, for instance, there is
no A ⊆ Θ such that ρ(A) = {T}: the mapping ρ does not have an inverse.
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Representation of evidence Refinement and coarsening

Inner and outer reductions

We can define two generalized inverses of ρ:

ρ−1(B) = {θ ∈ Θ|ρ({θ}) ⊆ B},
ρ−1(B) = {θ ∈ Θ|ρ({θ}) ∩ B 6= ∅},

for any subset B of Ω. The subsets ρ−1(B) and ρ−1(B) are called,
respectively, the inner reduction and the outer reduction of B.
Here, for instance,

ρ−1({T}) = ρ−1({T ,O}) = ρ−1({R,S}) = ∅

ρ−1({T}) = {V}, ρ−1({T ,O}) = {V ,¬V}, ρ−1({R,S}) = {¬V}
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Representation of evidence Refinement and coarsening

Restriction

The restriction of mΩ in Θ is obtained by transferring each mass mΩ(B) to
the outer reduction of B: for all subset A of Θ,

mΩ↓Θ(A) =
∑

ρ−1(B)=A

mΩ(B).

In the example, we thus have

mΩ↓Θ({V}) = 0.4, mΩ↓Θ(Θ) = 0.3, mΩ↓Θ({¬V}) = 0.3.

Remark: the vacuous extension of mΩ↓Θ is

m(Ω↓Θ)↑Ω({G,T}) = 0.4, m(Ω↓Θ)↑Ω(Ω) = 0.3,

m(Ω↓Θ)↑Ω({R,S,O}) = 0.3.

It is less precise that mΩ: we have lost information when expressing mΩ

in a coarser frame.
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Dempster’s rule Definition
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Dempster’s rule Definition

Road scene example continued

Variable X was defined as the type of object in some region of the image,
and the frame was Ω = {G,R,T ,O,S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky
A lidar sensor gave us the following mass function:

m1({T ,O}) = 0.9, m1(Ω) = 0.1

Now, assume that a camera returns the mass function:

m2({G,T}) = 0.8, m2(Ω) = 0.2

How to combine these two pieces of evidence?
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Dempster’s rule Definition

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
O	

G	

R	
S	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})

Thierry Denœux BF - Basic notions August 2019 38 / 72



Dempster’s rule Definition

Computation

m1\m2 {T ,G} Ω
(0.8) (0.2)

{O,T} (0.9) {T} (0.72) {O,T} (0.18)
Ω (0.1) {T ,G} (0.08) Ω (0.02)

We then get the following combined mass function,

m({T}) = 0.72
m({O,T}) = 0.18
m({T ,G}) = 0.08

m(Ω) = 0.02
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Dempster’s rule Definition

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs
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Dempster’s rule Definition

Computation

m1\m2 {G,R} Ω
(0.8) (0.2)

{O,T} (0.9) ∅ (0.72) {O,T} (0.18)
Ω (0.1) {G,R} (0.08) Ω (0.02)

We then get the following combined mass function,

m(∅) = 0
m({O,T}) = 0.18/0.28 = 9/14
m({G,R}) = 0.08/0.28 = 4/14

m(Ω) = 0.02/0.28 = 1/14
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Dempster’s rule Definition

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅ (1)

and (m1 ⊕m2)(∅) = 0
m1 ⊕m2 is called the orthogonal sum of m1 and m2
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Dempster’s rule Definition

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6
(m1 ⊕m2)({b}) = 0.2/0.6

(m1 ⊕m2)({a,b}) = 0.08/0.6
(m1 ⊕m2)({c}) = 0.15/0.6.
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Dempster’s rule Definition

Dempster’s rule
Properties

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Dempster’s rule Conditioning
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Dempster’s rule Conditioning

Dempster’s rule conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mB. Notation:

m ⊕mB = m(·|B)

We thus have m(A|B) = 0 for any A not included in B and, for any A ⊆ B,

m(A | B) = (1− κ)−1
∑

C∩B=A

m(C), (2)

where the degree of conflict κ is

κ =
∑

C∩B=∅

m(C) = 1−
∑

C∩B 6=∅

m(C) = 1− Pl(B).
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Dempster’s rule Conditioning

Conditional Plausibility function

The plausibility function Pl(·|B) induced by m(·|B) is given by

Pl(A | B) =
∑

C:C∩A 6=∅

m(C|B)

= Pl(B)−1
∑

C:C∩A 6=∅

∑
D:D∩B=C

m(D)

= Pl(B)−1
∑

D:D∩B∩A 6=∅

m(D)

=
Pl(A ∩ B)

Pl(B)
.

If Pl is a probability measure, Pl(· | B) is thus the conditional probability
measure given B: Dempster’s rule of combination thus extends Bayesian
conditioning.
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Dempster’s rule Commonality function

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B) (3)

Q is another equivalent representation of a belief function.
Properties: Q(∅) = 1 and Q(Ω) = m(Ω)
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Dempster’s rule Commonality function

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have Q1 ⊕Q2(∅) = 1 and, for all non empty subset A of Ω,

(Q1 ⊕Q2)(A) =
∑
B⊇A

(m1 ⊕m2)(B)

= (1− κ)−1
∑
B⊇A

∑
C∩D=B

m1(C)m2(D)

= (1− κ)−1
∑

C∩D⊇A

m1(C)m2(D)

= (1− κ)−1
∑

C⊇A,D⊇A

m1(C)m2(D)

= (1− κ)−1

∑
C⊇A

m1(C)

∑
D⊇A

m2(D)


= (1− κ)−1Q1(A) ·Q2(A).
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Dempster’s rule Commonality function

Product rule for commonality and contour functions

Using (3) with A = ∅, we get∑
B⊆Ω

(−1)|B|Q(B) = 0, (4)

which makes it possible to compute the commonality function once
commonality numbers are determined up to some multiplicative constant.
Given two mass functions m1 and m2, we can thus combine them either
using (1), or by converting them to commonality functions, multiplying
them pointwise, and computing the corresponding mass function using
(3).
In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 = (1− κ)−1pl1pl2.
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Dempster’s rule Commonality function

Computational complexity

The orthogonal sum of two mass functions m1 and m2 can be performed
in two ways: either directly using (1) (mass-based approach), or by
computing the product of commonalities.
Using the mass-based approach, the time needed to compute the
combination is proportional to |F(m1)||F(m2)||Ω|, where F(mi ) ⊆ 2Ω is
the collection of focal sets of mi . In the worst case where both mass
functions have 2|Ω| − 1 focal sets, the computing time thus becomes
proportional to 22|Ω||Ω|.
The other approach implies converting the mass functions into
commonalities, multiplying the commonalities pointwise, normalizing, and
computing the combined mass function using (3). The conversion from
one of the equivalent functions m, Bel , Pl and Q to another can be
performed in time proportional to |Ω|22|Ω|.
The mass-based approach is thus more efficient when the number of
focal sets is much smaller than the cardinality of 2Ω.
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Dempster’s rule Commonality function

Summarization

If computing time is limited, we may use approximations. Useful strategy:
approximate each mass function by a simpler mass function with fewer
focal sets.
The simplest method is the Summarization algorithm, which works as
follows.
Let k be the maximum allowed number k of focal sets. Let F1, . . . ,Fn be
the focal sets of m ranked by decreasing mass, i.e.,
m(F1) ≥ m(F2) ≥ . . . ≥ m(Fn). If n > k , the n − k focal sets Fk+1, . . . ,Fn
are replaced by their union, and m is approximated by

m′(Fi ) = m(Fi ), i = 1, . . . , k ,

m′
(

n⋃
i=k+1

Fi

)
=

n∑
i=k+1

m(Fi ).
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Dempster’s rule Compatible frames

Compatible frames of discernment

Definition
Two frames are compatible if they have a common refinement.

Example:

Ω

T	

O	

G	

R	 S	

V	

not	V	

Gr	 Not	Gr	

Θ1	

Θ2	
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Dempster’s rule Compatible frames

Combination of mass functions on compatible frames

Let mΘ1 and mΘ2 be two mass functions defined on compatible frames Θ1
and Θ2 with common refinement Ω.
The orthogonal sum of mΘ1 and mΘ2 in Ω is

mΘ1 ⊕mΘ2 = mΘ1↑Ω ⊕mΘ2↑Ω

Example: assume that mΘ1 ({V}) = 0.3, mΘ1 ({¬V}) = 0.5,
mΘ1 ({V ,¬V}) = 0.2, and mΘ2 ({Gr}) = 0.4, mΘ2 ({¬Gr}) = 0.5,
mΘ2 ({Gr ,¬Gr}) = 0.1. Compute mΘ1 ⊕mΘ2 .
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Dempster’s rule Compatible frames

Cylindrical extension

Let us now assume that we have two frames ΩX and ΩY related to two
different questions about, e.g., the values of two unknown variables X
and Y .
Let ΩXY = ΩX × ΩY be the product space. It is a refinement of both ΩX
and ΩY .

		

ΩX	

ΩY	

A A	x	ΩY	

We can define the following refining ρ
from 2ΩX to 2ΩX×ΩY :

ρ(A) = A× ΩY ,

for all A ⊆ ΩX . The set ρ(A) is called the
cylindrical extension of A in ΩXY and is
denoted by A ↑ ΩXY .
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Dempster’s rule Compatible frames

Projection

ΩX	

ΩY	

R	A

Conversely, let R be a subset of ΩXY .
Its outer reduction is

ρ−1(R) = {x ∈ ΩX |ρ({x}) ∩ R 6= ∅}
= {x ∈ ΩX |∃y ∈ ΩY , (x , y) ∈ R}.

This set is denoted by R ↓ ΩX and is called the projection of R on ΩX
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Dempster’s rule Compatible frames

Vacuous extension and marginalization

The vacuous extension of a mass function mX from ΩX to ΩXY is obtained
by transferring each mass mΩX (B) for any subset B of ΩX to the
cylindrical extension of B:

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise.

Conversely, the restriction of a joint mass function mXY on ΩX is

mXY↓X (A) =
∑

B↓ΩX =A

mXY (B),

for all A ⊆ ΩX . The mass functions mXY↓X and mXY↓Y are called the
marginals of mXY and the operation that computes the marginals from a
joint mass function is called marginalization. This operation extends both
set projection and probabilistic marginalization.
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Dempster’s rule Compatible frames

Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX

A joint mass function mXY representing an uncertain relation between X and
Y

What can we say about Y ?
Solution:

mY =
(
mX↑XY ⊕mXY )↓Y

Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions
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Dempster’s rule Compatible frames

Example

A machine fails if any one of two components fails.
Let Z , X and Y be the binary variables describing the states of the two
components, and the machine.

Z	

X	 Y	

We have the following prior knowledge
about the states of the components:

mX ({1}) = 0.1,mX ({0}) = 0.3,

mX ({0,1}) = 0.6

mY ({0,1}) = 1

We observe that the machine fails. What
are our beliefs about the states of the two
components?
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Dempster’s rule Compatible frames

Solution

Pieces of evidence:

mXYZ
0 ({(1,1,1), (1,0,1), (0,1,1), (0,0,0)}) = 1

mX↑XYZ ({1}×ΩYZ ) = 0.1, mX↑XYZ ({0}×ΩYZ ) = 0.3, mX↑XYZ (ΩXYZ ) = 0.6

mY↑XYZ (ΩXYZ ) = 1, mZ↑XYZ (ΩXY × {1}) = 1

Let mXYZ
1 = mXYZ

0 ⊕mX↑XYZ ⊕mZ↑XYZ . We have

mXYZ
1 ({(1,1,1), (1,0,1)}) = 0.1, mXYZ

1 ({(0,1,1)}) = 0.3,

mXYZ
1 ({(1,1,1), (1,0,1), (0,1,1)}) = 0.6

Marginalizing on X and Y , we get

mXYZ↓X
1 ({1}) = 0.1,mXYZ↓X

1 ({0}) = 0.3,mXYZ↓X
1 ({0,1}) = 0.6

mXYZ↓Y
1 ({1}) = 0.3,mXYZ↓Y

1 ({0,1}) = 0.7
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Conditional embedding Deconditioning
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Conditional embedding Deconditioning

Example

Assume a machine diagnosis system was built from a classifier trained
with examples from two states: ω0 (normal state), ω1 (fault).
In operating condition, we discover a new fault ω2.

ω0	 ω1	

ω2	
x1	

x2	

The mass function m0 computed by the
classifier is conditioned on B = {ω0, ω1}.
After the frame has been extended to
include ω2, m must be deconditioned to
the frame Ω = {ω0, ω1, ω2}.
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Conditional embedding Deconditioning

Deconditioning

Ω
B

A
C

Let m0 be a mass function on Ω
expressing our beliefs about X in a
context where we know that X ∈ B
We want to build a mass function m
verifying the constraint

m(· | B) = m ⊕mB = m0

Any m built from m0 by transferring each
mass m0(A) to A ∪ C for some C ⊆ B
satisfies the constraint

Conservative attitude: transfer m0(A) to the largest such set, which is
A ∪ B

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B
0 otherwise
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Conditional embedding Deconditioning

Deconditioning
Conditional embedding

More complex situation: two frames ΩX and ΩY

Let mX
0 be a mass function on ΩX expressing our beliefs about X in a

context where we know that Y ∈ B for some B ⊆ ΩY

We want to find mXY such that
(
mXY ⊕mY

B

)↓X
= mX

0

Least committed solution: transfer mX
0 (A) to

(A× B) ∪ (ΩX × B) = (A× ΩY ) ∪ (ΩX × B)

Consistent with logical implication: (B → A) ≡ (¬B ∨ A).
Notation mXY = (mX

0 )⇑XY .
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Conditional embedding Application: Discounting

Discounting
Problem statement

A source of information provides:
a value
a set of values
a probability distribution, etc.

The information is:
not fully reliable or
not fully relevant.

Examples:
Possibly faulty sensor
Measurement performed in unfavorable experimental conditions
Information is related to a situation or an object that only has some similarity
with the situation or the object considered (case-based reasoning).
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Conditional embedding Application: Discounting

Discounting
Formalization

A source S provides a mass function mΩ
0 .

S may be reliable or not. Let R = {R,NR}.
Assumptions:

1 If S is reliable, we accept mΩ
0 as a representation of our beliefs:

mΩ(· | R) = mΩ
0

2 If S is not reliable, we know nothing:

mΩ(· | NR) = mΩ
?

3 The source has a probability α of not being reliable:

mR({NR}) = α, mR({R}) = 1− α
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Conditional embedding Application: Discounting

Discounting
Solution

We compute:

αmΩ =

mR↑Ω×R︸ ︷︷ ︸
m1

⊕mΩ(· | R)⇑Ω×R︸ ︷︷ ︸
m2


↓Ω

We have
m1(Ω× {NR}) = α, m1(Ω× {R}) = 1− α

m2 ((A× {R}) ∪ (Ω× {NR})) = m0(A), ∀A ⊆ Ω

Let m12 = m1 ⊕m2. We have

m12(A× {R}) = (1− α)m0(A), ∀A ⊆ Ω

m12(Ω× {NR}) = α
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Conditional embedding Application: Discounting

Discounting
Solution (continued)

Marginalizing on Ω, we get

αmΩ(A) =

{
(1− α)mΩ

0 (A) if A ⊂ Ω

(1− α)mΩ
0 (Ω) + α if A = Ω.

Equivalent expression

αmΩ = (1− α)mΩ
0 + αmΩ

?

α is called the discount rate. It is the probability that the source is not
reliable.
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