Theory of Belief Functions Chapter 2: Decision-Making with Belief Functions

Thierry Denœux

August 2019

Thierry Denœux

August 2019 1 / 49

(D) (A) (A) (A)

Example of decision problem under uncertainty

Act	Good Economic	Poor Economic
(Purchase)	Conditions	Conditions
Apartment building	50,000	30,000
Office building	100,000	-40,000
Warehouse	30,000	10,000

イロト イヨト イヨト イヨト

Formal framework

Acts, outcomes, states of nature

- A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action (an act) in some set $\mathcal{F} = \{f_1, \dots, f_n\}$
- An act may have different consequences (outcomes), depending on the state of nature
- Denoting by Ω = {ω₁,..., ω_r} the set of states of nature and by C the set of consequences (or outcomes), an act can be formalized as a mapping f from Ω to C
- In this lecture, the three sets Ω , C and \mathcal{F} will be assumed to be finite

Formal framework

- The desirability of the consequences can often be modeled by a numerical utility function *u* : C → ℝ, which assigns a numerical value to each consequence
- The higher this value, the more desirable is the consequence for the DM
- In some problems, the consequences can be evaluated in terms of monetary value. The utilities can then be defined as the payoffs, or a function thereof
- If the actions are indexed by *i* and the states of nature by *j*, we will denote by *u_{ij}* the quantity *u*[*f_i*(ω_j)]
- The $n \times r$ matrix $U = (u_{ij})$ will be called a payoff or utility matrix

• • • • • • • • • • • • • •

Payoff matrix

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f_3)	30,000	10,000

<ロ> <同> <同> < 同> < 同>

Formal framework

Preferences

- If the true state of nature ω is known, the desirability of an act f can be deduced from that of its consequence f(ω)
- Typically, the state of nature is unknown. Based on partial information, it is usually assumed that the DM can express preferences among acts, which may be represented mathematically by a preference relation \succeq on \mathcal{F}
- This relation is interpreted as follows: given two acts *f* and *g*, *f* ≽ *g* means that *f* is found by the DM to be at least as desirable as *g*
- We also define
 - The strict preference relation as $f \succ g$ iff $f \succcurlyeq g$ and $not(g \succcurlyeq f)$ (meaning that f is strictly more desirable than g) and
 - The indifference relation *f* ~ *g* iff *f* ≽ *g* and *g* ≽ *f* (meaning that *f* and *g* are equally desirable)

• • • • • • • • • • • • • •

- The decision problem can be formalized as building a preference relation among acts, from a utility matrix and some description of uncertainty, and finding the maximal elements of this relation
- Depending on the nature of the available information, different decision problems arise:
 - Decision-making under ignorance
 - 2 Decision-making with probabilities
 - Decision-making with belief functions

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Image: A matrix

Outline

Classical decision theory

Decision-making under complete ignorance

Decision-making with probabilities

Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Problem and non-domination principle

- We assume that the DM is totally ignorant of the state of nature: all the information given to the DM is the utility matrix *U*
- A act f_i is said to be dominated by f_k if the outcomes of f_k are at least as desirable as those of f_i for all states, and strictly more desirable for at least one state

$$orall j, \; u_{kj} \geq u_{ij} \; ext{and} \; \exists j, \; u_{kj} > u_{ij}$$

 Non-domination principle: an act cannot be chosen if it is dominated by another one

Image: A matrix

Example of a dominated act

Act	Good Economic	Poor Economic
(Purchase)	Conditions (ω_1)	Conditions (ω_2)
Apartment building (f_1)	50,000	30,000
Office building (f_2)	100,000	-40,000
Warehouse (f3)	30,000	10,000

-

ヘロト ヘヨト ヘヨト

Criteria for rational choice

- After all dominated acts have been removed, there remains the problem of ordering them by desirability, and of finding the set of most desirable acts
- Several criteria of "rational choice" have been proposed to derive a preference relation over acts

Laplace criterion

$$f_i \succeq f_k \text{ iff } \frac{1}{r} \sum_j u_{ij} \geq \frac{1}{r} \sum_j u_{kj}.$$

2 Maximax criterion

$$f_i \succeq f_k$$
 iff $\max_j u_{ij} \ge \max_j u_{kj}$.

Maximin (Wald) criterion

$$f_i \succeq f_k \text{ iff } \min_j u_{ij} \ge \min_j u_{kj}$$

Example

Act	ω_1	ω_2	ave	max	min
Apartment (f ₁)	50,000	30,000	40,000	50,000	30,000
Office (f ₂)	100,000	-40,000	30,000	100,00	-40,000

<ロ> <同> <同> < 同> < 同>

Hurwicz criterion

• Hurwicz criterion: $f_i \succeq f_k$ iff

$$\alpha \min_{j} u_{ij} + (1 - \alpha) \max_{j} u_{ij} \ge \alpha \min_{j} u_{kj} + (1 - \alpha) \max_{j} u_{kj}$$

where α is a parameter in [0, 1], called the pessimism index

- Boils down to
 - the maximax criterion if $\alpha = \mathbf{0}$
 - the maximin criterion if $\alpha = 1$
- α describes the DM's attitude toward ambiguity

Image: A matrix

Minimax regret criterion criterion

 (Savage) Minimax regret criterion: an act f_i is at least as desirable as f_k if it has smaller maximal regret, where regret is defined as the utility difference with the best act, for a given state of nature

• The regret r_{ij} for act f_i and state ω_j is

$$r_{ij} = \max_{\ell} u_{\ell j} - u_{ij}$$

- The maximum regret for act f_i is $R_i = \max_i r_{ij}$
- $f_i \succeq f_k$ iff $R_i \le R_k$

Image: A matrix

Example

Pay-off matrix

Act	ω_1	ω_2
Apartment (f ₁)	50,000	30,000
Office (f ₂)	100,000	-40,000

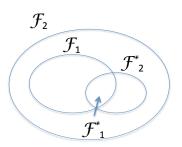
Regret matrix

Act	ω_1	ω_2	max regret
Apartment (f ₁)	50,000	0	50,000
Office (f_2)	0	70,000	70,000

イロト イヨト イヨト イヨト

Axioms of rational choice

- Let \mathcal{F}^* denote the choice set, defined as a set of optimal acts
- Arrow and Hurwicz (1972) have proposed four axioms a choice operator ${\cal F} \to {\cal F}^*$ should verify



- Axiom A_1 : if $\mathcal{F}_1 \subset \mathcal{F}_2$ and $\mathcal{F}_2^* \cap \mathcal{F}_1 \neq \emptyset$, then $\mathcal{F}_1^* = \mathcal{F}_2^* \cap \mathcal{F}_1$
- Axiom A₂: Relabeling actions and states does not change the optimal status of actions
- Axiom A₃: Deletion of a duplicate state does not change the optimality status of actions (ω_i and ω_l are duplicate if u_{ij} = u_{il} for all *i*)
- Axiom A₄ (dominance): If f ∈ F* and f' dominates f, then f' ∈ F*. If f ∉ F* and f' dominates f', then f' ∉ F*

Image: A matrix

Axioms of rational choice (continued)

- Under some regularity assumptions, Axioms $A_1 A_4$ imply that the choice set depends only on the worst and the best consequences of each act
- In particular, these axioms rule out the Laplace and minimax regret criteria

Violation of Axiom A3 by the Laplace criterion

Act	ω_1	ω_2	ave
Apartment (f_1)	50,000	30,000	40,000
Office (f_2)	100,000	-40,000	30,000

Let us split the state of nature ω_1 in two states: "Good economic conditions and there is life on Mars" (ω'_1) and "Good economic conditions and there is no life on Mars" (ω''_1)

Act	ω'_1	ω_1''	ω_2	ave
Apartment (f ₁)	50,000	50,000	30,000	43,333
Office (f ₂)	100,000	100,000	-40,000	53,333

Violation of Axiom A1 by minimax regret

Pay-off matrix

Act	ω_1	ω_2
Apartment (f_1)	50,000	30,000
Office (f_2)	100,000	-40,000
<i>f</i> ₄	130,000	-45,000

Regret matrix

Act	ω_1	ω_2	max regret
Apartment (f ₁)	80,000	0	80,000
Office (f_2)	30,000	70,000	70,000
f_4	0	75,000	75,000

We had $\mathcal{F}_1 = \{f_1, f_2\}$ and $\mathcal{F}_1^* = \{f_1\}$. Now, $\mathcal{F}_2 = \{f_1, f_2, f_4\}$ and $\mathcal{F}_2^* = \{f_2\}$. So, $\mathcal{F}_1^* \neq \mathcal{F}_2^* \cap \mathcal{F}_1$

イロト イヨト イヨト イヨト

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Maximum Expected Utility principle

- Let us now consider the situation where uncertainty about the state of nature is quantified by probabilities p₁,..., p_r on Ω
- These probabilities can be objective (decision under risk) or subjective
- We can then compute, for each act *f_i*, its expected utility as

$$EU(f_i) = \sum_j u_{ij} p_j$$

 Maximum Expected Utility (MEU) principle: an act *f_i* is more desirable than an act *f_k* if i it has a higher expected utility: *f_i* ≥ *f_k* iff *EU*(*f_i*) ≥ *EU*(*f_k*)

・ロト ・同ト ・ヨト ・ヨ

Example

Act	ω_1	ω_2
Apartment (f ₁)	50,000	30,000
Office (f ₂)	100,000	-40,000

Assume that there is 60% chance that the economic situation will be poor (ω_2). The expected utilities of acts f_1 and f_2 are

 $\begin{aligned} & EU(f_1) = 50,000 \times 0.4 + 30,000 \times 0.6 = 38,000 \\ & EU(f_2) = 100,000 \times 0.4 - 40,000 \times 0.6 = 16,000 \end{aligned}$

Act f_1 is thus more desirable according to the maximum expected utility criterion

Axiomatic justification of the MEU principle

- The MEU principle was first axiomatized by von Neumann and Morgenstern (1944)
- Given a probability distribution on Ω, an act *f* : Ω → C induces a probability measure *P* on the set C of consequences (assumed to be finite), called a lottery
- We denote by \mathcal{L} the set of lotteries on \mathcal{C}
- If we agree that two acts providing the same lottery are equivalent, then the problem of comparing the desirability of acts becomes that of comparing the desirability of lotteries
- Let
 <u>be</u> be a preference relation among lotteries. Von Neumann and Morgentern argued that, to be rational, a preference relation should verify three axioms

(D) (A) (A) (A)

Von Neumann and Morgenstern's axioms

- Complete preorder: the preference relation is a complete and non trivial preorder (i.e., it is a reflexive, transitive and complete relation) on L
- Continuity: for any lotteries *P*, *Q* and *R* such that $P \succ Q \succ R$, there exists probabilities α and β in [0, 1] such that

$$\alpha P + (1 - \alpha)R \succ Q \succ \beta P + (1 - \beta)R$$

where $\alpha P + (1 - \alpha)R$ is a compound lottery, which refers to the situation where you receive *P* with probability α and *R* with probability $1 - \alpha$. This axiom implies, in particular, that there is no lottery *R* that is so undesirable that it cannot become desirable if mixed with some very desirable lottery *P*

3 Independence: for any lotteries P, Q and R and for any $\alpha \in (0, 1]$

$$\boldsymbol{P} \succeq \boldsymbol{Q} \Leftrightarrow \alpha \boldsymbol{P} + (1 - \alpha) \boldsymbol{R} \succeq \alpha \boldsymbol{Q} + (1 - \alpha) \boldsymbol{R}$$

() < </p>

Von Neumann and Morgenstern's theorem

The two following propositions are equivalent:

- The preference relation > verifies the axioms of complete preorder, continuity, and independence
- There exists a utility function $u : C \to \mathbb{R}$ such that, for any two lotteries $P = (p_1, \dots, p_r)$ and $Q = (q_1, \dots, q_r)$

$$P \succeq Q \Leftrightarrow \sum_{i=1}^r p_i u(c_i) \ge \sum_{i=1}^r q_i u(c_i)$$

Function *u* is unique up to a strictly increasing affine transformation

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Savage's theorem

- We have reviewed some criteria for decision-making under complete ignorance, i.e., when uncertainty cannot be probabilized
- Some researchers have defended the view that a rational DM always maximizes expected utility, for some subjective probability measure and utility function
- Savage's theorem (1954): a preference relation ≽ among acts verifies some rationality requirements iff there is a finitely additive probability measure *P* and a utility function *u* : *C* → ℝ such that

$$\forall f,g \in \mathcal{F}, \quad f \succcurlyeq g \Leftrightarrow \int_{\Omega} u(f(\omega)) dP(\omega) \geq \int_{\Omega} u(g(\omega)) dP(\omega)$$

Furthermore, P is unique and u is unique up to a positive affine transformation

 A strong argument for probabilism, but Savage's axioms can be questioned!

Savage's axioms

- Savage has proposed seven axioms, four of which are considered as meaningful (the other three are technical)
- Axiom 2 [Sure Thing Principle]. Given *f*, *h* ∈ *F* and *E* ⊆ Ω, let *fEh* denote the act defined by

$$(fEh)(\omega) = egin{cases} f(\omega) & ext{if } \omega \in E \ h(\omega) & ext{if } \omega
otin E \end{cases}$$

Then the Sure Thing Principle states that $\forall E, \forall f, g, h, h'$

$$fEh \succcurlyeq gEh \Rightarrow fEh' \succcurlyeq gEh'$$

The preference between two acts with a common extension outside some event *E* does not depend on this common extension.

• This axiom seems reasonable, but it is not verified empirically!

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. Consider the following gambles:
 - f₁: You receive 100 euros if you draw a red ball
 - f₂: You receive 100 euros if you draw a black ball
 - f₃: You receive 100 euros if you draw a red or yellow ball
 - f4: You receive 100 euros if you draw a black or yellow ball
- Do you prefer f₁ or f₂? f₃ or f₄?

Image: Image:

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. Consider the following gambles:
 - f1: You receive 100 euros if you draw a red ball
 - f₂: You receive 100 euros if you draw a black ball
 - f₃: You receive 100 euros if you draw a red or yellow ball
 - f₄: You receive 100 euros if you draw a black or yellow ball
- Do you prefer f₁ or f₂? f₃ or f₄?
- Most people strictly prefer f₁ to f₂, but they strictly prefer f₄ to f₃

	R	В	Y	Now.
f_1	100	0	0	
f ₂	0 100	100	0	$f_1 = f_1\{R, B\}0, f_2 = f_2\{R, B\}0$
f ₃	100	0	100	
<i>f</i> ₄	0	100	100	$f_3 = f_1\{R, B\}100, f_4 = f_2\{R, B\}100$

Image: Image:

The Sure Thing Principle is violated!

Summary

- Classically, we distinguish two kinds of decision problems:
 - Decision under ignorance: we only know, for each act, a set a possible outcomes
 - Decision under risk: we are given, for each act, a probability distribution over the outcomes
- It has been argued that any decision problem under uncertainty should be handled as a problem of decision under risk. However, the axiomatic arguments are questionable
- In the next part: decision-making when uncertainty is described by a belief functions

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Image: Image:

How belief functions come into the picture

Belief functions become components of a decision problem in any of the following two situations (or both)

- The decision maker's subjective beliefs concerning the state of nature are described by a belief function Bel^Ω on Ω
- The DM is not able to precisely describe the outcomes of some acts under each state of nature

Case 1: uncertainty described by a belief function

- Let m^{Ω} be a mass function on Ω
- Any act *f* : Ω → C carries *m*^Ω to the set C of consequences, yielding a mass function *m*^C_f, which quantifies the DM's beliefs about the outcome of act *f*
- Each mass $m^{\Omega}(A)$ is transferred to f(A)

$$m_f^{\mathcal{C}}(B) = \sum_{\{A \subseteq \Omega \mid f(A) = B\}} m^{\Omega}(A)$$

for any $B \subseteq C$

m^C_f is a credibilistic lottery corresponding to act *f*

Case 2: partial knowledge of outcomes

- In that case, an act may formally be represented by a multi-valued mapping f : Ω → 2^C, assigning a set of possible consequences f(ω) ⊆ C to each state of nature ω
- Given a probability measure *P* on Ω, *f* then induces the following mass function *m*^C_f on C,

$$m^{\mathcal{C}}_{f}(\mathcal{B}) = \sum_{\{\omega \in \Omega | f(\omega) = \mathcal{B}\}} p(\omega)$$

for all $B \subseteq C$

Example

• Let $\Omega = \{\omega_1, \omega_2, \omega_3\}$ and m^{Ω} the following mass function

$$m^{\Omega}(\{\omega_1, \omega_2\}) = 0.3, \quad m^{\Omega}(\{\omega_2, \omega_3\}) = 0.2 m^{\Omega}(\{\omega_3\}) = 0.4, \qquad m^{\Omega}(\Omega) = 0.1$$

• Let $C = \{c_1, c_2, c_3\}$ and f the act

$$f(\omega_1) = \{c_1\}, \quad f(\omega_2) = \{c_1, c_2\}, \quad f(\omega_3) = \{c_2, c_3\}$$

• To compute m_t^c , we transfer the masses as follows

$$\begin{split} m^{\Omega}(\{\omega_{1},\omega_{2}\}) &= 0.3 \to f(\omega_{1}) \cup f(\omega_{2}) = \{c_{1},c_{2}\}\\ m^{\Omega}(\{\omega_{2},\omega_{3}\}) &= 0.2 \to f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\}\\ m^{\Omega}(\{\omega_{3}\}) &= 0.4 \to f(\omega_{3}) = \{c_{2},c_{3}\}\\ m^{\Omega}(\Omega) &= 0.1 \to f(\omega_{1}) \cup f(\omega_{2}) \cup f(\omega_{3}) = \{c_{1},c_{2},c_{3}\} \end{split}$$

• Finally, we obtain the following mass function on ${\mathcal C}$

$$m^{\mathcal{C}}(\{c_1, c_2\}) = 0.3, \quad m^{\mathcal{C}}(\{c_2, c_3\}) = 0.4, \quad m^{\mathcal{C}}(\mathcal{C}) = 0.3$$

Decision problem

- In the two situations considered above, we can assign to each act f a credibilistic lottery, defined as a mass function on C
- Given a utility function *u* on *C*, we then need to extend the MEU model
- Several such extensions will now be reviewed

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Upper and lower expectations

- Let *m* be a mass function on C, and *u* a utility function $C \to \mathbb{R}$
- The lower and upper expectations of *u* are defined, respectively, as the averages of the minima and the maxima of *u* within each focal set of *m*

$$\underline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \min_{c \in A} u(c)$$
$$\overline{\mathbb{E}}_{m}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \max_{c \in A} u(c)$$

- It is clear that $\mathbb{E}_m(u) \leq \mathbb{E}_m(u)$, with the inequality becoming an equality when *m* is Bayesian, in which case the lower and upper expectations collapse to the usual expectation
- If $m = m_A$ is logical with focal set A, then $\mathbb{E}_m(u)$ and $\mathbb{E}_m(u)$ are, respectively, the minimum and the maximum of u in A

Imprecise probability interpretation

• The lower and upper expectations are lower and upper bounds of expectations with respect to probability measures compatible with *m*

$$\underline{\mathbb{E}}_{m}(u) = \min_{P \in \mathcal{P}(m)} \mathbb{E}_{P}(u)$$
$$\overline{\mathbb{E}}_{m}(u) = \max_{P \in \mathcal{P}(m)} \mathbb{E}_{P}(u)$$

 The mean of minima (res., maxima) is also the minimum (resp., maximum) of means with respect to all compatible probability measures

Image: A matrix

Corresponding decision criteria

 Having defined the notions of lower and upper expectations, we can define two preference relations among credibilistic lotteries as

$$m_1
eq m_2$$
 iff $\mathbb{E}_{m_1}(u) \geq \mathbb{E}_{m_2}(u)$

and

$$m_1 \overleftarrow{\succ} m_2$$
 iff $\overline{\mathbb{E}}_{m_1}(u) \geq \overline{\mathbb{E}}_{m_2}(u)$

- Relation <u>></u> corresponds to a pessimistic (or conservative) attitude of the DM. When *m* is logical, it corresponds to the maximin criterion
- Both criteria boil down to the MEU criterion when *m* is Bayesian

Image: A matrix

Back to Ellsberg's paradox

- Here, $\Omega = \{R, B, Y\}$ and $m^{\Omega}(\{R\}) = 1/3$, $m^{\Omega}(\{B, Y\}) = 2/3$
- The mass functions on $\mathcal{C} = \{0, 100\}$ induced by the four acts are

$$m_1(\{100\}) = 1/3, \quad m_1(\{0\}) = 2/3$$

$$m_2(\{0\}) = 1/3, \quad m_2(\{0, 100\}) = 2/3$$

$$m_3(\{100\}) = 1/3, \quad m_3(\{0, 100\}) = 2/3$$

$$m_4(\{0\}) = 1/3, \quad m_4(\{100\}) = 2/3$$

• Corresponding lower and upper expectations

	R	В	Y	$\mathbb{E}_m(u)$	$\overline{\mathbb{E}}_m(u)$
f_1	100	0	0	u(100)/3	<i>u</i> (100)/3
f ₂	0	100	0	0	2u(100)/3
f ₃	100	0	100	<i>u</i> (100)/3	u(100)
<i>f</i> ₄	0	100	100	2u(100)/3	2 <i>u</i> (100)/3

Interval dominance

• If we drop the requirement that the preference relation among acts be complete, then we can consider the interval dominance relation,

$$m_1 \succcurlyeq_{ID} m_2 \text{ iff } \underline{\mathbb{E}}_{m_1}(u) \geq \overline{\mathbb{E}}_{m_2}(u)$$

- Given a collection of credibilistic lotteries, we can then compute the set of maximal (i.e., non dominated) elements of ≽_{ID}
- Imprecise probability view

 $m_1 \succcurlyeq_{ID} m_2 \Leftrightarrow \forall P_1 \in \mathcal{P}(m_1), \forall P_2 \in \mathcal{P}(m_2), \mathbb{E}_{P_1}(u) \geq \mathbb{E}_{P_2}(u)$

 The justification for this preference relation is not so clear from the point of view of belief function theory (i.e., if one does not interpret a belief function as a lower probability)

Outline

Classical decision theory

- Decision-making under complete ignorance
- Decision-making with probabilities
- Savage's theorem

Decision-making with belief functions

- Upper and lower expected utility
- Other approaches

Generalized Hurwicz criterion

• The Hurwicz criterion can be generalized as

$$\mathbb{E}_{m,\alpha}(u) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\alpha \min_{c \in A} u(c) + (1 - \alpha) \max_{c \in A} u(c) \right)$$
$$= \alpha \mathbb{E}_m(u) + (1 - \alpha) \mathbb{E}(u)$$

where $\alpha \in [0, 1]$ is a pessimism index

- This criterion was introduced and justified axiomatically by Jaffray (1988)
- Strat (1990) who proposed to interpret *α* as the DM's subjective probability that the ambiguity will be resolved unfavorably

Transferable belief model

- A completely different approach to decision-making with belief function was advocated by Smets, as part of the Transferable Belief Model
- Smets defended a two-level mental model
 - a credal level, where an agent's belief are represented by belief functions, and
 - a pignistic level, where decisions are made by maximizing the EU with respect to a probability measure derived from a belief function
- The rationale for introducing probabilities at the decision level is the avoidance of Dutch books
- Smets argued that the belief-probability transformation *T* should be linear, i.e., it should verify

$$T(\alpha m_1 + (1 - \alpha)m_2) = \alpha T(m_1) + (1 - \alpha)T(m_2),$$

for any mass functions m_1 and m_2 and for any $\alpha \in [0, 1]$

Pignistic transformation

• The only linear belief-probability transformation T is the pignistic transformation, with $p_m = T(m)$ given by

$$p_m(c) = \sum_{\{A \subseteq C \mid c \in A\}} \frac{m(A)}{|A|}, \quad \forall c \in C$$

The expected utility w.r.t. the pignistic probability is

$$\mathbb{E}_{\rho}(u) = \sum_{c \in \mathcal{C}} p_m(c) u(c) = \sum_{A \subseteq \mathcal{C}} m(A) \left(\frac{1}{|A|} \sum_{c \in A} u(c) \right)$$

• The maximum pignistic expected utility criterion thus extends the Laplace criterion

Generalized minimax regret

- Yager (2004) also extended the minimax regret criterion to belief functions
- We need to consider *n* acts f_1, \ldots, f_n , and we write $u_{ij} = u[f_i(\omega_j)]$
- The regret if act f_i is selected, and state ω_j occurs, is $r_{ij} = \max_k u_{kj} u_{ij}$
- For a non-empty subset A of Ω, the maximum regret of act f_i is

$$R_i(A) = \max_{\omega_j \in A} r_{ij}$$

• The expected maximal regret for act f_i is

$$\overline{R}_i = \sum_{\emptyset \neq A \subseteq \Omega} m^{\Omega}(A) R_i(A)$$

- Act f_i is preferred over act f_k if $\overline{R}_i \leq \overline{R}_k$
- The minimax regret criterion is recovered when m^{Ω} is logical
- The MEU model is recovered when m^{Ω} is Bayesian

Summary

non-probabilized		belief functions	probabilized
maximin	\longleftrightarrow	lower expectation	
maximax	\longleftrightarrow	upper expectation	
Laplace	\longleftrightarrow	pignistic expectation	expected utility
Hurwicz	\longleftrightarrow	generalized Hurwicz	
minimax regret	\longleftrightarrow	generalized minimax regret	

<ロ> <同> <同> < 同> < 同>