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Estimation vs. prediction

Consider an urn with an unknown proportion θ of black balls
Assume that we have drawn n balls with replacement from the urn, y of
which were black
Problems

1 What can we say about θ? (estimation)
2 What can we say about the color Z of the next ball to be drawn from the urn?

(prediction)

Classical approaches
Frequentist: gives an answer that is correct most the time (over infinitely
many replications of the random experiment)
Bayesian: assumes prior knowledge on θ and computes a posterior
predictive probabilities f (θ|y) and P(black |y)
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Criticism of the frequentist approach

The frequentist approach makes a statement that is correct, say, for 95%
of the samples
The confidence level is often interpreted as a measure of confidence in
the statement for a particular sample
However, this interpretation poses some logical problems
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Example

Suppose X1 and X2 are iid with probability mass function

Pθ(Xi = θ − 1) = Pθ(Xi = θ + 1) =
1
2
, i = 1,2, (1)

where θ ∈ R is an unknown parameter.
Consider the following confidence set for θ,

C(X1,X2) =

{
1
2 (X1 + X2) if X1 6= X2

X1 − 1 otherwise.
(2)

The corresponding confidence level is Pθ(θ ∈ C(X1,X2)) = 0.75
Now, let (x1, x2) be a given realization of the random sample (X1,X2).

If x1 6= x2, we know for sure that θ = (x1 + x2)/2
If x1 = x2, we know for sure that θ is either x1 − 1 or x1 + 1, but we have no
reason to favor any of these two hypotheses in particular.

This problem is known as the problem of relevant subsets (there are
recognizable situations in which the coverage probability is different from
the stated one)
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The relevant subset problem

This phenomenon happens in the usual problem of interval estimation of
the mean of a normal sample: “wide” CIs in some sense have larger
coverage probability than the stated confidence level, and vice versa for
“short” intervals.
Specifically, let X1, . . . ,Xn be an iid sample from N (µ, σ2) with both
parameters unknown, and

C =

{
(x1, . . . , xn) ∈ Rn| s

|x |
> k

}
for some k
The standard CI for µ is x ± tn−1;1−α/2s/

√
n

It can be shown that, for some ε > 0,

P(µ ∈ CI|C) > (1− α) + ε

for all µ and σ
“The existence of certain relevant subsets is an embarrassment to
confidence theory” (Lehmann, 1986)
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Criticism of the Bayesian approach

In the Bayesian approach, y , z and θ are seen as random variables
Estimation: compute the posterior pdf of θ given y

f (θ|y) ∝ p(y |θ)f (θ)

where f (θ) is the prior pdf on θ
Prediction: compute the predictive posterior distribution

p(z|y) =

∫
p(z|θ)f (θ|y)dθ

We need the prior f (θ)!
We have seen that the uniform prior is dependent on the parametrization;
consequently, it is not truly noninformative (wine and water paradox)
Another solution: Jeffrey’s prior
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Jeffrey’s prior

The Jeffreys prior is defined objectively as being proportional to the
square root of the determinant of the Fisher information

π(θ) ∝
√

det I(θ),

where the component (i , j) of the information matrix I(θ)ij is

I(θ)ij = Eθ
[
∂ log fθ(x)

∂θi

∂ log fθ(x)

∂θj

]
.

The motivation for this definition is that the Jeffreys prior is invariant
under reparameterization: if ϕ is a one-to-one transformation and
ν = ϕ(θ), then the Jeffreys prior on ν is proportional to

√
det I(ν).

Thierry Denœux BF - Statistical Inferenc August 2019 7 / 97



Problems with Jeffrey’s prior

However, there are still some issues with this approach:
First, the Jeffreys prior is sometimes improper.
Secondly, and maybe more importantly, the Jeffreys prior can hardly be
considered to be truly noninformative.

For instance, consider an iid sample X1, . . . ,Xn from a Bernoulli
distribution B(θ). The Jeffreys prior on θ is the beta distribution
B(0.5,0.5) whose pdf is displayed below. We can see that extreme
values of θ are considered a priori more probable that central values,
which does represent non vacuous knowledge about θ.
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Main ideas

None of the classical approaches to statistical inference (frequentist and
Bayesian) is fully satisfactory, from a conceptual point of view
Proposal of a new approach based on belief functions
The new approach boils down to Bayesian inference when a probabilistic
prior is available, but it does not require the user to provide such a prior
You will apply this approach to different econometric models
Before applying belief functions to statistical inference, we need to define
belief functions on infinite spaces
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Belief functions on infinite spaces Definition

Belief function: general definition

Let Ω be a set (finite or not) and B be an algebra of subsets of Ω

A belief function (BF) on B is a mapping Bel : B → [0,1] verifying
Bel(∅) = 0, Bel(Ω) = 1 and the complete monotonicity property: for any
k ≥ 2 and any collection B1, . . . ,Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)

A function Pl : B → [0,1] is a plausibility function iff Bel : B → 1− Pl(B)
is a belief function
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Belief functions on infinite spaces Definition

Source

s Γ(s)

Γ
(S,A,P) (Ω,B)

Let S be a state space, A an algebra of subsets of S, P a finitely additive
probability on (S,A)

Let Ω be a set and B an algebra of subsets of Ω

Γ a multivalued mapping from S to 2Ω

The four-tuple (S,A,P, Γ) is called a source
Under some conditions, it induces a belief function on (Ω,B)
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Belief functions on infinite spaces Definition

Strong measurability

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper inverses: for all B ∈ B,

Γ∗(B) = B∗ = {s ∈ S|Γ(s) 6= ∅, Γ(s) ⊆ B}

Γ∗(B) = B∗ = {s ∈ S|Γ(s) ∩ B 6= ∅}

Γ is strongly measurable wrt A and B if, for all B ∈ B, B∗ ∈ A
(∀B ∈ B,B∗ ∈ A)⇔ (∀B ∈ B,B∗ ∈ A)

A strongly measurable multi-valued mapping Γ is called a random set
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Belief functions on infinite spaces Definition

Belief function induced by a source
Lower and upper probabilities

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper probabilities:

∀B ∈ B, P∗(B) =
P(B∗)
P(Ω∗)

, P∗(B) =
P(B∗)
P(Ω∗)

= 1− P∗(B)

P∗ is a BF, and P∗ is the dual plausibility function
Conversely, for any belief function, there is a source that induces it
(Shafer’s thesis, 1973)
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Belief functions on infinite spaces Definition

Interpretation

s Γ(s)

Γ
(S,A,P) (Ω,B)

Typically, Ω is the domain of an unknown quantity ω, and S is a set of
interpretations of a given piece of evidence about ω
If s ∈ S holds, then the evidence tells us that ω ∈ Γ(s), and nothing more
Then

Bel(B) is the probability that the evidence supports B
Pl(B) is the probability that the evidence is consistent with B
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Belief functions on infinite spaces Practical models

Consonant belief function
Source

ω"

π(ω)#

Γ(s)#

s#

1#

0#

Let π be a mapping from Ω = Rp to S = [0,1] s.t. supπ = 1
Let Γ be the multi-valued mapping from S to 2Ω defined by

∀s ∈ [0,1], Γ(s) = {ω ∈ Ω|π(ω) ≥ s}

Let B([0,1]) be the Borel σ-field on [0,1], and P the uniform probability
measure on [0,1]

We consider the source ([0,1],B([0,1]),P, Γ)
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Belief functions on infinite spaces Practical models

Consonant belief function
Properties

Let Bel and Pl be the belief and plausibility functions induced by
([0,1],B([0,1]),P, Γ)

The focal sets Γ(s) are nested, i.e., for any s and s′,

s ≥ s′ ⇒ Γ(s) ⊆ Γ(s′)

The belief function is said to be consonant.
The corresponding contour function pl is equal to π
The corresponding plausibility function is a possibility measure: for any
B ⊆ Ω,

Pl(B) = sup
ω∈B

pl(ω)

Bel(B) = inf
ω 6∈B

(1− pl(ω))
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Belief functions on infinite spaces Practical models

Random closed interval

(S,A,P)'

U(s)'

V(s)'

s'

(U,V)'

Let (U,V ) be a bi-dimensional random vector from a probability space
(S,A,P) to R2 such that U ≤ V a.s.
Multi-valued mapping:

Γ : s → Γ(s) = [U(s),V (s)]

The source (S,A,P, Γ) is a random closed interval. It defines a BF on
(R,B(R))
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Belief functions on infinite spaces Practical models

Random closed interval
Properties

Lower/upper cdfs:

Bel ((−∞, x ]) = P([U,V ] ⊆ (−∞, x ]) = P(V ≤ x) = FV (x)

Pl ((−∞, x ]) = P([U,V ] ∩ (−∞, x ] 6= ∅) = P(U ≤ x) = FU(x)

Lower/upper expectation:

E∗(Γ) = E(U)

E∗(Γ) = E(V )

Lower/upper quantiles

q∗(α) = F−1
U (α),

q∗(α) = F−1
V (α).
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Belief functions on infinite spaces Combination and propagation

Dempster’s rule
Definition

s1!

Γ1(s1)!

Γ1!

(S1,A1,P1)!

(Ω,B)!

s2!

Γ2!

(S2,A2,P2)! Γ2(s2)!

Let (Si ,Ai ,Pi , Γi ), i = 1,2 be two sources representing independent items
of evidence, inducing BF Bel1 and Bel2
The combined BF Bel = Bel1 ⊕ Bel2 is induced by the source
(S1 × S2,A1 ⊗A2,P1 ⊗ P2, Γ∩) with

Γ∩(s1, s2) = Γ1(s1) ∩ Γ2(s2)
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Belief functions on infinite spaces Combination and propagation

Dempster’s rule
Definition

For each B ∈ B, Bel(B) is the conditional probability that Γ∩(s) ⊆ B,
given that Γ∩(s) 6= ∅:

Bel(B) =
P ({(s1, s2) ∈ S1 × S2|Γ∩(s1, s2) 6= ∅, Γ∩(s1, s2) ⊆ B})

P({(s1, s2) ∈ S1 × S2|Γ∩(s1, s2) 6= ∅})

It is well defined iff the denominator is non null
As in the finite case, the degree of conflict between the belief functions
can be defined as one minus the denominator in the above equation.
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Belief functions on infinite spaces Combination and propagation

Approximate computation
Monte Carlo simulation

Require: Desired number of focal sets N
i ← 0
while i < N do

Draw s1 in S1 from P1
Draw s2 in S2 from P2
Γ∩(s1, s2)← Γ1(s1) ∩ Γ2(s2)
if Γ∩(s1, s2) 6= ∅ then

i ← i + 1
Bi ← Γ∩(s1, s2)

end if
end while
B̂el(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ⊆ B}
P̂l(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ∩ B 6= ∅}
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Belief functions on infinite spaces Combination and propagation

Combination of dependent evidence

s
Γ1(s1)

Γ1

(S,A,P)
(Ω,B)

Γ2
Γ2(s2)

The case of complete dependence between two pieces of evidence can
be modeled by two sources formed by different multivalued mappings Γ1
and Γ2 from the same probability space.
The combined BF is induced by the source (S,A,P, Γ∩)

This combination rule preserves consonance: the combination of two
consonant BFs is still consonant.
This is the rule used in Possibility Theory.
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Belief functions on infinite spaces Combination and propagation

Propagation of belief functions

Assume that a quantity Z is defined as function of two other quantities X
and Y

Z = ϕ(X ,Y )

Given BFs BelX and BelY on X and Y , what is the BF BelZ on Z?
Solution:

BelZ = (BelX↑XYZ ⊕ BelY↑XYZ ⊕ Belϕ)↓Z

For any A ⊆ ΩX and B ⊆ ΩY ,

(A ↑ ΩXYZ ) ∩ (B ↑ ΩXYZ ) ∩ Rϕ = ϕ(A,B)

Consequently, if BelX and BelY are induced by random sets Γ(U) and
Λ(V ), where U and V are independent rvs, then BelZ is induced by the
RS

ϕ(Γ(U),Λ(V ))
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Estimation

Parameter estimation

Let y ∈ Y denote the observed data and fθ(y) the probability mass or
density function describing the data-generating mechanism, where θ ∈ Θ
is an unknown parameter
Having observed y , how to quantify the uncertainty about Θ, without
specifying a prior probability distribution?
Different approaches have been proposed by Dempster (1968), Shafer
(1976) and more recently, Martin and Liu (2016)
Here, I will emphasize Shafer’s Likelihood-based solution (Shafer, 1976;
Wasserman, 1990; Denœux, 2014), which is (much) simpler to
implement, and connects nicely with the “likelihoodist” approach to
statistical inference.
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Estimation Justification

The likelihood principle
Definition (Birnbaum, 1962)

Let E denote a statistical model representing an experimental situation.
Typically, E is composed of the parameter space Θ, the sample space X
and a probability mass or density function f (x ; θ) for each θ ∈ Θ.
Let us denote by Ev(E , x) the evidential meaning of the specified
instance (E , x) of statistical evidence.
The likelihood Principle (L) can be stated as follows:

If E and E ′ are any two experiments with the same parameter space Θ,
represented by probability mass or density functions fθ(x) and gθ(y), and if x
and y are any two respective outcomes which determine likelihood functions
satisfying fθ(x) = cgθ(y) for some positive constant c = c(x , y) and all θ ∈ Θ,

then Ev(E , x) = Ev(E ′, y).

Thierry Denœux BF - Statistical Inferenc August 2019 31 / 97



Estimation Justification

Frequentist methods violate (L)

For instance, consider an urn with a proportion θ of black balls, and the
following two experiments:

Experiment 1: a fixed number n of balls are drawn with replacement from the
urn and the number X of black balls is observed; X has a binomial
distribution B(n, θ).
Experiment 2: balls are drawn with replacement from the urn until a fixed
number x of black balls have been drawn; we observe the number N of
draws, which has a negative binomial distribution.

Confidence intervals computed in these two cases are different, although
the likelihood functions for these two experiments are identical.
This is because confidence intervals (and significance tests) depend not
only on the likelihood, but also on the sample space.
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Estimation Justification

Justification of (L) (Birnbaum, 1962)

Birnbaum (1962) showed that (L) can be derived from the principles of
sufficiency (S) and conditionality (C), which can be stated as follows:

The principle of sufficiency (S) Let E be an experiment, with sample
space {x}, and let t(x) is any sufficient statistic (i.e., any statistic such
that the conditional distribution of x given t does not depend on θ). Let E ′

be an experiment, derived from E , having the same parameter space,
such that when any outcome x of E is observed the corresponding
outcome t = t(x) of E ′ is observed. Then for each x ,
Ev(E , x) = Ev(E ′, t), where t = t(x).
The principle of conditionality (C) If E is mathematically equivalent to a
mixture of component experiments Eh, with possible outcomes (Eh, xh),
then Ev(E , (Eh, xh)) = Ev(Eh, xh).
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Estimation Justification

Meaning of (C)

(C) means that component experiments that might have been carried out,
but in fact were not, are irrelevant once we know that Eh has been carried
out.
For instance, assume that two measuring instruments provide
measurements x1 and x2 of an unknown quantity θ. An instrument is
picked at random (experiment E). Assume we know that the first
instrument (h = 1) is selected and we observe x1. Then, the fact that the
second instrument could have been selected is irrelevant and the over-all
structure of the original experiment E can be ignored.
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Estimation Likelihood-based belief function

Likelihood-based belief function
Requirements

Let BelΘ
y be a belief function representing our knowledge about θ after

observing y . We impose the following requirements:
1 Likelihood principle: BelΘ

y should be based only on the likelihood function

θ → Ly (θ) = fθ(y)

2 Compatibility with Bayesian inference: when a Bayesian prior P0 is
available, combining it with BelΘ

y using Dempster’s rule should yield the
Bayesian posterior:

BelΘ
y ⊕ P0 = P(·|y)

3 Principle of minimal commitment: among all the belief functions satisfying
the previous two requirements, BelΘ

y should be the least committed (least
informative)
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Estimation Likelihood-based belief function

Likelihood-based belief function
Solution (Denœux, 2014)

BelΘ
y is the consonant belief function induced by the relative likelihood

function
ply (θ) =

Ly (θ)

Ly (θ̂)

where θ̂ is a MLE of θ, and it is assumed that Ly (θ̂) < +∞
Corresponding plausibility function

PlΘ
y (H) = sup

θ∈H
ply (θ), ∀H ⊆ Θ

θ

pl_y(θ)&

H&

Pl_y(H)&

1&

0&

θ̂&
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Estimation Likelihood-based belief function

Source

Corresponding random set:

Γy (s) =

{
θ ∈ Θ|

Ly (θ)

Ly (θ̂)
≥ s

}

with s uniformly distributed in [0,1]

θ

pl_y(θ)&

Γy(s)&

s

1&

0&

If Θ ⊆ R and if Ly (θ) is unimodal and upper-semicontinuous, then BelΘ
y

corresponds to a random closed interval

Thierry Denœux BF - Statistical Inferenc August 2019 38 / 97



Estimation Likelihood-based belief function

Binomial example

In the urn model, Y ∼ B(n, θ) and

ply (θ) =
θy (1− θ)n−y

θ̂y (1− θ̂)n−y
=

(
θ

θ̂

)nθ̂ (1− θ
1− θ̂

)n(1−θ̂)

for all θ ∈ Θ = [0,1], where θ̂ = y/n is the MLE of θ
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Estimation Likelihood-based belief function

Uniform example

Let y = (y1, . . . , yn) be a realization from an iid random sample from
U([0, θ])
The likelihood function is

Ly (θ) = θ−n
1[y(n),+∞)(θ)

The likelihood-based BF is induced by the random closed interval
[y(n), y(n)S−1/n], with S ∼ U([0,1])
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Estimation Likelihood-based belief function

Profile likelihood

Assume that θ = (ξ,ν) ∈ Ωξ ×Ων , where ξ is a parameter of interest and
ν is a nuisance parameter
Then, the marginal contour function for ξ is

ply (ξ) = Pl({ξ} × Ων) = sup
ν∈Ων

ply (ξ,ν),

which is the profile relative likelihood function
The profiling method for eliminating nuisance parameter thus has a
natural justification in our approach
When the quantities ply (ξ) cannot be derived analytically, they have to be
computed numerically using an iterative optimization algorithm
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Estimation Likelihood-based belief function

Relation with likelihood-based inference

The approach to statistical inference outlined here is very close to the
“likelihoodist” approach advocated by Birnbaum (1962), Barnard (1962),
and Edwards (1992), among others
The main difference resides in the interpretation of the likelihood function
as defining a belief function
This interpretation allows us to quantify the uncertainty in statements of
the form θ ∈ H, where H may contain multiple values. This is in contrast
with the classical likelihood approach, in which only the likelihood of
single hypotheses is defined
The belief function interpretation provides an easy and natural way to
combine statistical information with other information, such as expert
judgements
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Estimation Likelihood-based belief function

Relation with the likelihood-ratio test statistics

We can also notice that PlΘ
y (H) is identical to the likelihood ratio statistic

for H
From Wilk’s theorem, we have asymptotically (under regularity
conditions), when H holds,

−2 ln Ply (H) ∼ χ2
r

where r is the number of restrictions imposed by H
Consequently,

rejecting hypothesis H if its plausibility is smaller than exp(−χ2
r ;1−α/2) is a

testing procedure with significance level approximately equal to α
The sets Γ(exp(−χ2

r ;1−α/2)) are approximate 1− α confidence regions

However, these properties are coincidental, as the approach outlined
here is not based on frequentist inference
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Estimation Likelihood-based belief function

Combination with a Bayesian prior

The likelihood-based method described here does not require any prior
knowledge of θ.
However, by construction, this approach boils down to Bayesian inference
if a prior probability g(θ) is provided and combined with BelΘ

y by
Dempster’s rule.
As it will usually not be possible to compute the analytical expression of
the resulting posterior distribution, it can be approximated by Monte Carlo
simulation. (see next slide)
We can see that this is just the rejection sampling algorithm with the prior
g(θ) as proposal distribution.
The rejection sampling algorithm can thus be seen, in this case, as a
Monte Carlo approximation to Dempster’s rule of combination.
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Estimation Likelihood-based belief function

Combination with a Bayesian prior (continued)

Monte Carlo algorithm for combining the likelihood-based belief function with
a Bayesian prior by Dempster’s rule

Require: Desired number of focal sets N
i ← 0
while i < N do

Draw s in [0,1] from the uniform probability measure λ on [0,1]
Draw θ from the prior probability distribution g(θ)
if ply (θ) ≥ s then

i ← i + 1
θi ← θ

end if
end while
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Estimation Examples

Behrens-Fisher problem

Let the observed data y be composed of two independent normal
samples y1 = (y11, . . . , y1n1 ) and y2 = (y21, . . . , y2n2 ) from N (µ1, σ

2
1) and

N (µ2, σ
2
2), respectively.

We wish to compare the means µ1 and µ2.
Using the frequentist approach, this is done by computing a p-value for
the hypothesis H0 : µ1 = µ2 of equality of means, or a confidence interval
on µ1 − µ2. This problem, known as the Behrens-Fisher problem, only
has approximate solutions
Using our approach, the means are compared by computing the
plausibility of H0 or, more generally, of Hδ : µ1 − µ2 = δ
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Estimation Examples

Belief function solution

The marginal contour function for (µ1, µ2) is

ply (µ1, µ2) = sup
σ1,σ2

ply (θ)

=

∏2
k=1 Lyk

(µk , σ̂k (µk ))∏2
k=1 Lyk

(yk , sk )
,

where

σ̂k (µk ) =
1
nk

nk∑
i=1

(yki − µk )2.

The plausibility of Hδ = {(µ1, µ2) ∈ R2|µ1 − µ2 = δ} can then be
computed by maximizing ply (µ1, µ2) under the constraint µ1 − µ2 = δ, i.e.,

Ply (Hδ) = max
µ1

ply (µ1, µ1 − δ)
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Estimation Examples

Example (Lehman, 1975)
We consider the following driving times from a person’s house to work
measured for two different routes: y1 = (6.5,6.8,7.1,7.3,10.2) and
y2 = (5.8,5.8,5.9,6.0,6.0,6.0,6.3,6.3,6.4,6.5,6.5). Are the mean traveling
times equal?
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Estimation Examples

Linear regression
Model

We consider the following standard regression model

y = Xβ + ε

where
y = (y1, . . . , yn)′ is the vector of n observations of the dependent variable
X is the fixed design matrix of size n × (p + 1)

ε = (ε1, . . . , εn)′ ∼ N (0, In) is the vector of errors
The vector of coefficients is θ = (β′, σ)′
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Estimation Examples

Likelihood-based belief function

The likelihood function for this model is

Ly (θ) = (2πσ2)−n/2 exp
[
− 1

2σ2 (y − Xβ)′(y − Xβ)

]
The contour function can thus be readily calculated as

ply (θ) =
Ly (θ)

Ly (θ̂)

with θ̂ = (β̂
′
, σ̂)′, where

β̂ = (X ′X )−1X ′y is the ordinary least squares estimate of β
σ̂ is the standard deviation of residuals
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Estimation Examples

Plausibility of linear hypotheses

Assertions (hypotheses) H of the form Aβ = q, where A is a r × (p + 1)
constant matrix and q is a constant vector of length r , for some r ≤ p + 1
Special cases: {βj = 0}, {βj = 0,∀j ∈ {1, . . . ,p}}, or {βj = βk}, etc.
The plausibility of H is

PlΘ
y (H) = sup

Aβ=q
ply (θ) =

Ly (θ̂∗)

Ly (θ̂)

where θ̂∗ = (β̂
′
∗, σ̂∗)

′ (restricted LS estimates) with

β̂∗ = β̂ − (X ′X )−1A′[A(X ′X )−1A′]−1(Aβ̂ − q)

σ̂∗ =

√
(y − X β̂∗)′(y − X β̂∗)/n
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Estimation Examples

Example: movie Box office data

Dataset about 62 movies released in 2009 (from Greene, 2012)
Dependent variable: logarithm of Box Office receipts
11 covariates:

3 dummy variables (G, PG, PG13) to encode the MPAA (Motion Picture
Association of America) rating, logarithm of budget (LOGBUDGET), star
power (STARPOWR),
a dummy variable to indicate if the movie is a sequel (SEQUEL),
four dummy variables to describe the genre ( ACTION, COMEDY,
ANIMATED, HORROR)
one variable to represent internet buzz (BUZZ)
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Estimation Examples

Some marginal contour functions
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Estimation Examples

Regression coefficients

Estimate Std. Error t-value p-value Pl(βj = 0)

(Intercept) 15.400 0.643 23.960 < 2e-16 1.0e-34
G 0.384 0.553 0.695 0.49 0.74
PG 0.534 0.300 1.780 0.081 0.15
PG13 0.215 0.219 0.983 0.33 0.55
LOGBUDGET 0.261 0.185 1.408 0.17 0.30
STARPOWR 4.32e-3 0.0128 0.337 0.74 0.93
SEQUEL 0.275 0.273 1.007 0.32 0.54
ACTION -0.869 0.293 -2.964 4.7e-3 6.6e-3
COMEDY -0.0162 0.256 -0.063 0.95 0.99
ANIMATED -0.833 0.430 -1.937 0.058 0.11
HORROR 0.375 0.371 1.009 0.32 0.54
BUZZ 0.429 0.0784 5.473 1.4e-06 4.8e-07
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Estimation Consistency

Consistency of the likelihood-based belief function

Assume that the observed data y = (y1, . . . , yn) is a realization of an iid
sample Y = (Y1, . . . ,Yn) from Y ∼ fθ(y)

From Fraser (1968):

Theorem

If Eθ0 [log fθ(Y )] exists, is finite for all θ, and has a unique maximum at θ0,
then, for any θ 6= θ0, pln(θ)→ 0 almost surely under the law determined by θ0
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Estimation Consistency

Consistency of the likelihood-based belief function
(continued)

The property pln(θ0)→ 1 a.s. does not hold in general (under regularity
assumptions, −2 log pln(θ0) converges in distribution to χ2

p)
But we have the following theorem:

Theorem
Under some assumptions (Fraser, 1968), for any neighborhood N of θ0,
BelΘ

n (N)→ 1 and PlΘ
n (N)→ 1 almost surely under the law determined by θ0
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Prediction Predictive belief function
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Prediction Predictive belief function

Prediction problem

Observed (past) data: y from Y ∼ fθ(y)

Future data: Z |y ∼ Fθ,y (z) (real random variable)
Problem: quantify the uncertainty of Z using a predictive belief function
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Prediction Predictive belief function

Outline of the approach (1/2)

Let us come back to the urn example
Let Z ∼ B(θ) be defined as

Z =

{
1 if next ball is black
0 otherwise

We can write Z as a function of θ and a pivotal variable W ∼ U([0,1]),

Z =

{
1 if W ≤ θ
0 otherwise

= ϕ(θ,W )

0" 1"θW"
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Prediction Predictive belief function

Outline of the approach (2/2)

The equality
Z = ϕ(θ,W )

allows us to separate the two sources of uncertainty on Z
1 uncertainty on W (random/aleatory uncertainty)
2 uncertainty on θ (estimation/epistemic uncertainty)

Two-step method:
1 Represent uncertainty on θ using a likelihood-based belief function BelΘ

y

constructed from the observed data y (estimation problem)
2 Combine BelΘ

y with the probability distribution of W to obtain a predictive
belief function BelZy
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Prediction Predictive belief function

ϕ-equation

W"

Z=Fθ&1(W)"

z"

Fθ(z)"

0"

1"

We can always write Z as a function of θ and W as

Z = F−1
θ,y (W ) = ϕy (θ,W )

where W ∼ U([0,1]) and F−1
θ,y is the generalized inverse of Fθ,y ,

F−1
θ,y (W ) = inf{z|Fθ,y (z) ≥W}
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Prediction Predictive belief function

Main result

Z" W"

θ

Z=ϕy"(θ,W)"

Likelihood1based"BF"
BelyΘ

Uniform"dist."
λ

After combination by Dempster’s rule and marginalization on Z, we obtain the
predictive BF on Z induced by the multi-valued mapping

(s,w)→ ϕy (Γy (s),w).

with (s,w) uniformly distributed in [0,1]2
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Prediction Predictive belief function

Graphical representation

θ

ply(θ)

s%

Γy(s)%

w%

ϕy%

z%1%

0%

ϕy(Γy(s),w)%
s%
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Prediction Predictive belief function

Practical computation

Analytical expression when possible (simple cases), or
Monte Carlo simulation:

1 Draw N pairs (si ,wi ) independently from a uniform distribution
2 compute (or approximate) the focal sets ϕy (Γy (si ),wi )

The predictive belief and plausibility of any subset A ⊆ Z are then
estimated by

B̂el
Z
y (A) =

1
N

#{i ∈ {1, . . . ,N}|ϕy (Γy (si ),wi ) ⊆ A}

P̂l
Z
y (A) =

1
N

#{i ∈ {1, . . . ,N}|ϕy (Γy (si ),wi ) ∩ A 6= ∅}
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Prediction Predictive belief function

Example: the urn model

Here, Y ∼ B(n, θ). The likelihood-based BF is induced by a random
interval

Γ(s) = {θ : ply (θ) ≥ s} = [θ(s), θ(s)]

We have

Z = ϕ(θ,W ) =

{
1 if W ≤ θ
0 otherwise

Consequently,

ϕ (Γ(s),W ) = ϕ
([
θ(s), θ(s)

]
,W
)

=


{1} if W ≤ θ(s)
{0} if θ(s) < W
{0,1} otherwise
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Prediction Predictive belief function

Example: the urn model
Properties

We have

Bely ({1}) = E(θ(S)) =

∫ θ̂

0
ply (θ)dθ

Ply ({1}) = E(θ(S)) = θ̂ +

∫ 1

θ̂

ply (θ)dθ

So

m({0,1}) =

∫ 1

0
ply (θ)dθ

As n→∞, m({1})→ 1 and m({0,1})→ 0 in probability.
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Prediction Predictive belief function

Example: the urn model
Geometric representation
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Prediction Predictive belief function

Example: the urn model
Belief/plausibility intervals
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Prediction Predictive belief function

Uniform example

Assume that Y1, . . . ,Yn,Z is iid from U([0, θ])

Then Fθ(z) = z/θ for all 0 ≤ z ≤ θ and we can write Z = θW with
W ∼ U([0,1])

We have seen that the belief function BelΘ
y after observing Y = y is

induced by the random interval [y(n), y(n)S−1/n]

Each focal set of BelZy is an interval

ϕ(Γy (s),w) = [y(n)w , y(n)s−1/nw ]

The predictive belief function BelZy is induced by the random interval

[Ẑy∗, Ẑ ∗y ] = [y(n)W , y(n)S−1/nW ]
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Prediction Predictive belief function

Uniform example
Lower and upper cdfs
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Prediction Predictive belief function

Uniform example
Consistency

From the consistency of the MLE, Y(n) converges in probability to θ0, so

ẐY∗ = Y(n)W
d−→ θ0W = Z

We have E(S−1/n) = n/(n − 1), and

Var(S−1/n) =
n

(n − 2)(n − 1)2

Consequently, E(S−1/n)→ 1 and Var(S−1/n)→ 0, so S−1/n P−→ 1
Hence,

Ẑ ∗Y = Y(n)S−1/nW d−→ θ0W = Z
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Prediction Predictive belief function

Consistency (general case)

Assume that
The observed data y = (y1, . . . , yn) is a realization of an iid sample
Y = (Y1, . . . ,Yn)
The likelihood function Ln(θ) is unimodal and upper-semicontinuous, so that
its level sets Γn(s) are closed and connected, and that function ϕ(θ,w) is
continuous

Under these conditions, the random set ϕ(Γn(S),W ) is a closed random
interval [Ẑ∗n, Ẑ ∗n ]

Then:

Theorem
Assume that the conditions of the previous theorem hold, and that the
predictive belief function BelZn is induced by a random closed interval [Ẑ∗n, Ẑ ∗n ].
Then Ẑ∗n and Ẑ ∗n both converge in distribution to Z when n tends to infinity.
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Prediction Examples

Linear regression

Let z be a not-yet observed value of the dependent variable for a vector
x0 of covariates:

z = x ′0β + ε0,

with ε0 ∼ N (0, σ2)

We can write, equivalently,

z = x ′0β + σΦ−1(w) = ϕx0,y (θ,w),

where w has a standard uniform distribution
The predictive belief function on z can then be approximated using Monte
Carlo simulation
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Prediction Examples

Linear model: prediction

Let z be a not-yet observed value of the dependent variable for a vector
x0 of covariates:

z = x ′0β + ε0,

with ε0 ∼ N (0, σ2)

We can write, equivalently,

z = x ′0β + σΦ−1(w) = ϕx0,y (θ,w),

where w has a standard uniform distribution
The predictive belief function on z can then be approximated using Monte
Carlo simulation
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Prediction Examples

Movie example
BO success of an action sequel film rated PG13 by MPAA, with
LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= 2.81?
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Prediction Examples

Ex ante forecasting
Problem and classical approach

Consider the situation where some explanatory variables are unknown at
the time of the forecast and have to be estimated or predicted
Classical approach: assume that x0 has been estimated with some
variance, which has to be taken into account in the calculation of the
forecast variance
According to Green (Econometric Analysis, 7th edition, 2012)

“This vastly complicates the computation. Many authors view it as simply
intractable”
“analytical results for the correct forecast variance remain to be derived
except for simple special cases”
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Prediction Examples

Ex ante forecasting
Belief function approach

In contrast, this problem can be handled very naturally in our approach by
modeling partial knowledge of x0 by a belief function BelX in the sample
space X of x0

We then have
BelZy =

(
BelΘ

y ⊕ BelZ×Θ
y ⊕ BelX

)↓Z
Assume that the belief function BelX is induced by a source (Ω,A,PΩ,Λ),
where Λ is a multi-valued mapping from Ω to 2X

The predictive belief function BelZy is then induced by the multi-valued
mapping

(ω, s,w)→ ϕy (Λ(ω), Γy (s),w)

BelZy can be approximated by Monte Carlo simulation
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Prediction Examples

Monte Carlo algorithm

Require: Desired number of focal sets N
for i = 1 to N do

Draw (si ,wi ) uniformly in [0,1]2

Draw ω from PΩ

Search for z∗i = minθ ϕy (x0,θ,wi ) such that ply (θ) ≥ si and x0 ∈ Λ(ω)
Search for z∗i = maxθ ϕy (x0,θ,wi ) such that ply (θ) ≥ si and x0 ∈ Λ(ω)
Bi ← [z∗i , z∗i ]

end for
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Prediction Examples

Movie example
Lower and upper cdfs

BO success of an action sequel film rated PG13 by MPAA, with
LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= (0,2.81,5) (triangular
possibility distribution)?
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Prediction Examples

Movie example
Pl-plots

Certain inputs Uncertain inputs
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Prediction Examples

Innovation diffusion

Forecasting the diffusion of an innovation has been a topic of
considerable interest in marketing research
Typically, when a new product is launched, sale forecasts have to be
based on little data and uncertainty has to be quantified to avoid making
wrong business decisions based on unreliable forecasts
Our approach uses the Bass model (Bass, 1969) for innovation diffusion
together with past sales data to quantify the uncertainty on future sales
using the formalism of belief functions
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Prediction Examples

Bass model

Fundamental assumption (Bass, 1969): for eventual adopters, the
probability f (t) of purchase at time t , given that no purchase has yet been
made, is an affine function of the number of previous buyers

f (t)
1− F (t)

= p + qF (t)

where p is a coefficient of innovation, q is a coefficient of imitation and
F (t) =

∫ t
0 f (u)du.

Solving this differential equation, the probability that an individual taken
at random from the population will buy the product before time t is

Φθ(t) = cF (t) =
c(1− exp[−(p + q)t ])

1 + (p/q) exp[−(p + q)t ]

where c is the probability of eventually adopting the product and
θ = (p,q, c)
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Prediction Examples

Parameter estimation

Data: y1, . . . , yT−1, where yi = observed number of adopters in time
interval [ti−1, ti )
The number of individuals in the sample of size M who did not adopt the
product at time tT−1 is yT = M −

∑T−1
i=1 yi

The probability of adopting the innovation between times ti−1 and ti is
pi = Φθ(ti )− Φθ(ti−1) for 1 ≤ i ≤ T − 1, and the probability of not
adopting the innovation before tT−1 is pT = 1− Φθ(tT−1)

Consequently, y = (y1, . . . , yT ) is a realization of Y ∼M(M,p1, . . . ,pT )
and the likelihood function is

Ly (θ) ∝
T∏

i=1

pyi
i =

(
T−1∏
i=1

[Φθ(ti )− Φθ(ti−1)]yi

)
[1− Φθ(tT−1)]yT

The belief function on θ is defined by ply (θ) = Ly (θ)/Ly (θ̂)
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Prediction Examples

Results
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Prediction Examples

Sales forecasting

Let us assume we are at time tT−1 and we wish to forecast the number Z
of sales between times τ1 and τ2, with tT−1 ≤ τ1 < τ2

Z has a binomial distribution B(Q, πθ), where
Q is the number of potential adopters at time T − 1
πθ is the probability of purchase for an individual in [τ1, τ2], given that no
purchase has been made before tT−1

πθ =
Φθ(τ2)− Φθ(τ1)

1− Φθ(tT−1)

Z can be written as Z = ϕ(θ,W ) =
∑Q

i=1 1[0,πθ ](Wi ) where

1[0,πθ ](Wi ) =

{
1 if Wi ≤ πθ
0 otherwise

and W = (W1, . . . ,WQ) has a uniform distribution in [0,1]Q .
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Prediction Examples

Predictive belief function
Multi-valued mapping

The predictive belief function on Z is induced by the multi-valued
mapping (s,w)→ ϕ(Γy (s),w) with

Γy (s) = {θ ∈ Θ : ply (θ) ≥ s}

When θ varies in Γy (s), the range of πθ is [πθ(s), πθ(s)], with

πθ(s) = min
{θ|ply (θ)≥s}

πθ, πθ(s) = max
{θ|ply (θ)≥s}

πθ

We have
ϕ(Γy (s),w) = [Z (s,w),Z (s,w)],

where Z (s,w) and Z (s,w) are, respectively, the number of wi ’s that are
less than πθ(s) and πθ(s)

For fixed s, Z (s,W ) ∼ B(Q, πθ(s)) and Z (s,W ) ∼ B(Q, πθ(s))
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Prediction Examples

Predictive belief function
Calculation

The belief and plausibilities that Z will be less than z are

BelZy ([0, z]) =

∫ 1

0
FQ,πθ(s)(z)ds

PlZy ([0, z]) =

∫ 1

0
FQ,πθ(s)(z)ds

where FQ,p denotes the cdf of the binomial distribution B(Q,p)

The contour function of Z is

ply (z) =

∫ 1

0

(
FQ,πθ(s)(z)− FQ,πθ(s)(z − 1)

)
ds

Theses integrals can be approximated by Monte-Carlo simulation
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Prediction Examples

Ultrasound data
Data collected from 209 hospitals through the U.S.A. (Schmittlein and
Mahajan, 1982) about adoption of an ultrasound equipment
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Prediction Examples

Forecasting
Predictions made in 1970 for the number of adopters in the period 1971-1978,
with their lower and upper expectations
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Prediction Examples

Cumulative belief and plausibility functions
Lower and upper cumulative distribution functions for the number of adopters
in 1971, forecasted in 1970
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Prediction Examples

Pl-plot
Plausibilities PlYy ([z − r , z + r ]) as functions of z, from r = 0 (lower curve) to
r = 5 (upper curve), for the number of adopters in 1971, forecasted in 1970:
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Prediction Examples

Conclusions

Uncertainty quantification is an important component of any forecasting
methodology. The approach introduced in this lecture allows us to
represent forecast uncertainty in the belief function framework, based on
past data and a statistical model
The proposed method is conceptually simple and computationally
tractable
The belief function formalism makes it possible to combine information
from several sources (such as expert opinions and statistical data)
The Bayesian predictive probability distribution is recovered when a prior
on θ is available
The consistency of the method has been established under some
conditions
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