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As explained previously, the theory of belief functions essentially models
the process whereby degrees of belief are constructed from pieces of evidence.
As several pieces of evidence are typically available, we need a mechanism
for combining them. This issue will be addressed in this lecture.

1 Introduction

Let us come back to the murder example of Lecture 2. Remember that the
first item of evidence gave us the following mass function

m1({Peter, John}) = 0.8, m1(Ω) = 0.2

over the frame Ω = {Peter, John,Mary}. Let us now assume that we have
a new piece of evidence: a blond hair has been found. This new evidence
supports the hypothesis that the murderer is either John or Mary, as they
are blond while Peter is not. However, this piece of evidence is reliable only
if the room has been cleaned before the crime. If we judge that there is 60%
chance that it was the case, then our second piece of evidence is modeled by
the following mass function : m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

The process for combining these two pieces of evidence is illustrated by
Figure 1. The meaning of each piece of evidence depends on the answer to
some related question, which can be seen as being generated by a random
process with known chances. For instance, if the witness was not drunk, we
know that the murderer is either Peter or John. If the room had been cleaned
before the crime, we know that the murderer was either John or Mary. If
both assumptions hold, then we know that the murderer is John. What is the
probability that this conclusion can be derived from the available evidence?
To answer this question, we need to describe the dependence between the
two pieces of evidence by specifying a joint probability measure µ12 on the
product space U1 × U2. Independence between the two pieces of evidence
corresponds to the case where µ12 is the product measure µ1 ⊗ µ2. Under
this independence assumption, the probability of knowing that the murder
is John is equal to 0.6× 0.8 = 0.48.
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(C1,	  P1)	  

Ω	
Γ1	  

drunk	  (0.2)	  

not	  drunk	  (0.8)	  

Peter	  

John	  

Mary	  

(C2,	  P2)	  

Γ2	  

cleaned	  (0.6)	  

not	  cleaned	  
(0.4)	  

Figure 1: Combination of evidence in the murder example.

In some cases, there may be some conflict between two pieces of evidence
being combined. For instance, suppose now that only Mary is blond. If
we assume that the witness was not drunk and the room had been cleaned
before the crime, we get a logical contradiction. Consequently, these two
interpretations cannot hold jointly and the joint probability measure on U1×
U2 must be conditioned to eliminate this as well as other conflicting pairs of
interpretations.

It is clear that such conditioning induces some dependence between the
two pieces of evidence. For instance, in the second version of the story, if we
learn that the room had been cleaned, then we can deduce that the witness
was drunk at the time of the crime. This fact seems to be contradictory with
our initial claim that the two pieces of evidence are independent. However,
this apparent contradiction is resolved if we consider the meanings of the
two pieces of evidence to be governed by a physical chance process, as in
the random code metaphor. If U1 and U2 are seen as sets of codes selected
at random, then independence of the two pieces of evidence corresponds to
the assumption of stochastic independence of the two random experiments.
After these experiments has taken place, we know that pairs of codes (c1, c2)
in U1×U2 such that Γ1(c1)∩Γ2(c2) = ∅ could not have been selected and we
must condition µ1⊗µ2 on the event {(c1, c2) ∈ U1×U2|Γ1(c1)∩Γ2(c2) 6= ∅}.
This line of reasoning leads to Dempster’s rule for combining mass functions,
which will be formally defined in the next section.
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2 Dempster’s rule

2.1 Definition and elementary properties

Let M be the set of mass functions on Ω. Dempster’s rule is the partial
binary operation ⊕ onM defined by

(m1 ⊕m2)(A) = K
∑

B∩C=A

m1(B)m2(C) (1a)

for all A ⊆ Ω, A 6= ∅ and

(m1 ⊕m2)(∅) = 0. (1b)

The normalizing constant K in (1a) is equal to (1− κ)−1, where

κ =
∑

B∩C=∅

m1(B)m2(C) (2)

is called the degree of conflict between m1 and m2. The two mass functions
can be combined only if κ < 1, which is the reason why ⊕ is a partial binary
operation.

We may observe that each focal set ofm1⊕m2 is obtained by intersecting
one focal set of m1 and one focal set of m2. Consequently, m1 ⊕m2 is more
focussed (precise) than both m1 and m2: we say that ⊕ is a conjunctive
operation. Two special cases are of particular interest:

1. If mA and mB are logical mass functions focussed, respectively, on A
and B and if A ∩ B 6= ∅, then they are combinable and mA ⊕mB =
mA∩B: Dempster’s rule thus extends set intersection.

2. If either m1 or m2 is Bayesian, then so is m1⊕m2 (as the intersection
of a singleton with another subset is either a singleton, or the empty
set).

It is clear from (1) that ⊕ is commutative (m1 ⊕ m2 = m2 ⊕ m1 for
any m1 and m2) and that it admits m? as neutral element (m ⊕ m? =
m? ⊕m = m for any m). We may wonder whether ⊕ is associative, i.e., for
any three mass functions m1, m2 and m3, do we have (m1 ⊕m2) ⊕m3 =
m1⊕ (m2⊕m3)? In other words, does the order in which the mass functions
are combined matter? Actually, it does. This property will become obvious
once Dempster’s rule is expressed in terms of another representation of a
mass functions: the commonality function introduced in the next section.

2.2 Commonality function

We have already encountered three equivalent representations of a piece of
evidence: the mass function m, the belief function Bel and the plausibility
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function Pl. There actually exists a fourth representation: the commonality
function defined by

Q(A) =
∑
B⊇A

m(B), (3)

for all A ⊆ Ω. It can be shown (see [1]) that m and Bel can be uniquely
recovered from Q using the following equations:

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (4)

Bel(A) =
∑
B⊆A

(−1)|B|Q(B), (5)

for all A ⊆ Ω.
It is obvious that Q(∅) = 1. Furthermore, using (4) or (5) with A = ∅,

we get ∑
B⊆Ω

(−1)|B|Q(B) = 0 (6)

or, equivalently, ∑
∅6=B⊆Ω

(−1)|B|+1Q(B) = 1. (7)

Equation (7) makes it possible to compute the commonality function once
commonality numbers are determined up to some multiplicative constant.

The interpretation of the commonality function is not as obvious as that
of the belief and plausibility functions. However, it has a remarkable property
in relation with Dempster’s rule, as described by the following theorem.

Theorem 1 Let Q1, Q2 and Q1⊕Q2 be the commonality functions induced
by mass functions m1 and m2 and m1 ⊕m2. Then

(Q1 ⊕Q2)(A) = KQ1(A) ·Q2(A), (8)

for all A ⊆ Ω, A 6= ∅, where K is the same constant as in (1a).
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Proof. We have

(Q1 ⊕Q2)(A) =
∑
B⊇A

(m1 ⊕m2)(B)

= K
∑
B⊇A

∑
C∩D=B

m1(C)m2(D)

= K
∑

C∩D⊇A
m1(C)m2(D)

= K
∑

C⊇A,D⊇A
m1(C)m2(D)

= K

∑
C⊇A

m1(C)

∑
D⊇A

m2(D)


= KQ1(A) ·Q2(A).

Given two mass functions m1 and m2, we can thus combine them either
using (1), or by converting them to commonality functions, multiplying them
pointwise, and computing the corresponding mass function using (4).

Let us now assume that we wish to combine nmass functionsm1, . . . ,mn.
It can be done by combining m1 with m2, then combining the result m1⊕m2

with m3, etc. The resulting commonality function after combining the n
mass functions is

Q(A) = KQ1(A) . . . Qn(A) (9)

for all non-empty A ⊆ Ω, where K is the product of normalizing constants
obtained at each stage. Using (7), we get the expression of K as:

K =

 ∑
∅6=B⊆Ω

(−1)|B|+1Q1(B) . . . Qn(B)

−1

. (10)

As both (9) and (10) are unaffected by permutation of indices, we can con-
clude that ⊕ is associative and the result of the combination does not depend
on the order in which the combination is performed. We can remark that m
can also be computed directly by combining the nmass functionsm1, . . . ,mn

at once using the following formula, which extends (1):

(m1 ⊕ . . .⊕mn)(A) = K
∑

B1∩...∩Bn=A

m1(B1) . . .mn(Bn) (11a)

for all A ⊆ Ω, A 6= ∅ and

(m1 ⊕ . . .⊕mn)(∅) = 0, (11b)

with K = (1− κ)−1 and

κ =
∑

B1∩...∩Bn=∅

m1(B1) . . .mn(Bn). (12)
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As mentioned above, κ is called the degree of conflict between the n
mass function. It ranges between 0 (no conflict) to 1 (total conflict). A
related, and perhaps more useful notion is that of weight of conflict, defined
as Con(m1, . . . ,mn) = logK = − log(1 − κ). As the normalizing constant
K obtained when combining n mass functions is equal to the product of the
normalizing constants at each stage, it follows that the weights of conflict
combine additively, i.e.,

Con(m1, . . . ,mn+1) = Con(m1, . . . ,mn) + Con(m1⊕ . . .⊕mn,mn+1). (13)

2.3 Conditioning

In Bayesian probability theory, conditioning is the fundamental mechanism
for updating a probability measure P with new evidence of the form ω ∈ B
for some B ⊆ Ω such that P (B) 6= 0. The conditional probability measure
is defined as

P (A|B) =
P (A ∩B)

P (B)
(14)

for all A ⊆ Ω. In a similar way, a conditioning rule for mass functions can
be defined as a special case of Dempster’s rule, in which an arbitrary mass
function m is combined with a logical mass function mB focussed on B:

m(·|B) = m⊕mB. (15)

The normalizing constant K in this combination is

K =

 ∑
A∩B 6=∅

m(A)

−1

= Pl(B)−1

and the plausibility function Pl(·|B) induced by m(·|B) is given by

Pl(A|B) =
∑

C:C∩A 6=∅

m(C|B) (16a)

= Pl(B)−1
∑

C:C∩A 6=∅

∑
D:D∩B=C

m(D) (16b)

= Pl(B)−1
∑

D:D∩B∩A 6=∅

m(D) (16c)

=
Pl(A ∩B)

Pl(B)
. (16d)

We note the similarity between (14) and (16d). In particular, if m is
Bayesian, Pl is a probability measure, and Pl(·|B) is the conditional prob-
ability measure obtained by the Bayesian conditioning of Pl by B. This
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important remark shows that Dempster’s rule can be seen as a proper exten-
sion of Bayesian conditioning, which is nothing but Dempster’s combination
of a probability measure with a logical mass function.

The expression of the conditional belief function Bel(·|B) can easily ob-
tained from Pl(·|B). We have

Bel(A|B) = 1− Pl(A|B) (17a)

= 1− Pl(A ∩B)

Pl(B)
(17b)

= 1− 1−Bel(A ∪B)

1−Bel(B)
(17c)

=
Bel(A ∪B)−Bel(B)

1−Bel(B)
. (17d)

3 Related combination rules

Let (U1, µ1,Γ1) and (U2, µ2,Γ2) be two sources generating mass functions
m1 and m2. The combined mass function m1 ⊕m2 is induced by the source
(U1×U2, µ,Γ∩), where µ is obtained by conditioning µ1⊗µ2 with the event
{(u1, u2)|Γ∩(u1, u2) 6= ∅}.

When deriving Dempster’s rule, we have made two main assumptions.
First, we have assumed both sources to be reliable. In the random code
metaphor, this corresponds to the hypothesis that each source encodes a
message contained some true information about ω. This assumption is at
the origin of selecting Γ∩ as the multi-valued mapping for the combined
mass function. We could, however, make different assumptions about the
reliability of the two sources. For instance, we could assume that at least one
of them is reliable. In that case, assuming the codes u1 and u2 to be used, we
can deduce that ω ∈ Γ∪(u1, u2) = Γ1(u1)∪Γ2(u2). This assumptions results
in the following binary operation, called the disjunctive rule of combination:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C),

for all A ⊆ Ω. This operation is clearly commutative and associative, and
it does not have a neutral element. We can observe that it never generates
conflict, so that no normalization has to be performed. The disjunctive rule
can be expressed in a simple way using belief functions: if Bel1∪Bel2 denotes
the belief function corresponding to m1 ∪m2, we have

(Bel1 ∪Bel2)(A) = Bel1(A)Bel2(A), (18)

for all A ⊆ Ω, which is the counterpart of (8). Combining mass functions dis-
junctively can be seen as a conservative strategy, as the disjunctive rule relies
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on a weaker assumption about the reliability of the sources, as compared to
Dempster’s rule. However, mass functions become less and less focussed as
more pieces of combined using the disjunctive rule. In particular, the vacu-
ous mass function m? is an absorbing element, i.e, m ∪m? = m? ∪m = m?

for all m.
In general, the disjunctive rule may be preferred in case of heavy conflict

between the different pieces of evidence. An alternative rule, which is some-
how intermediate between the disjunctive and conjunctive rules, has been
proposed by Dubois and Prade. It is defined as follows:

(m1 ?m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}

m1(B)m2(C), (19)

for all A ⊆ Ω, A 6= ∅, and (m1 ? m2)(∅) = 0. This rule boils down to the
conjunctive and disjunctive rules when, respectively, the degree of conflict
is equal to zero and one. In other case, it has some intermediate behavior.
We note that this rule is not associative. If several pieces of evidence are
available, they should be combined at once using an obvious n-ary extension
of (19).

The other fundamental assumption underlying Dempster’s rule is inde-
pendence of the sources of evidence, which is at the origin of the selection
of µ1 ⊗ µ2 as a joint probability measure on U1 ×U2. In principle, any form
of dependence between the two sources can be described by defining a joint
probability measure µ12 on U1×U2, with marginals µ1 and µ2. To each joint
measure µ12 corresponds a distinct combination rule. In practice, however,
the dependence between two sources can rarely be specified in that way. An-
other situation is that where the dependence between sources is unknown.
In that case, we could try to find a minimally informative joint probability
measure µ∗12, among all joints measures with marginals µ1 and µ2. This is
still a research problem. We will get back to it in a following lecture.

4 Separable belief functions

Dempster’s rule provides the fundamental mechanism for combining elemen-
tary items of evidence. The simplest form of such evidence corresponds to
the situation where we get a message from a source of the form ω ∈ A for
some non-empty A ⊂ Ω, and we assess that the chance for the source to be
reliable is s. Such evidence can be represented by a simple mass function of
the form

m(A) = s, m(Ω) = 1− s.

Shafer [1] defined the weight of evidence associated to m as w = − log(1−s).
The weight of evidence thus equals 0 if m is vacuous, and ∞ if m is logical.
The interest of the notion of weight of evidence arises from the following
observation.
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Let m1 and m2 be two simple mass functions with the same focal set
A ⊂ Ω and masses s1 and s2. Then m1 ⊕m2 is still a simple mass function
and it is given by

(m1 ⊕m2)(A) = 1− (1− s1)(1− s2) (20)
(m1 ⊕m2)(Ω) = (1− s1)(1− s2). (21)

The weight of evidence associated tom1⊕m2 is thus w12 = − log((1−s1)(1−
s2)) = w1 +w2. We can see weights of evidence are additive and capture the
notion of accumulation of evidence.

A simple support function focused on A with weight w will be denoted
by Aw. We thus have

Aw1 ⊕Aw2 = Aw1+w2 . (22)

A mass function is said to be separable if it can be obtained as the
combination of simple mass function Aw1

1 , . . . , Awn
n fro some proper non-

empty subsets of Ω:

m =
n⊕

i=1

Awi
i , (23)

We note that this combination is well defined iff⋂
wi=∞

Ai 6= ∅.

A separable mass function generally admits several decompositions as the
combination of simple mass functions. As shown by Shafer [1], a particular
“canonical” decomposition can be obtained as follows:

m =

n⊕
A⊆Ω

Aw(A), (24)

with

w(A) =


∑

B⊆C,A⊆B(−1)|B\A| logQ(B) if A ⊆ C, A 6= ∅, A 6= C
∞ if A = C
0 if A = ∅ or A 6⊆ C,

(25)

where C is the core of m.
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