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Until now, the presentation of belief functions has been restricted to the
case where Ω is finite. The theory of belief functions on finite frames is
sufficient to represent expert opinions, because any infinite frame can always
be coarsened to a finite one, which is more easily conceived by an expert.
However, in some applications, the restriction to finite frames does appear
as a limitation. For instance, in most statistical models, the parameter space
is Rd for some d ≥ 1. It is thus useful to extend the theory from finite to
infinite (continuous) spaces. This extension involves, in the most general
case, considerably more mathematical sophistication than involved in the
finite case. In the presentation below, we will try to avoid entering technical
details and we will focus on the simplest models, which are sufficient for most
applications, in particular to statistical inference.

In Lecture 2, we have noticed the formal connection between belief func-
tions and random sets. This connection remains valid in the infinite case
and, as the theory of random sets is well developed mathematically [3], it
will provide a solid foundation for a theory of belief functions in infinite
spaces.

1 General definitions and results

In the finite case, we derived the notion of belief function from that of mass
function, and we later showed the equivalence with the complete monotonic-
ity condition. In the infinite case, there may not be a mass function associ-
ated with a completely monotone function, so that we have to define a belief
function axiomatically from its properties (the most important one being
complete monotonicity).

1.1 Definitions

Let (Ω,B) be a measurable space (i.e., B is a sigma-field, that is a non-empty
subset of 2Ω closed under complementation and countable union). A belief
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function on B is a function Bel : B → [0, 1] verifying the following three
conditions:

1. Bel(∅) = 0;

2. Bel(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)
. (1)

Furthermore, a belief function Bel on (Ω,B) is continuous [4] if for any
decreasing sequence B1 ⊃ B2 ⊃ B3 ⊃ . . . of elements of B,

lim
i→+∞

Bel(Bi) = Bel

(⋂
i

Bi

)
. (2)

Similarly, a plausibility function can be defined as a function Pl : B →
[0, 1] such that:

1. Pl(∅) = 0;

2. Pl(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Pl

(
k⋂

i=1

Bi

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Bi

)
, (3)

and it is continuous if, for any increasing sequence B1 ⊂ B2 ⊂ B3 ⊂ . . . of
elements of B,

lim
i→+∞

Pl(Bi) = Pl

(⋃
i

Bi

)
. (4)

It is clear that, whenever Bel is a belief function, Pl defined by Pl(A) =
1−Bel(A) is a plausibility function.

1.2 Belief function induced by a source

A very convenient way to create a belief function is to define a source, i.e.,
a multivalued mapping from a probability space to B. More precisely, let
(U,A, µ) be a probability space and let Γ : U → 2Ω be a multi-valued
mapping. We can define two inverses of Γ:
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1. The lower inverse

Γ∗(B) = {u ∈ U |Γ(u) 6= ∅,Γ(u) ⊆ B}; (5)

2. The upper inverse

Γ∗(B) = {u ∈ U |Γ(u) ∩B 6= ∅}, (6)

for all B ∈ B. We say that Γ is strongly measurable with respect to A and
B iff, for all B ∈ B, Γ∗(B) ∈ A.

We then have the following important theorem.

Theorem 1 Let (U, , µ) be a probability space, (Ω,B) a measurable space and
Γ a strongly measurable mapping w.r.t. A and B such that µ(Γ∗(Ω)) = 1.
Let the lower and upper probability measures be defined as follows:

µ∗(B) = µ[Γ∗(B)], (7)

µ∗(B) = µ[Γ∗(B)] = 1− µ∗(B), (8)

for all B ∈ B. Then, µ∗ is a continuous belief function and µ∗ is the dual
plausibility function.

Proof. We can remark that

Γ∗

(⋂
i

Bi

)
=
⋂
i

Γ∗(Bi) (9)

and

Γ∗

(⋃
i

Bi

)
⊇
⋃
i

Γ∗(Bi). (10)

Consequently, for any k and any collection B1, . . . , Bk of elements of B,

∑
∅6=I⊆{1,...,k}

(−1)|I|+1µ∗

(⋂
i∈I

Bi

)
=

∑
∅6=I⊆{1,...,k}

(−1)|I|+1µ

(⋂
i∈I

Γ∗(Bi)

)
= µ

(⋃
i∈I

Γ∗(Bi)

)

≤ µ

[
Γ∗

(⋃
i

Bi

)]
= µ∗

(⋃
i

Bi

)
. (11)

Now, for any decreasing sequence B1 ⊃ B2 ⊃ B3 ⊃ . . . of elements of B,
Γ∗(B1) ⊃ Γ∗(B2) ⊃ Γ∗(B3) ⊃ . . . is a decreasing sequence of elements of A.

3



Consequently,

lim
i→+∞

µ∗(Bi) = lim
i→+∞

µ (Γ∗(Bi)) =

µ

(⋂
i

Γ∗(Bi)

)
= µ

[
Γ∗

(⋂
i

Bi

)]
= µ∗

(⋂
i

Bi

)
. (12)

Thus, to define a belief function on (Ω,B), it suffices to define a prob-
ability space (U,A, µ) and a strongly measurable mapping Γ from U to A.
By analogy with the finite case, the sets Γ(u) for u ∈ U can be called the
focal sets of Bel.

We can remark that, to insure the existence of a commonality function
Q, we have to impose that, for any B ∈ B, {u ∈ U |Γ(u) ⊇ B} is in A. We
can then define the commonality function as

Q(B) = µ ({u ∈ U |Γ(u) ⊇ B}) . (13)

As shown by Shafer [4], any belief function Bel on (Ω,B) can be extended
to (Ω, 2Ω) as

B̃el(A) = sup{Bel(B)|B ∈ B, B ⊆ A}, (14)

for all A ⊆ Ω.

1.3 Relationship with random sets

As remarked by Nguyen [2], any belief function constructed as described in
the previous section is the probability distribution of a random set.

To define a random set, we need to define a σ-field B̂ on 2Ω. This can be
done as follows: for any T̂ ⊆ 2Ω,

T̂ ∈ B̂ ⇔ Γ−1(T̂ ) ∈ A. (15)

It is clear that the mapping Γ is A-B̂ measurable. Let µ̂ be the probability
measure on (2Ω, B̂) defined by

µ̂(T̂ ) = µ[Γ−1(T̂ )]. (16)

For all B ∈ B, let I(B) = {C ⊆ Ω|C ⊆ B}. It is easy to see that

µ̂[I(B)] = µ∗(B). (17)

Hence, µ∗ is the distribution function of a random set.
When the set of Ω has a topological structure, some special classes of ran-

dom sets are particularly amenable to mathematical analysis. In particular,
let C be the set of closed subsets of Ω. For any A ⊆ Ω, let

CA = {C ∈ C|C ∩A 6= ∅}. (18)

Let (U,A, µ) be a probability space. Then a map Γ : U → C is a random
closed set if, for any A in C, Γ−1(CA) ∈ A.
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1.4 Consonant random closed sets

A practical way of constructing a random closed set is as follows. For sim-
plicity, we will assume that Ω = Rd. Let π be an upper semi-continuous map
from Rd to [0, 1], i.e., for any u ∈ [0, 1], the set

uπ = {x ∈ Rp|π(x) ≥ u} (19)

is closed. Furthermore, assume that π(x) = 1 for some x. Let U = [0, 1], A
be the Borel σ-field on [0, 1], µ the Lebesgue measure, and Γ the mapping
defined by Γ(u) = uπ. Then Γ is a random closed set [3]. We can observe
that its focal sets are nested: it is said to be consonant. Let Bel, Pl and Q
be the corresponding belief, plausibility and commonality functions. Then,
for any A ⊂ Rd:

Pl(A) = µ({u ∈ U |uπ ∩A 6= ∅}) (20a)
= µ({u ∈ U |∃x ∈ A, π(x) ≥ u}) (20b)
= µ({u ∈ U |u ≤ sup

x∈A
π(x)}) (20c)

= sup
x∈A

π(x), (20d)

Bel(A) = 1− Pl(A) = 1− sup
x 6∈A

π(x) = inf
x 6∈A

(1− π(x)) (21)

and

Q(A) = µ({u ∈ U |uπ ⊇ A}) (22a)
= µ({u ∈ U |∀x ∈ A, π(x) ≥ u}) (22b)
= µ({u ∈ U |u ≤ inf

x∈A
π(x)}) (22c)

= inf
x∈A

π(x). (22d)

In particular, Pl{x} = Q({x}) = π(x) for all x.

2 Random closed intervals

In this section, we consider the case where Ω = R. In this case, a special
class of random closed set is of special interest: random closed intervals [1].

2.1 Definition and properties

Let (U, V ) be a bi-dimensional random vector from (S,A,P) to R2 such that

P({s ∈ S|U(s) ≤ V (s)}) = 1. (23)

We can define the corresponding random closed set

Γ : s→ Γ(s) = [U(s), V (s)], (24)

which is called a random closed interval. Two special cases are of interest:
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1. If the random vector (U, V ) is discrete, with P(U = ui;V = Vi) =
mi, we have a discrete random interval; it is characterized by a mass
function m with focal sets Ii = [ui, vi] and masses m(Ii) = mi.

2. If (U, V ) is absolutely continuous with density f(u, v), we have a con-
tinuous random interval.

For all x ∈ R, we have:

Bel((−∞, x]) = P([U, V ] ⊆ (−∞, x]) = P(V ≤ x) = FV (x), (25)

where FV is the cumulative distribution function (cdf) of V , and

Pl((−∞, x]) = P([U, V ] ∩ (−∞, x] 6= ∅) = P(U ≤ x) = FU (x). (26)

These functions are called, respectively, the lower and upper cdf of [U, V ].
Now, for any a ≤ b, we have

Bel([a, b]) = P([U, V ] ⊆ [a, b]) = P(U ≥ a;V ≤ b), (27)

Pl([a, b]) = P([U, V ] ∩ [a, b] 6= ∅) =

1− P([U, V ] ∩ [a, b] = ∅) = 1− P(V < a)− P(U > b) (28)

and
Q([a, b]) = P([U, V ] ⊇ [a, b]) = P(U ≤ a;V ≥ b). (29)

We can observe that If [U, V ] is continuous, these probabilities can be com-
puted by integrating the joint density f(u, v). For instance,

Q([a, b]) =

∫ a

−∞

∫ +∞

b
f(u, v)dvdu, (30)

Bel([a, b]) =

∫ b

a

∫ b

u
f(u, v)dvdu. (31)

Conversely,

f(u, v) = −∂
2Q([a, b])

∂a∂b
= −∂

2Bel([a, b])

∂a∂b
. (32)

2.2 Combination of random intervals

As in the finite case, random closed intervals can be combined using Demp-
ster’s rule. Let [U1, V1] and [U2, V2] be two random closed intervals, and let
Q1 and Q2 be their commonality functions. We have the following equality:

(Q1 ⊕Q2)([a, b]) =
1

1− κ
Q1([a, b])Q2([a, b]), (33)
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where
κ = P([U1, V2] ∩ [U2, V2] = ∅) (34)

is the degree of conflict between the two random sets. To see this, we may
observe that

(Q1 ⊕Q2)([a, b]) = P([U1, V1] ∩ [U2, V2] ⊇ [a, b]|[U1, V1] ∩ [U2, V2] 6= ∅)(35a)

=
P([U1, V1] ⊇ [a, b], [U2, V2] ⊇ [a, b])

P([U1, V1] ∩ [U2, V2] 6= ∅)
(35b)

=
Q1([a, b])Q2([a, b])

1− κ
. (35c)

When [U1, V1] and [U2, V2] are continuous, the combination of [U1, V1]⊕
[U2, V2] may be cumbersome or even intractable. We may then compute an
approximation, either by discretizing the two random intervals, or by using
Monte Carlo simulation. For instance, the following algorithm can be used
to approximate (Pl1 ⊕ Pl2)(A) for some A ⊆ R:
k = 0
for i = 1 : N do
Generate realizations [u1, v1] and [u2, v2] of [U1, V1] and [U2, V2]
I = [u1, v1] ∩ [u2, v2]
if I ∩A 6= ∅ then
k = k + 1

end if
end for

̂(Pl1 ⊕ Pl2)(A) = k
N
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