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In this lecture, we define some of the main concepts of Dempster-Shafer
theory in the finite case. These notions are sufficient to cope with a large
number of applications. The extension to infinite spaces involves some math-
ematical intricacies and is technically more difficult, except in some simple
(and practically important) cases; it is postponed to a following lecture.

1 Mass function

1.1 Definitions

Let Ω be a finite set of possible answers to some question Q, one and only
one of which is true. The true answer will be denoted by ω, and an arbitrary
element of Ω by ω. Shafer [2] calls such a space a frame of discernment, to
emphasize the fact that it is not a set of “states of nature” objectively given,
but a subjective construction based on our state of knowledge. For instance,
if Q relates to a person’s state of health, Ω might contain only the diseases
known at a certain time. This set could be later refined or extended if new
knowledge became available. We call back later to the important issue of
defining and modifying the frame of discernment.

A piece of evidence about Q will be represented by a mass function,
defined as a mapping m from the power set 2Ω to the interval [0, 1] such that
m(∅) = 0 and ∑

A⊆Ω

m(A) = 1. (1)

Any subset A of Ω such that m(A) > 0 is called a focal set of m. The union
of the focal sets of a mass function is called its core.

Before discussing the semantics of a mass function, it is interesting to
point out two special cases:

1. If m has only one focal set, it is said to be logical. Logical mass func-
tions are in one-to-one correspondence with subsets of Ω: consequently,
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general mass functions can be viewed as generalized sets. A particu-
lar logical mass function plays a special role in the theory; it is the
vacuous mass function m? defined by m?(Ω) = 1; as we will see later,
such a mass function corresponds to an totally uninformative piece of
evidence.

2. If all focal sets are singletons (i.e., sets of cardinality one), m is said
to be Bayesian. To each Bayesian mass function can be associated a
probability distribution p : Ω→ [0, 1] such that p(ω) = m({ω}) for all
ω ∈ Ω.

A belief function may thus be viewed both as a generalized set and as a
non-additive measure. As we will see in following lectures, basic mechanisms
for reasoning with belief functions extend both probabilistic operations (such
as marginalization and conditioning) and set-theoretic operations (such as
intersection and union).

1.2 Semantics

The following example will show how the formalism of mass functions can
be used to represent a piece of evidence. It will also serve as an illustration
of the semantics of mass functions.

Example 1 A murder has been committed and there are three suspects: Pe-
ter, John and Mary. The question Q of interest is the identity of the mur-
derer and the frame of discernment is Ω = {Peter, John,Mary}. The piece
of evidence under study is a testimony: a witness saw the murderer. How-
ever, this witness is short-sighted and he can only report that he saw a man.
Unfortunately, this testimony is not fully reliable because we know that the
witness is drunk 20 % of the time. How can such a piece of evidence be
encoded in the language of mass functions?

We can see here that what the testimony tells us about Q depends on the
answer to another question Q′: Was the witness drunk at the time of the
murder? If he was not drunk, we know that the murderer is Peter or John.
Otherwise, we know nothing. Since there is 80% chance that the former
hypothesis holds, we may assign a 0.8 mass to the set {Peter, John}, and
0.2 to Ω:

m({Peter, John}) = 0.8, m(Ω) = 0.2

In the above example, we receive a message (a testimony) about Q, whose
meaning depends on the answer to a related question Q′ for which we have
a chance model (a probability distribution). We can compare our evidence
to a canonical example where we know that the outcomes of a random ex-
periment are o1 and o2 with corresponding chances p1 = 0.8 and p2 = 0.2,
and the message can only be interpreted with knowledge of the outcome. If
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the outcome is o1, then the meaning is ω ∈ {Peter, John}, otherwise the
meaning is the meaning is ω ∈ Ω, i.e., the message is totally uninformative.

As remarked by Shafer [3], probability judgements can be made by com-
paring the available evidence to some canonical example involving a chance
setup. In the Bayesian theory, we compare our evidence to a situation where
the truth is governed by chance (e.g., by thinking of the murderer as having
been selected at random). In the belief function approach, the canonical
example describes a situation where the meaning of the evidence is governed
by chance.

More precisely, two scenarios are specially useful to construct canonical
examples for mass functions.

The first scenario involves a machine that has two modes of operation,
normal and faulty. We know that in the normal mode it broadcasts true
messages, but we are completely unable to predict what it does in the faulty
mode. We further assume that the operating mode of the machine is random
and there a chance p that it is in the normal mode. It is then natural to say
that a message ω ∈ A produced by the machine has a chance p of meaning
what it says and a chance 1− p of meaning nothing. This leads to the mass
function m(A) = p and m(Ω) = 1− p. Such a mass function, with two focal
sets including Ω, is called a simple mass function.

The above story is simple and very useful to model situations in which
a partially reliable source of information provides a simple statement of the
form ω ∈ A and we can assess the probability of the source to be reliable.
How, it is not general enough to cover all kinds of evidence. In [3], Shafer
introduced a more sophisticated scenario that is general enough to produce
canonical examples for arbitrary mass functions. In this scenario, a source
holds some true information of the form ω ∈ A∗ for some A∗ ⊆ Ω. It sends
us this information as an encoded message using a code chosen at random
from a set of codes U = {c1, . . . , cr}, according to some known probability
measure µ (Figure 1). We know the set of codes as well as the chances of
each code to be selected. If we decode the message using code c, we get a
decoded message of the form ω ∈ Γ(c) for some subset Γ(c) of Ω. Then,

m(A) = µ({c ∈ U |Γ(c) = A}) (2)

is the chance that the original message was “ω ∈ A”, i.e., the probability of
knowing that ω ∈ A, and nothing more.

In the above framework, the mapping Γ : U → 2Ω \ {∅} is called a
multi-valued mapping and the triple (U, µ,Γ) is called a source. We can
observe that a source corresponds formally to a random set [1]. However, the
term “random set” may be misleading here, because we are not interested
in situations where a set is selected at random (such as, e.g., drawing a
handful of marbles from a bag). Here, the true answer to the question of
interest is a single element of Ω and it is not assumed to have been selected
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Figure 1: Random code setup.

at random. Instead, chances are introduced when comparing our evidence
to a situation where the meaning of a message depends on the result of a
random experiment.

It is clear that a source (U, µ,Γ) always induces a mass function from
(1) and, conversely, any mass function can be seen as generated by a source.
However, as will shall see, the concept of a source is more general than that
of mass function, because a source can be used in the infinite case to general
belief functions even when a mass function does not exist.

2 Belief and plausibility functions

2.1 Definitions

Let us assume the available evidence to be encoded by a mass function m
on Ω generated by a source (U, µ,Γ). For any A ⊆ Ω, the uncertainty of the
proposition ω ∈ A can be quantified by two numbers:

1. The probability that the evidence implies A, defined by

Bel(A) = µ({c ∈ U |Γ(c) ⊆ A}) (3a)

=
∑
B⊆A

m(B); (3b)

2. The probability that the evidence does not contradict A, given by

Pl(A) = µ({c ∈ U |Γ(c) ∩A 6= ∅}) (4a)

=
∑

B∩A 6=∅

m(B). (4b)

Clearly, Bel(∅) = Pl(∅) = 0, Bel(Ω) = Pl(Ω) = 1, Bel(A) ≤ Pl(A) and
Pl(A) = 1 − Bel(A), where A denotes the complement of A. The quantity
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Bel(A) can be interpreted as a degree of support for proposition A, or as a
degree of belief. The function Bel : 2Ω → [0, 1] is called a belief function.
In contrast, Pl(A) can be seen as the degree to which one fails to doubt A;
this number is called the plausibility of A and the function Pl : 2Ω → [0, 1]
is called a plausibility function.

2.2 Properties

Theorem 1 A function Bel : 2Ω → [0, 1] is a belief function iff it satisfies
the following conditions:

1. Bel(∅) = 0;

2. Bel(Ω) = 1;

3. For any k ≥ 2 and any collection A1, . . . , Ak of subsets of Ω,

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
. (5)

Proof: See [2, page 51].
In general, a function satisfying (5) for a given k is said to be monotone

of order k. It is clear that monotonicity of order k implies monotonicity of
order k′ for all k′ < k. A function that is monotone for any k is said to be
monotone of order infinite, or completely monotone. Furthermore, properties
1 and 2 above imply that Bel is increasing. To see this, let A and B be two
subsets of Ω such that A ⊆ B and let C = B \ A. We have B = A ∪ C and
A ∩ C = ∅. From (5) with k = 2, we have

Bel(A ∪ C) = Bel(B) ≥ Bel(A) +Bel(C)−Bel(A ∩ C)

= Bel(A) +Bel(C) ≥ Bel(A). (6)

Theorem 1 tells us that a completely monotone set function such that
Bel(∅) = 0 and Bel(Ω) = 1 is induced by some mass function m using
(3b). We may wonder whether there exists a unique m generating a belief
function Bel. Indeed, (3b) for A ∈ 2Ω \ {∅,Ω} provide 2|Ω| − 2 equations
and there are 2|Ω| − 2 free mass numbers (taking into account constraint
(1)). Consequently, one must be able to recover m from Bel in a unique
way. The following theorem states that m is actually the Möbius inverse of
Bel, a notion from Combinatorial theory [2].

Theorem 2 Let Bel : 2Ω → [0, 1] be a belief function induced by a mass
function m. Then

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B),

for all A ⊆ Ω.
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Proof: See [2, page 52].
Using the identity Pl(A) = 1−Bel(A) for any A ⊆ Ω, it is easy to obtain

the following theorem, which is a counterpart of Theorem 1:

Theorem 3 A function Pl : 2Ω → [0, 1] is a plausibility function iff it
satisfies the following conditions:

1. Pl(∅) = 0;

2. Pl(Ω) = 1;

3. For any k ≥ 2 and any collection A1, . . . , Ak of subsets of Ω,

Pl

(
k⋂

i=1

Ai

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
. (7)

A set function verifying the third property in Theorem 3 is said to be
alternating of order infinite, or completely alternating. A plausibility func-
tion is a completely alternating set function Pl such that Pl(∅) = 0 and
Pl(Ω) = 1.

From the above result, it is clear that, given any of the three functions
m, Bel and Pl, we can recover the other two. Consequently, these three
functions can be seen as different facets of the same information. In the
sequel, we will sometimes use the term “belief function” to refer to any of
these functions, when there will be no risk of confusion.

3 Special cases and relation with other theories

3.1 Bayesian mass functions

If m is Bayesian, then

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for any A ⊆ Ω. Furthermore, for any two disjoint subsets A and B of Ω,

Bel(A ∪B) =
∑

ω∈A∪B
m({ω}) =∑
ω∈A

m({ω}) +
∑
ω∈B

m({ω}) = Bel(A) +Bel(B). (8)

Consequently, belief functions induced by Bayesian mass functions are proba-
bility measures and are equal to their dual plausibility functions. Conversely,
it is clear that each probability measure P is a belief function induced by
the Bayesian mass function m such that m({ω}) = P ({ω}) for all ω ∈ Ω.

6



In other terms, the set of probability measures is exactly the set of belief
functions induced by Bayesian mass functions. This results shows us that the
language of belief functions is more general than that of probability theory.
As we will see later, the conditioning operation, which plays a major role in
updating beliefs based on new evidence in the Bayesian framework, can also
be seen as a special case of a more general operation in the belief function
framework.

3.2 Consonant mass functions

A mass function m is said to be consonant if its focal sets are nested, i.e., if
they can be arranged in an increasing sequence A1 ⊂ . . . ⊂ Ar. In that case,
functions Bel and Pl satisfy the following properties.

For any A,B ⊆ Ω, let i1 and i2 be the largest indices such that Ai ⊆ A
and Ai ⊆ B, respectively. Then, Ai ⊆ A ∩B iff i ≤ min(i1, i2) and

Bel(A ∩B) =

min(i1,i2)∑
i=1

m(Ai) (9a)

= min

(
i1∑
i=1

m(Ai),

i2∑
i=1

m(Ai)

)
(9b)

= min(Bel(A), Bel(B)). (9c)

Now, it is easy to deduce, from De Morgan laws, that

Pl(A ∪B) = max(Pl(A), P l(B)). (10)

Properties (9c) and (10) characterize, respectively, possibility and necessity
measures, which form the basis of Possibility theory introduced by Zadeh in
[5]. In this theory, Pl(A) is the degree to which proposition A is possible,
and Bel(A) is the degree to which A is certain, i.e., the degree to which
A is impossible. As possibility measures are special plausibility functions
(induced by consonant mass functions), the theory of belief functions can
be considered as more expressive than Possibility theory. However, as we
shall see, the two theories depart in the way different pieces of information
are combined: in the belief function approach, a mass function resulting
from the combination of two consonant mass functions will generally not be
consonant.

An important consequence of (10) is that function Pl can be deduced
from its restriction to singletons. More precisely, let pl : Ω → [0, 1] be the
contour function of m, defined by pl(ω) = Pl({ω}), for all ω ∈ Ω. For all
A ⊆ Ω,

Pl(A) = max
ω∈A

pl(ω). (11)

We note that the condition Pl(Ω) = 1 implies that maxω∈Ω pl(ω) = 1.
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We have seen that the plausibility function induced by a consonant mass
function is a possibility measure. Conversely, a possibility measure is al-
ways a plausibility function for some consonant mass function, which can
be recovered from the contour function as follows. Let Ω = {ω1, . . . , ωn}
be the frame of discernment, with elements arranged by decreasing order of
plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn).

Then, the corresponding mass function is obtained by the following formula:

m(∅) = 0

m({ω1}) = pl(ω1)− pl(ω2)

...
m({ω1, . . . , ωi}) = pl(ωi)− pl(ωi+1)

...
m(Ω) = pl(ωn).

Possibility theory has a strong connection with the theory of Fuzzy Sets.
More precisely, if we receive evidence of the form “ω is F ”, where F is a fuzzy
subset of Ω with membership function µF , then this piece of evidence may
be represented by a consonant belief function with contour function pl = µF .

3.3 Relation with imprecise probabilities

To each belief function Bel can be associated the set of probability measures
P that dominate Bel, i.e., the set of probability measures such that P (A) ≥
Bel(A) for all subset A of Ω. Because of the relation Bel(A) = 1 − Pl(A),
we also have P (A) ≤ Pl(A) for all A, or

Bel(A) ≤ P (A) ≤ Pl(A), ∀A ⊆ Ω. (12)

Any probability measure P verifying (12) is said to be compatible with Bel,
and the set P(Bel) of all probability measures compatible with Bel is called
the credal set of Bel. Any compatible probability can be obtained by dis-
tributing each mass m(A) among the elements of A.

A belief function can thus be seen the lower envelope of a non-empty set
of probability measure. Such a function is called a coherent lower probability
[4]. However, a coherent lower probability is not always a belief function: in
some sense, the notion of coherent lower probability is thus more general.
Anyway, the definition of the credal set associated with a belief function is
purely formal, as these probabilities have no particular interpretation. The
theory of belief functions is not a theory of imprecise probabilities.
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