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Least Commitment Principle
Using metaknowledge

Predictive belief functions

Building belief functions

The basic theory tells us how to reason and compute with
belief functions, but it does not tell us where belief
functions come from.
We need formalized methods for modeling expert opinions
and statistical information using belief functions.
Three general approaches:

Least Commitment Principle;
Using meta-knowledge about information sources
(discounting);
Predictive belief functions.
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Least Commitment Principle
General approach

Least commitment principle: “When several belief
functions are compatible with a set of constraints, the least
informative according to some informational ordering (if it
exists) should be selected”.
General approach:

1 Express the available information as a set of constraints on
an unknown mass function;

2 Find the least-committed mass function (according to some
ordering), compatible with the constraints.

Three applications:
Inverse pignistic transformation;
Credal ordering constraints;
Deconditioning, Generalized Bayes Theorem (GBT).
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Inverse pignistic transformation
Problem statement

Assume we want to elicit a mass function m on
Ω = {ω1, . . . , ωK} from an expert.
It is easier to elicit the corresponding pignistic probability:

For each ωk ∈ Ω ask for the fair price pk the expert is willing
to pay for a ticket that will allow him to receive 1 euro if
X = ωk , and to receive nothing otherwise.
The pignistic probability mass function is p(ωk ) = pk ,
k = 1, . . . ,K .

How to compute a mass function m on Ω consistent with p,
i.e., such that p = Bet(m)?
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Inverse pignistic transformation
Discrete case

Credal level

Pignistic level

Less committedMore committed

p

Bet-1

BetpLC
-1(p)

M(p)

There are infinitely many mass
functions m such that Bet(m) = p.
The q-least committed solution is a
consonant mass function defined by
the following possibility distribution:

π(ωk ) =
K∑
`=1

min(pk ,p`).
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Inverse pignistic transformation
Recovering the mass function

Let 1 = π(1) ≥ π(2) ≥ . . . ≥ π(K ) be the ordered possibility
degrees, and ω(1), . . . , ω(K ) the elements of Ω in the
corresponding order, i.e., π(ω(i)) = π(i), i = 1, . . . ,K .
We have

m({ω(1)}) = π(1) − π(2)

...
m({ω(1), . . . , ω(i)}) = π(i) − π(i+1)

...
m(Ω) = π(K ).
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Inverse pignistic transformation
Example

Let us consider a frame Ω = {ω1, ω2, ω3} and the pignistic
probability mass function

p(ω1) = 0.7, p(ω2) = 0.2, p(ω3) = 0.1

We have

π(ω1) = 0.7 + 0.2 + 0.1 = 1
π(ω2) = 0.2 + 0.2 + 0.1 = 0.5
π(ω3) = 0.1 + 0.1 + 0.1 = 0.3.

The corresponding mass function is

m({ω1}) = 0.5, m({ω1, ω2}) = 0.2, m(Ω) = 0.3.

Thierry Denœux Methods for building belief functions 9/ 67



Least Commitment Principle
Using metaknowledge

Predictive belief functions

Inverse pignistic transformation
Credal ordering constraints
Deconditioning

Inverse pignistic transformation
Continuous case

Assume that the variable of interest X is a continuous
variable taking values in R.
The expert gives us a probability distribution on R. Can we
extend the previous line of reasoning to this situation?
We need to define belief functions on R and the associated
notions (informational orderings, pignistic transformation,
etc.).
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Belief functions on R
Random intervals

(Θ,P)

θ Γ

U(θ)

V(θ)

A random interval is defined by a
probability space (Θ,A,P) and a
mapping Γ from Θ to the set I of closed
real intervals:

Γ : θ → Γ(θ) = [U(θ),V (θ)],

such that (U,V ) is a two-dimensional
random vector, with U ≤ V .

We have, for any I ∈ I:

bel(I) = P([U,V ] ⊆ I), pl(I) = P([U,V ] ∩ I 6= ∅)

q(I) = P([U,V ] ⊇ I)
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Random intervals
Example: possibility distribution

0

1


()

U() V()

x

(x)

I

Let π be a possibility distribution on
R, Θ = [0,1], P the Lebesgues
measure on [0,1], and Γ(θ) the
θ-level cut of π.
It can be checked that

pl(I) = sup
x∈I

π(x) = Π(I)

bel(I) = 1− sup
x 6∈I

π(x) = N(I).
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Pignistic probability density
Discrete case

Let us assume that Γ(Θ) = {I1, . . . , Ir}. We can define the
mass function as

m(Ii) = P ({θ ∈ Θ|Γ(θ) = Ii}) .

m is a discrete mass function with focal intervals I1, . . . , Ir .
Assuming 0 < |Ii | < +∞ for all i , the pignistic probability
density associated to m is:

pm(x) =
r∑

i=1

m(Ii)
1Ii (x)

|Ii |
, ∀x ∈ R.

It is a finite mixture of continuous uniform distributions.

Thierry Denœux Methods for building belief functions 13/ 67



Least Commitment Principle
Using metaknowledge

Predictive belief functions

Inverse pignistic transformation
Credal ordering constraints
Deconditioning

Pignistic probability density
Continuous case

If (U,V ) is a continuous random vector with density f , we
can define a “mass density”

m([u, v ]) = f (u, v), ∀(u, v) ∈ R2,u ≤ v .

The pignistic probability density is:

pm(x) = lim
ε→0

∫ x

−∞

∫ +∞

x+ε

f (u, v)

v − u
dvdu.
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Inverse pignistic transformation
General expression
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Inverse pignistic transformation
Example: normal distribution
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Credal ordering constraint
Problem

Consider the following problems:
1 Let X and X ′ be two variables. Our beliefs on X are

represented by m. Additionally, we believe that X ′ tends to
take greater values than X . How to quantify our beliefs on
X ′ using a mass function?

2 We consider one variable X and two different contexts C
and C′. When C holds, our beliefs on X are represented by
m. When C′ holds, we cannot precisely assess our beliefs
on X , but we believe that X tends to take higher values than
it does when C holds. How to quantify our beliefs on X in
context C′?

Approach: formalize the notion of “tending to take higher
values" as a constraint on a mass function, and find the
least-committed solution compatible with that constraint.
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Stochastic ordering

Given two probability distributions P and P ′ on R, we say
that P is stochastically less than or equal to P ′ (P � P ′) if

P((x ,+∞)) ≤ P ′((x ,+∞)), ∀x ∈ R

Intuitively, this means that distribution P attaches less
probability to larger values than P ′ does.
Property: the above condition holds holds iff:

P � P ′ ⇔ EP(g) ≤ EP′(g), ∀g ∈ G

where G is the set of measurable and non decreasing real
functions.
How to extend this notion to compare two mass functions
m and m′ on R?
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Credal ordering
Definitions

Four definitions (credal orderings):
1 m . m′ iff bel((x ,+∞)) ≤ pl ′((x ,+∞)), ∀x ∈ R ;
2 m 6 m′ iff bel((x ,+∞)) ≤ bel ′((x ,+∞)), ∀x ∈ R ;
3 m 0 m′ iff pl((x ,+∞)) ≤ pl ′((x ,+∞)), ∀x ∈ R;
4 m� m′ iff pl((x ,+∞)) ≤ bel ′((x ,+∞)), ∀x ∈ R.

Let Gb denote the set of bounded, measurable and non
decreasing real functions. Then we have:

m . m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ Gb

m 6 m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ Gb

m 0 m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ Gb

m� m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ Gb.
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Credal ordering constraint
Example of result

Theorem
The pl-least committed element mass function m′ such that
m′ > m exists and is unique. It is the consonant mass function
m> with possibility distribution π> given by

π>(x) = pl((−∞, x ])

where pl is the plausibility function associated to m.
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Credal ordering constraint
Example

0.1
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0
p

π(p)

0.3

0.4

0.3

0 1

1

0
p’

π≥(p’)

Assume that m represents an
expert’s opinion regarding the failure
probability p of a component in
standard operating condition.
We want to assess our beliefs
regarding the failure probability p′ of
the same component in a more
stringent environment.
We only know that p′ tends to be
greater than p: mp′ > mp.
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Deconditioning

Ω
B

A
C

Let m0 be a mass function on Ω
expressing our beliefs about X in a
context where we know that X ∈ B.
We want to build a mass function m
verifying the constraint m(·|B) = m0.
Any m built from m0 by transferring
each mass m0(A) to A ∪ C for some
C ⊆ B satisfies the constraint.

s-least committed solution: transfer m0(A) to the largest
such set A ∪ B:

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B,
0 otherwise
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Deconditioning
Ballooning extension

More complex situation: two frames
ΩX and ΩY .
Let mΩX

0 be a mass function on ΩX
expressing our beliefs about X in a
context where we know that Y ∈ B
for some B ⊆ ΩY .

We want to find mΩXY such that(
mΩXY ∩©(mΩY

B )↑ΩXY
)↓ΩX

= mΩX
0
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Deconditioning
Ballooning extension (continued)

s-least committed solution: each mass mΩX
0 (A) transferred

to (A× B) ∪ (ΩX × B).

Notation mΩXY = (mΩX
0 )⇑ΩXY (ballooning extension).
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Application: Generalized Bayes Theorem
Problem statement

Two variables X ∈ Ω et θ ∈ Θ = {θ1, . . . , θK}.
Typically:

X is observed (sensor measurement),
θ is not observed (class, unknown parameter).

Partial knowledge of X given θ = θk for each k : mΩ(·|θk ).
Prior knowledge about θ: mΘ

0 (may be vacuous).
We observe X ∈ A.
Belief function on Θ?
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Generalized Bayes Theorem
Solution

Solution:

mΘ(·|A) =
(
∩©K

k=1mΩ(·|θk )⇑Ω×Θ ∩©mΩ↑Ω×Θ
A ∩©mΘ↑Ω×Θ

0

)↓Θ
Expression:

mΘ(·|A) = ∩©K
k=1mΘ

k ∩©mΘ
0 ,

where
mΘ

k ({θk}) = 1− plΩ(A|θk )

mΘ
k (Θ) = plΩ(A|θk )
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Generalized Bayes Theorem
Example

plΩ(x|θ1)

plΩ(x|θ0)

x

plΩ(x|θk)

mΘ(∅)=1 mΘ(Θ)=1 mΘ({θ1})=1
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Generalized Bayes Theorem
Properties

Property 1: Bayes’ theorem is recovered as a special case
when the conditional mass functions mΩ(·|θk ) and mΘ

0 are
Bayesian mass functions.
Property 2: If X and Y are cognitively independent
conditionally on θ, i.e.:

plΩX×ΩY (A× B|θk ) = plΩX (A|θk ) · plΩY (B|θk ),

for all k , A ⊆ ΩX and B ⊆ ΩY , then

mΘ(·|X ∈ A,Y ∈ B) = mΘ(·|X ∈ A) ∩©mΘ(·|Y ∈ B).
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Discounting
Problem statement

A source of information provides:
a value;
a set of values;
a probability distribution, etc..

The information is:
not fully reliable or
not fully relevant.

Examples:
Possibly faulty sensor;
Measurement performed in unfavorable experimental
conditions;
Information is related to a situation or an object that only
has some similarity with the situation or the object
considered (case-based reasoning).
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Discounting
Formalization

A source S provides a mass function mΩ
S .

S may be reliable or not. Let R = {R,NR}.
Assumptions:

If S is reliable, we accept mΩ
S as a representation of our

beliefs:
mΩ(·|R) = mΩ

S

If S is not reliable, we know nothing:

mΩ(·|NR) = mΩ
Ω

The source has a probability 1− α of being reliable:

mR({NR}) = α, mR({R}) = 1− α
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Solution

Solution:

αmΩ =
(

mR↑Ω×R ∩©mΩ(·|R)⇑Ω×R
)↓Ω

.

Simple expressions:

αmΩ = (1− α)mΩ
S + αmΩ

Ω

= mΩ
S ∪©mΩ

0

with mΩ
0 (Ω) = α and mΩ

0 (∅) = 1− α.
αmΩ is a s-less committed than (a generalization of) mΩ

S :

αmΩ ws mΩ
S .

Thierry Denœux Methods for building belief functions 34/ 67



Least Commitment Principle
Using metaknowledge

Predictive belief functions

Discounting
Contextual discounting

Outline

1 Least Commitment Principle
Inverse pignistic transformation
Credal ordering constraints
Deconditioning

2 Using metaknowledge
Discounting
Contextual discounting

3 Predictive belief functions
Definition
Discrete case
Continuous case

Thierry Denœux Methods for building belief functions 35/ 67



Least Commitment Principle
Using metaknowledge

Predictive belief functions

Discounting
Contextual discounting

Generalization: Contextual Discounting
Formalization

A more general model allowing us to take into account
richer meta-information about the source.
Let Θ = {θ1, . . . , θL} be a partition of Ω, representing
different contexts.
Let mR(·|θk ) denote the mass function on R quantifying
our belief in the reliability of source S, when we know that
the actual value of X is in θk .
We assume that:

mR({R}|θk ) = 1− αk , mR({NR}|θk ) = αk .

for eack k ∈ {1, . . . ,L}.
Let α = (α1, . . . , αL).
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Contextual Discounting
Example

Let us consider a simplified aerial target recognition
problem, in which we have three classes: airplane
(ω1 ≡ a), helicopter (ω2 ≡ h) and rocket (ω3 ≡ r ).
Let Ω = {a,h, r}.
The sensor provides the following mass function:
mΩ

S ({a}) = 0.5, mΩ
S ({r}) = 0.5.

We assume that
The probability that the source is reliable when the target is
an airplane is equal to 1− α1 = 0.4;
The probability that the source is reliable when the target is
either a helicopter, or a rocket is equal to 1− α2 = 0.9.

We have Θ = {θ1, θ2}, with θ1 = {a}, θ2 = {h, r}, and
α = (0.6,0.1).
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Contextual Discounting
Solution

Solution:

αmΩ =
(
∩©L

k=1mR(·|θk )⇑Ω×R ∩©mΩ(·|R)⇑Ω×R
)↓Ω

.

Result:
αmΩ = mΩ

S ∪©mΩ
1 ∪© . . . ∪©mΩ

L

with mΩ
k (θk ) = αk and mΩ

k (∅) = 1− αk .
Standard discounting is recovered as a special case when
Θ = {Ω}.
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Contextual Discounting
Example (continued)

The discounted mass function can be obtained by
combining disjunctively 3 mass functions:

mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5;
mΩ

1 ({a}) = 0.6, mΩ
1 (∅) = 0.4;

mΩ
1 ({h, r}) = 0.1, mΩ

1 (∅) = 0.9.

Result:
A h a r h,a h, r a, r Ω

mΩ
S (A) 0 0.5 0.5 0 0 0 0

αmΩ(A) 0 0.45 0.18 0 0.02 0.27 0.08
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Predictive belief functions
Motivation

Let X be random variable (defined from a repeatable
random experiment), with unknown probability PX .
We have observed n independent replicates of X :

X = (X1, . . . ,Xn).

Problem: quantify our beliefs regarding a future realization
of X using a belief function bel(·; X): predictive belief
function.
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Predictive belief functions
Examples

1 Example 1:
We have drawn r black balls in n drawings from an urn with
replacement:
What is our belief that the next ball to be drawn from the urn
will be black?

2 Example 2:
The lifetimes of 20 bearings have been observed:

2398, 2812, 3113, 3212, 3523, 5236, 6215,
6278, 7725, 8604, 9003, 9350, 9460, 11584,
11825, 12628, 12888, 13431, 14266, 17809.

Let X be the lifetime of a bearing taken at random from the
same population. Belief function on X?
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Predictive belief functions
Requirements

Requirement 1 (Hacking’s frequency principle):
If PX were known, we would equate our beliefs with
probabilities: bel(·; PX ) = PX .
Weaker version when PX is unknown:

∀A ⊂ Ω, bel(A; X)
P−→ PX (A), as n→∞,

Requirement 2 (LCP):
As n is finite, bel(·; X) should be less committed than PX .
However, the condition bel(·; X) ≤ PX is too strong.
Weaker requirement:

P (bel(A; X) ≤ PX (A),∀A ⊂ Ω) ≥ 1− α.

“bel(·; X) is less committed than PX most of the time”
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Predictive belief functions
Meaning of Requirement 2

x = (x1, . . . , xn)→ bel(·,x)

x′ = (x ′1, . . . , x
′
n)→ bel(·; x′)

x′′ = (x ′′1 , . . . , x
′′
n )→ bel(·; x′′)

...

As the number of realizations of the random sample tends
to∞, the proportion of belief functions less committed than
PX should tend to a limit at least equal to 1− α.
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Outline

1 Least Commitment Principle
Inverse pignistic transformation
Credal ordering constraints
Deconditioning

2 Using metaknowledge
Discounting
Contextual discounting

3 Predictive belief functions
Definition
Discrete case
Continuous case
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Using simultaneous confidence intervals
IJAR 42(3):228-252, 2006

If X is discrete, Ω = {ω1, . . . , ωK}: a solution can be
obtained using a simultaneous confidence intervals on
probabilities pk = P(X = ωk ).
Random intervals [P−k ,P

+
k ], k = 1, . . . ,K are simultaneous

confidence intervals at level 1− α if

P
(
P−k ≤ pk ≤ P+

k , k = 1, . . . ,K
)
≥ 1− α

They are asymptotic simultaneous confidence intervals if
the above inequality holds in the limit as n→∞.
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Goodman’s simultaneous confidence intervals

Asymptotic simultaneous confidence intervals were proposed
by Goodman (1965):

P−k =
b + 2Nk −

√
∆k

2(n + b)
,

P+
k =

b + 2Nk +
√

∆k

2(n + b)
,

with Nk = #{i |Xi = ωk}, b = χ2
1;1−α/K and

∆k = b
(

b + 4Nk (n−Nk )
n

)
.
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Goodman’s simultaneous confidence intervals
Example

220 psychiatric patients categorized as either neurotic,
depressed, schizophrenic or having a personality disorder.
Observed counts: n = (91,49,37,43).
Goodman’ confidence intervals at confidence level
1− α = 0.95:

Diagnosis Nk/n P−k P+
k

Neurotic 0.41 0.33 0.50
Depressed 0.22 0.16 0.30
Schizophrenic 0.17 0.11 0.24
Personality disorder 0.20 0.14 0.27
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From confidence intervals to lower probabilities

To each p = (p1, . . . ,pK ) corresponds a probability
measure PX s.t. PX ({ωk}) = pk for each k .
Consequently, simultaneous confidence intervals define a
family of probability measures described by the following
lower probability measure:

P−(A) = max

∑
ωk∈A

P−k ,1−
∑
ωk 6∈A

P+
k


P− satisfies requirements R1 and R2:

P−(A)
P−→ PX (A) as n→∞, for all A ⊆ Ω,

P(P− ≤ PX ) ≥ 1− α.

Is it a belief function?
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From lower probabilities to belief functions
K = 2 or K = 3

If K = 2 or K = 3, P− is a belief function.
Case K = 2:

m({ω1}) = P−1 ≈ p̂ − u1−α/2

√
p̂(1− p̂)

n

m({ω2}) = P−2 ≈ 1− p̂ − u1−α/2

√
p̂(1− p̂)

n

m(Ω) = 1− P−1 − P−2 ≈ 2u1−α/2

√
p̂(1− p̂)

n
,

with p̂ = N1/n.
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The case K = 2
Example

(1,0,0) (0,1,0)

(0,0,1)

P
X

K = 2, p1 = PX ({ω1}) = 0.3.
100 realizations of a random sample
of size n = 30.
100 predictive belief functions at
level 1− α = 0.95.
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From lower probabilities to belief functions
K = 2 or K = 3

If K > 3, P− is not a belief function in general. We can find
the most committed belief function satisfying bel ≤ P− by
solving the following linear optimization problem:

max
m

J(m) =
∑
A⊆Ω

bel(A) =
∑
A⊆Ω

∑
B⊆A

m(B)

under the constraints:∑
B⊆A

m(B) ≤ P−(A), ∀A ⊂ Ω,

∑
A⊆Ω

m(A) = 1, m(A) ≥ 0, ∀A ⊆ Ω .

The solution satisfies requirements R1 and R2: it is a
predictive belief function (at confidence level 1− α).
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The case K > 3
Psychiatric Data

A P−(A) bel(A) m(A)

{ω1} 0.33 0.33 0.33
{ω2} 0.16 0.14 0.14
{ω1, ω2} 0.50 0.50 0.021
{ω3} 0.11 0.097 0.097
{ω1, ω3} 0.45 0.45 0.020
{ω2, ω3} 0.28 0.28 0.036

...
...

...
...

{ω1, ω3, ω4} 0.70 0.66 0.038
{ω2, ω3, ω4} 0.50 0.48 0.019

Ω 1 1 0
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Case of ordered data

Assume Ω is ordered: ω1 < . . . < ωK .
The focal sets of bel can be constrained to be intervals
Ak ,r = {ωk , . . . , ωr}.
Under this additional constraint, an analytical solution to
the previous optimization problem can be found:

m(Ak,k ) = P−k ,

m(Ak,k+1) = P−(Ak,k+1)− P−(Ak+1,k+1)− P−(Ak,k ),

m(Ak,r ) = P−(Ak,r )− P−(Ak+1,r )− P−(Ak,r−1) + P−(Ak+1,r−1)

for r > k + 1, and m(B) = 0, for all B 6∈ I.
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Example: rain data

January precipitation in Arizona (in inches), recorded
during the period 1895-2004.

class ωk nk nk/n p−k p+
k

< 0.75 48 0.44 0.32 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.17 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,2.75) 6 0.055 0.020 0.14
≥ 2.75 9 0.082 0.035 0.18

Degree of belief that the precipitation in Arizona next
January will exceed, say, 2.25 inches?
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Rain data
Result

m(Ak ,r ) 1 2 3 4 5 6
1 0.32 0 0 0.13 0.11 0
2 - 0.085 0 0 0.012 0.14
3 - - 0.098 0 0 0
4 - - - 0.047 0 0
5 - - - - 0.020 0
6 - - - - - 0.035

We get bel(X ≥ 2.25) = bel({ω5, ω6}) = 0.055 and
pl(X ≥ 2.25) = 0.317.
In 95 % of cases, the interval [bel(A),pl(A)] computed
using this method contains PX (A).
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Predictive belief functions
Proceedings ISIPTA ’07, 11-20, 2007

If X is absolutely continuous, Ω = R: a solution can be
obtained using a confidence band on the cumulative
distribution function FX of X .
Let X = (X1, . . . ,Xn) be an iid sample from X with cdf FX .
A pair of functions (F (·; X),F (·; X)) computed from X and
such that F (·; X) ≤ F (·; X) is a confidence band at level
α ∈ (0,1) if

P
{

F (x ; X) ≤ FX (x) ≤ F (x ; X), ∀x ∈ R
}

= 1− α,
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Predictive belief functions
Kolmogorov Confidence band

A non parametric confidence band can be computed using
the Kolmogorov statistic:

Dn = sup
x
|Sn(x ; X)− FX (x)|,

where Sn(·; X) is the sample cdf.
The probability distribution of Dn can be computed exactly.
Let dn,α by the α-critical value of Dn, i.e., P(Dn ≥ dn,α) = α.
The two step functions

F (x ; X) = max(0,Sn(x ; X)− dn,α),

F (x ; X) = min(1,Sn(x ; X) + dn,α)

form a confidence band at level 1− α.
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Kolmogorov Confidence band
Bearing data (1− α = 0.95)
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Predictive belief functions
p-boxes and belief functions

A1

A2

A3

A4

A5

A6

F

F
1

0

x

F(x)

m(A1)

m(A2)

m(A3)
m(A4)
m(A5)
m(A6)

A Kolmogorov confidence band
defines a p-box (a set of probability
measures with cdf constrained by 2
step functions).
A p-box defines a discrete random
interval.
The belief function constructed from
a Kolmogorov confidence band at
level 1− α is a predictive belief
function at level 1− α.
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Construction of a mass function from a p-box
Bearing data
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Contour and pignistic density functions
Bearing data
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Belief and plausibility functions
Bearing data
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Summary

Developing engineering applications using the
Dempster-Shafer framework requires modeling expert
knowledge and statistical information using belief functions.
Systematic and principled methods now exist:

Least-commitment principle
Discounting
GBT
Predictive belief functions
etc.

Specific methods will be studied in following lectures
(parametric statistical inference, classification, etc.).
More research on expert knowledge elicitation and
statistical inference is needed.
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