Introduction to belief functions

Thierry Denœux

Université de technologie de Compiègne, France Institut Universitaire de France https://www.hds.utc.fr/~tdenoeux

Fifth School on Belief Functions and their Applications Sienna, Italy, October 27, 2019

= ~ Q (~

- Fundamental concepts: belief, plausibility, commonality, conditioning, basic combination rules.
- Some more advanced concepts: informational ordering, cautious rule, compatible frames.

= ~ ~ ~

- - E + - E +

Image: Image:

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory.
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's as the "Transferable Belief Model".
- Starting from the 1990's, growing number of applications in information fusion, knowledge representation, machine learning (classification, clustering), reliability and risk analysis, etc.

Theory of belief functions

Main idea

- The theory of belief functions extends both logical/set-based formalisms (such as Propositional Logic and Interval Analysis) and Probability Theory:
 - A belief function may be viewed both as a generalized set and as a nonadditive measure
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.).
- DS reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

・ロト ・ 同ト ・ ヨト ・ ヨト

Relationships with other theories

BFTA 2019 5 / 74

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

프 네 프

Outline

Basic notions

Mass functions

- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

San

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mass function

Definition

Definition (Frame of discernment, mass function, focal set)

Let Ω be a finite set called a frame of discernment. A mass function on Ω is a mapping $m : 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

Every subset A of Ω such that m(A) > 0 is a focal set of m. If $m(\emptyset) = 0$, m is said to be normalized.

In DS theory, a mass function is used to represent evidence about a variable X taking values in Ω .

4 日 2 4 同 2 4 日 2 4 日 2 4

Example: road scene analysis

Real world driving scene

Thierry Denœux

BFTA 2019 9 / 74

San

Example: road scene analysis (continued)

- Let X be the type of object in some region of the image, and $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information X ∈ {T, O}, but we there is a probability p = 0.1 that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formalization

- Here, the probability *p* is not about *X*, but about the state of a sensor.
- Let *S* = {working, broken} the set of possible sensor states.
 - If the state is "working", we know that $X \in \{T, O\}$.
 - If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by the following mass function m on Ω :

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

Meaning of a mass function

- In the previous example,
 - $m(\{T, O\}) = 0.9$ is the probability of knowing only that $X \in \{T, O\}$, and
 - $m(\Omega) = 0.1$ is the probability of knowing nothing.
- In general, what is the meaning (semantics) of a mass function in DS theory?
- A precise interpretation was proposed by Shafer (1981): random code semantics.

▲□▶▲□▶▲□▶▲□▶ □□ のQ∩

Mass functions

Random code semantics

- We consider a situation in which we receive a coded message containing reliable information about variable $X \in \Omega$.
- The message was encoded using some code in the set $S = \{c_1, \ldots, c_n\}$.
- There is a multi-valued mapping Γ : S → 2^Ω \ {Ø} that defines the meaning of the message: if code c_i was used, then the meaning of the message is "X ∈ Γ(c_i)".
- We don't know which code was used, but we know that each code c_i had a chance p_i of being selected, with $\sum_{i=1}^{n} p_i = 1$.
- Then m(A) is the probability that the meaning of the message is " $X \in A$ ":

$$m(A) = P(\{c \in S \mid \Gamma(c) = A\}) = \sum_{i=1}^{n} p_i I(\Gamma(c_i) = A),$$

where $I(\cdot)$ is the indicator function.

Random code semantics (continued)

- In practice, we do not receive randomly coded messages.
- But we can construct a mass function by comparing our evidence about some variable *X*, to a hypothetical situation in which we receive a randomly coded message.
- A mass function *m* is elicited by finding the "coded-message" canonical example that is the most similar to our evidence.

Random set

- The tuple $(S, 2^S, P, \Gamma)$, where
 - $(S, 2^S, P)$ is a probability space and
 - Γ is a mapping from *S* to 2^{Ω}

is called a random set.

We have seen that, given the random set (S, 2^S, P, Γ), we can define the mass function m : 2^Ω → [0, 1] such that

$$m(A) = P(\{c \in S \mid \Gamma(c) = A\})$$

• Conversely, given any mass function $m: 2^{\Omega} \to [0, 1]$, we can define the random set $(S, 2^{S}, P, \Gamma)$ with

$$S=2^{\Omega},$$

$$P(\{A\}) = m(A), \quad A \subseteq \Omega,$$

and

$$\Gamma(A) = A, \quad A \subseteq \Omega.$$

Special mass functions

Definition (Logical mass function)

If a mass function has only one focal set $A \subseteq \Omega$., it is said to be logical; we denote it as $m_{[A]}$. It represents "infallible" evidence that tells us that $X \in A$ for sure and nothing more. (There is a one-to-one correspondence between logical mass functions and nonempty sets).

Definition (Vacuous mass function)

The vacuous mass function $m_{?}$ is the logical mass function such that $m_{?}(\Omega) = 1$. It represents total ignorance.

Definition (Bayesian mass function)

A mass function is Bayesian if its focal sets are singletons. It is equivalent to a probability distribution.

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

 Sac

Belief and plausibility functions

Certainty and possibility

- Assume our evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$. It is represented by the logical mass function $m_{[A]}$.
- Let $B \subseteq \Omega$. What can we say about the proposition " $X \in B$ "?

- If $A \subseteq B$, we know for sure that $X \in B$. This proposition is said to be certain. (It is supported/implied by the evidence)
- If $A \cap B \neq \emptyset$, we cannot exclude that $X \in B$. This proposition is said to be possible. (It is consistent with the evidence)
- If $A \cap B = \emptyset$, the proposition " $X \in B$ " is impossible. (It is inconsistent with the evidence)

・ロト ・ 同ト ・ ヨト ・ ヨト

San

Belief function

- Let us now consider an arbitrary mass function *m* with (nonempty) focal sets A_1, \ldots, A_n .
- Let B ⊆ Ω. If we know for sure that X ∈ A_i, the proposition X ∈ B is supported by the evidence whenever A_i ⊆ B.
- The probability that the proposition $X \in B$ is supported by the evidence is

$$Bel(B) = \sum_{i=1}^{n} m(A_i) l(A_i \subseteq B).$$

- The number *Bel*(*B*) is called the credibility of (degree of belief in) *B*, and the mapping *Bel* : 2^Ω → [0, 1] is called the belief function induced by *m*.
- Elementary properties: $Bel(\emptyset) = 0, Bel(\Omega) = 1.$

Plausibility function

• We can also compute the probability that the proposition $X \in B$ is consistent with the evidence as

$$PI(B) = \sum_{i=1}^{n} m(A_i) I(A_i \cap B \neq \emptyset).$$

- The number Pl(B) is called the plausibility of *B*, and the mapping $Pl: 2^{\Omega} \rightarrow [0, 1]$ is called the plausibility function induced by *m*.
- Elementary properties:
 - $PI(\emptyset) = 0, PI(\Omega) = 1$
 - For all $B \subseteq \Omega$, $Bel(B) \leq Pl(B)$
 - For any $A, B \subseteq \Omega$, $(A \cap B = \emptyset \Leftrightarrow A \subseteq \overline{B})$. Consequently,

$$Pl(B) = 1 - Bel(\overline{B}).$$

Function pl : Ω → [0, 1] such that pl(ω) = Pl({ω}) is called the contour function of m.

Two-dimensional representation

- The uncertainty on a proposition *B* is represented by two numbers: Bel(B) and Pl(B), with Bel(B) ≤ Pl(B).
- The intervals [*Bel*(*B*), *Pl*(*B*)] have maximum length when *m* is the vacuous mass function. Then,

[Bel(B), Pl(B)] = [0, 1]

for all subset *B* of Ω , except \emptyset and Ω .

• The intervals [*Bel*(*B*), *Pl*(*B*)] are reduced to points when *m* is Bayesian. Then,

$$Bel(B) = Pl(B)$$

for all B, and Bel = Pl is a probability measure.

<ロ > < 同 > < 三 > < 三 > 三 三 < < 0 < < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Broken sensor example

From

$$m(A) = 0.9, \quad m(\Omega) = 0.1$$

we get

	Α	Ā	Ω
Bel	0.9	0	1
ΡI	1	0.1	1

We observe that

$${\it Bel}(\Omega)={\it Bel}({\it A}\cup\overline{{\it A}})\geq {\it Bel}({\it A})+{\it Bel}(\overline{{\it A}})$$

and

$$Pl(\Omega) = Pl(A \cup \overline{A}) \leq Pl(A) + Pl(\overline{A})$$

• *Bel* and *Pl* are nonadditive measures. (*Bel* is superadditive and *Pl* is subadditive).

ELE NOR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Characterization of belief functions

 Function Bel : 2^Ω → [0, 1] is completely monotone: for any k ≥ 2 and for any family A₁,..., A_k in 2^Ω:

$$Bel\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,...,k\}} (-1)^{|I|+1} Bel\left(\bigcap_{i \in I} A_{i}\right).$$

 Conversely, to any completely monotone set function *Bel* such *Bel*(Ø) = 0 and *Bel*(Ω) = 1 corresponds a unique mass function *m* such that:

$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \quad \forall A \subseteq \Omega.$$

Relations between *m*, *Bel* and *Pl*

- Let *m* be a mass function, *Bel* and *Pl* the corresponding belief and plausibility functions.
- For all $A \subseteq \Omega$,

$$Bel(A) = 1 - Pl(\overline{A})$$
$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B)$$
$$m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B| + 1} Pl(\overline{B})$$

• *m*, *Bel* and *Pl* are thus three equivalent representations of a piece of evidence.

Image: Image:

= ~ ~ ~

- - E + - E +

Relationship with Possibility theory

- When the focal sets of *m* are nested: A₁ ⊂ A₂ ⊂ ... ⊂ A_r, *m* is said to be consonant.
- The following relations then hold:

 $PI(A \cup B) = \max(PI(A), PI(B)), \quad \forall A, B \subseteq \Omega.$

- Pl is this a possibility measure, and Bel is the dual necessity measure.
- The possibility distribution is the contour function:

$$pl(x) = Pl(\{x\}), \quad \forall x \in \Omega$$

• The theory of belief function can thus be considered as more expressive than possibility theory (but the combination operations are different, as we will see later).

Credal set

• A probability measure P on Ω is said to be compatible with m if

$$\forall A \subseteq \Omega$$
, $Bel(A) \leq P(A) \leq Pl(A)$

• The set $\mathcal{P}(m)$ of probability measures compatible with *m* is called the credal set of *m*

$$\mathcal{P}(m) = \{ \boldsymbol{P} : \forall \boldsymbol{A} \subseteq \Omega, \boldsymbol{Bel}(\boldsymbol{A}) \leq \boldsymbol{P}(\boldsymbol{A}) \}$$

• Bel is the lower envelope of $\mathcal{P}(m)$

$$\forall A \subseteq \Omega$$
, $Bel(A) = \min_{P \in \mathcal{P}(m)} P(A)$

Image: Image:

 Not all lower envelopes of sets of probability measures are belief functions!

Sac

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

San

Dempster's rule

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

 $m_1(\{T, O\}) = 0.9, \quad m_1(\Omega) = 0.1$

• Now, assume that a camera returns the mass function:

 $m_2(\{G, T\}) = 0.8, \quad m_2(\Omega) = 0.2$

• How to combine these two pieces of evidence?

-		-		
Ibu	orry	1)0		OLIV.
	City	D	110	cun

Analysis

- If the two sensors are in states s_1 and s_2 , then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$.
- If the two pieces of evidence are independent, then the probability that the sensors are in states s₁ and s₂ is P₁({s₁})P₂({s₂}).

Image: Image:

San

Computation

$$\begin{array}{c|cccc} m_1 \backslash m_2 & \{T,G\} & \Omega \\ & (0.8) & (0.2) \\ \hline \{O,T\} (0.9) & \{T\} (0.72) & \{O,T\} (0.18) \\ \Omega (0.1) & \{T,G\} (0.08) & \Omega (0.02) \end{array}$$

We then get the following combined mass function:

$$m({T}) = 0.72$$

$$m({O, T}) = 0.18$$

$$m({T, G}) = 0.08$$

$$m(\Omega) = 0.02$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Case of conflicting pieces of evidence

- If Γ₁(s₁) ∩ Γ₂(s₂) = Ø, we know that the pair of states (s₁, s₂) cannot have occurred.
- The joint probability distribution on $S_1 \times S_2$ must be conditioned to eliminate such pairs.

ELE SOG

Computation

$$\begin{array}{c|cccc} m_1 \backslash m_2 & \{G, R\} & \Omega \\ & (0.8) & (0.2) \\ \hline \{O, T\} (0.9) & \emptyset (0.72) & \{O, T\} (0.18) \\ \Omega (0.1) & \{G, R\} (0.08) & \Omega (0.02) \end{array}$$

We then get the following combined mass function,

$$m(\emptyset) = 0$$

$$m(\{O, T\}) = 0.18/0.28 = 9/14$$

$$m(\{G, R\}) = 0.08/0.28 = 4/14$$

$$m(\Omega) = 0.02/0.28 = 1/14$$

Thierry Denœux

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dempster's rule

The orthogonal sum of two mass functions *m*₁ and *m*₂ on Ω is the mass function *m*₁ ⊕ *m*₂ defined as (*m*₁ ⊕ *m*₂)(Ø) = 0 and

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C=A} m_1(B)m_2(C), \quad \forall A \neq \emptyset,$$

where

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

is the degree of conflict between m_1 and m_2 .

• If $\kappa = 1$, m_1 and m_2 are not combinable.

・ロト ・ 同ト ・ ヨト ・ ヨト

EL NOR

Properties of Dempster's rule

- Commutativity, associativity. Neutral element: m_?
- Generalization of intersection: if *m*_[A] and *m*_[B] are logical mass functions and *A* ∩ *B* ≠ Ø, then

$$m_{[A]} \oplus m_{[B]} = m_{[A \cap B]}$$

If either *m*₁ or *m*₂ is Bayesian, then so is *m*₁ ⊕ *m*₂ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

・ロト ・ 同ト ・ ヨト ・ ヨト

Dempster's conditioning

 Conditioning is a special case, where a mass function *m* is combined with a logical mass function m_[A]. Notation:

$$m \oplus m_{[A]} = m(\cdot \mid A)$$

It can be shown that

$$PI(B \mid A) = rac{PI(A \cap B)}{PI(A)}.$$

• Generalization of Bayes' conditioning: if *m* is a Bayesian mass function and $m_{[A]}$ is a logical mass function, then $m \oplus m_{[A]}$ is a Bayesian mass function corresponding to the conditioning of *m* by *A*.

Commonality function

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega$$

• Conversely,

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

• Q is another equivalent representation of a belief function.

= 990
Commonality function and Dempster's rule

- Let Q_1 and Q_2 be the commonality functions associated to m_1 and m_2 .
- Let $Q_1 \oplus Q_2$ be the commonality function associated to $m_1 \oplus m_2$.
- We have

$$(Q_1 \oplus Q_2)(A) = \frac{1}{1-\kappa}Q_1(A) \cdot Q_2(A), \quad \forall A \subseteq \Omega, A \neq \emptyset$$

 $(Q_1 \oplus Q_2)(\emptyset) = 1$

• In particular, $pl(\omega) = Q(\{\omega\})$. Consequently,

$$pl_1 \oplus pl_2 = (1 - \kappa)^{-1} pl_1 pl_2.$$

Image: Image:

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized.
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule ()), which may yield an unnormalized mass function.
- He proposed to interpret m(Ø) as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption).
- I now think that this interpretation is problematic, as $m(\emptyset)$ increases "mechanically" when combining more and more items of evidence.
- Claim: unnormalized mass functions are convenient mathematically as equivalent representations of normalized mass functions, but only normalized mass functions make sense.
- In particular, *Bel* and *Pl* should always be computed from normalized mass functions.

イロト イポト イヨト イヨト

TBM disjunctive rule

- Let m_1 and m_2 be two mass functions induced by random messages (S_1, P_1, Γ_1) and (S_2, P_2, Γ_2) .
- Previously, we have assumed that both messages were reliable, i.e., if the true codes are c₁ ∈ S₁ and c₂ ∈ S₂, we can conclude that X ∈ Γ₁(c₁) ∩ Γ₂(c₂) for sure.
- We can weaken this assumption by supposing only that at least one of the two messages is reliable, i.e., if the true codes are $c_1 \in S_1$ and $c_2 \in S_2$, we can only conclude that $X \in \Gamma_1(c_1) \cup \Gamma_2(c_2)$ for sure.
- This leads to the TBM disjunctive rule:

$$(m_1 \odot m_2)(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega$$

• $Bel_1 \bigcirc Bel_2 = Bel_1 \cdot Bel_2$

▲□▶▲□▶▲□▶▲□▶ □□ のQ∩

Outline

2

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

프 네 프

Informational comparison of belief functions

- Let m₁ and m₂ be two mass functions on Ω
- In what sense can we say that m₁ is more informative (committed) than m₂?
- Special case:
 - Let *m*_[A] and *m*_[B] be two logical mass functions
 - $m_{[A]}$ is more committed than $m_{[B]}$ iff $A \subseteq B$
- Extension to arbitrary mass functions?

Image: A matrix

Plausibility ordering

Definition

 m_1 is pl-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if

 $\textit{Pl}_1(\textit{A}) \leq \textit{Pl}_2(\textit{A}), \quad \forall \textit{A} \subseteq \Omega$

or, equivalently,

$$Bel_1(A) \ge Bel_2(A), \quad \forall A \subseteq \Omega.$$

Imprecise probability interpretation:

$$m_1 \sqsubseteq_{pl} m_2 \Leftrightarrow \mathcal{P}(m_1) \subseteq \mathcal{P}(m_2)$$

- Properties:
 - Extension of set inclusion:

$$m_{[A]} \sqsubseteq_{pl} m_{[B]} \Leftrightarrow A \subseteq B$$

Image: A matrix

• Greatest element: vacuous mass function m?

= 200

프 🖌 🛪 프 🕨

Commonality ordering

- If $m_1 = m \oplus m_2$ for some *m*, and if there is no conflict between *m* and m_2 , then $Q_1(A) = Q(A)Q_2(A) \le Q_2(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function

Definition

 m_1 is *q*-more committed than m_2 (noted $m_1 \sqsubseteq_q m_2$) if

$$Q_1(A) \leq Q_2(A), \quad \forall A \subseteq \Omega$$

Properties:

Extension of set inclusion:

$$m_{[A]} \sqsubseteq_q m_{[B]} \Leftrightarrow A \subseteq B$$

• Greatest element: vacuous mass function m?

Thierry Denœux

Strong (specialization) ordering

Definition

 m_1 is a specialization of m_2 (noted $m_1 \sqsubseteq_s m_2$) if m_1 can be obtained from m_2 by distributing each mass $m_2(B)$ to subsets of B:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

where S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$.

- S: specialization matrix
- Properties:
 - Extension of set inclusion
 - Greatest element: m?

•
$$m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{p^l} m_2 \\ m_1 \sqsubseteq_q m_2 \end{cases}$$

Image: Image:

- E - - E -

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

A very powerful method for constructing belief functions!

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

Cautious rule

Motivations

- The basic rules ⊕ and assume the sources of information to be independent, e.g.
 - experts with non overlapping experience/knowledge
 - non overlapping datasets
- What to do in case of non independent evidence?
 - Describe the nature of the interaction between sources (difficult, requires a lot of information)
 - Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings.

3 3 9 9 9 9

- - E + - E +

Principle

- Two sources provide mass functions *m*₁ and *m*₂, and the sources are both considered to be reliable.
- After receiving these m_1 and m_2 , the agent's state of belief should be represented by a mass function m_{12} more committed than m_1 , and more committed than m_2 .
- Let $S_x(m)$ be the set of mass functions m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, \dots\}$. We thus impose that

$$m_{12} \in \mathcal{S}_x(m_1) \cap \mathcal{S}_x(m_2).$$

• According to the LCP, we should select the *x*-least committed element in $S_x(m_1) \cap S_x(m_2)$, if it exists.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ = ● ○ ○ ○

Cautious rule

Cautious rule

Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m_1 and m_2 are consonant, then the *q*-least committed element in $S_{\alpha}(m_1) \cap S_{\alpha}(m_2)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12} = \min(Q_1, Q_2).$
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in \{pl, q, s\}$.
- We need to define a new ordering relation.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Simple mass functions

• Definition: *m* is simple mass function if it has the following form

$$m(A) = 1 - \delta(A)$$

$$m(\Omega) = \delta(A)$$

for some $A \subset \Omega$, $A \neq \emptyset$ and $\delta(A) \in (0, 1]$.

- The quantity w(A) = − ln δ(A) ≥ 0 is called the weight of evidence for A. Mass function m is denoted by A^{w(A)}.
- Property:

$$A^{w_1(A)} \oplus A^{w_2(A)} = A^{w_1(A)+w_2(A)}.$$

• Remark: In earlier work, following Smets' terminology, I used the term "weight" for $\delta(A)$. I now think it is better to reserve the term "weight" for additive quantities. In recent work, Faux and Dubois use the term "diffidence" for $\delta(A)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cautious rule

Separable mass functions

Definition (Separable mass function)

A (normalized) mass function is separable if it can be written as the \oplus combination of simple mass functions:

$$m = igoplus_{\emptyset
eq A \subset \Omega} A^{w(A)}$$

with $w(A) \ge 0$ for all $A \subset \Omega$, $A \neq \emptyset$.

The w-ordering

Definition

Let m_1 and m_2 be two mass functions. We say that m_1 is *w*-more committed than m_2 (denoted by $m_1 \sqsubseteq_w m_2$) if

 $m_1 = m_2 \oplus m$.

for some separable mass function m.

How to check this condition?

Weight function

• If *m* is separable, the corresponding weights of evidence can be obtained as

$$w(A) = \sum_{B \supseteq A} (-1)^{|B| - |A|} \ln Q(B)$$
(1)

for all $A \subseteq \Omega$.

- For any non dogmatic mass function *m*, (i.e., such that *m*(Ω) > 0), we can still define "weights" from (1), but we can have *w*(*A*) < 0.
- Function *w* is called the weight function.
- *m* can also be recovered from *w* by

$$m = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)},$$

although $A^{w(A)}$ is not a proper mass function when w(A) < 0.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖圖 のQ@

Properties of the weight function

m is separable iff

$$w(A) \ge 0, \quad \forall A \subset \Omega, A \neq \emptyset.$$

Dempster's rule can be computed using the w-function by

$$m_1\oplus m_2=\bigoplus_{\emptyset
eq A\subset\Omega}A^{w_1(A)+w_2(A)}.$$

Characterization of the w-ordering

 $m_1 \sqsubset_w m_2 \Leftrightarrow w_1(A) > w_2(A), \quad \forall A \subset \Omega, A \neq \emptyset.$

Cautious rule

Definition

Let m_1 and m_2 be two non dogmatic mass functions with weight functions w_1 and w_2 .

Proposition

The w-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by:

$$m_1 \bigotimes m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{\max(w_1(A), w_2(A))}.$$

Operator \bigotimes is called the (normalized) cautious rule.

Image: Image:

3 3 9 9 9 9

Computation

Cautious rule computation				
	<i>m</i> -space		w-space	
	<i>m</i> 1	\rightarrow	W 1	
	m_2	\longrightarrow	<i>W</i> ₂	
	$m_1 \otimes m_2$	←	$\max(w_1, w_2)$	

Remark: we often have simple mass functions in the first place, so that the w function is readily available.

Properties of the cautious rule

- Commutative, associative
- ٠ Idempotent : $\forall m, m \land m = m$
- Distributivity of \oplus with respect to \wedge ٠

 $(m_1 \oplus m_2) \otimes (m_1 \oplus m_3) = m_1 \oplus (m_2 \otimes m_3), \forall m_1, m_2, m_3$

The common item of evidence m_1 is not counted twice!

• No neutral element, but $m_? \otimes m = m$ iff *m* is separable

Image: Image:

Basic rules

All reliable⊕⊘At least one reliable□♡	Sources	independent	dependent
At least one reliable 🕖 🛇	All reliable	\oplus	\bigcirc
	At least one reliable	\bigcirc	\bigotimes

 \odot is the bold disjunctive rule

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

2

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Image: Image:

프 네 프

Refinement and coarsening

Example

- Let us come back to the road scene analysis example, with $\Omega = \{G, R, T, O, S\}.$
- Assume that we have a vegetation detector, which can determine if a region of the image contains vegetation or not. For this detector, the frame of discernment is $\Theta = \{V, \neg V\}$, where V means that there is vegetation, and $\neg V$ means that there is no vegetation.
- We have the correspondence

```
\begin{array}{rcc} V & \rightarrow & \{G,T\} \\ \neg V & \rightarrow & \{R,O,S\} \end{array}
```

 The elements of Ω can be obtained by splitting some or all of the elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening of Ω

Refinement and coarsening

General definition

Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping $\rho : 2^{\Theta} \to 2^{\Omega}$ (called a refining) such that:

• $\{\rho(\{\theta\}), \theta \in \Theta\} \subseteq 2^{\Omega}$ is a partition of Ω , and

• For all
$$A \subseteq \Omega$$
, $\rho(A) = \bigcup_{\theta \in A} \rho(\{\theta\})$.

Image: Image:

San

Vacuous extension

 In the road scene example, assume that the vegetation detector provides the following mass function on ⊖:

$$m^{\Theta}(\{V\}) = 0.6, \quad m^{\Theta}(\{\neg V\}) = 0.3, \quad m^{\Theta}(\Theta) = 0.1$$

- How to express m^{Θ} in Ω ?
- Solution: for all $A \subseteq \Theta$, we transfer the mass $m^{\Theta}(A)$ to $\rho(A)$. Here,

$$\begin{array}{rcl} m^{\Theta}(\{V\}) = 0.6 & \rightarrow & \rho(\{V\}) = \{G, T\} \\ m^{\Theta}(\{\neg V\}) = 0.3 & \rightarrow & \rho(\{\neg V\}) = \{R, O, S\} \\ m^{\Theta}(\Theta) = 0.1 & \rightarrow & \rho(\Theta) = \Omega \end{array}$$

We finally the following mass function on Ω,

$$m^{\Theta\uparrow\Omega}(\{G,T\})=0.6, \quad m^{\Theta\uparrow\Omega}(\{R,O,S\})=0.3, \quad m^{\Theta\uparrow\Omega}(\Omega)=0.1.$$

• $m^{\Theta \uparrow \Omega}$ is called the vacuous extension of m^{Θ} in Ω .

Thierry Denœux

Expression of information in a coarser frame

Let us now assume that we have the following mass function on Ω,

$$m^{\Omega}(\{T\}) = 0.4, \quad m^{\Omega}(\{T, O\}) = 0.3, \quad m^{\Omega}(\{R, S\}) = 0.3.$$

- How to express m^{Ω} in Θ ?
- We cannot do it without loss of information, because, for instance, there is no A ⊆ Θ such that ρ(A) = {T}: the mapping ρ does not have an inverse.

Inner and outer reductions

• We can approximate any subset *B* of Ω by two subsets in Θ :

• The inner reduction of B:

$$\underline{\rho}^{-1}(B) = \{ \theta \in \Theta \mid \rho(\{\theta\}) \subseteq B \}$$

• The outer reduction of B:

$$\overline{\rho}^{-1}(B) = \{ \theta \in \Theta \mid \rho(\{\theta\}) \cap B \neq \emptyset \}.$$

• In the example:

$$\underline{\rho}^{-1}(\{T\}) = \underline{\rho}^{-1}(\{T, O\}) = \underline{\rho}^{-1}(\{R, S\}) = \emptyset$$

$$\overline{\rho}^{-1}(\{T\}) = \{V\}, \quad \overline{\rho}^{-1}(\{T, O\}) = \{V, \neg V\}, \quad \overline{\rho}^{-1}(\{R, S\}) = \{\neg V\}$$

Restriction

Definition

The restriction of m^{Ω} in Θ is obtained by transferring each mass $m^{\Omega}(B)$ to the outer reduction of B: for all subset A of Θ ,

$$m^{\Omega\downarrow\Theta}(A) = \sum_{\overline{\rho}^{-1}(B)=A} m^{\Omega}(B).$$

• In the example, we thus have

$$m^{\Omega\downarrow\Theta}(\{V\})=0.4, \quad m^{\Omega\downarrow\Theta}(\Theta)=0.3, \quad m^{\Omega\downarrow\Theta}(\{\neg V\})=0.3.$$

• Remark: the vacuous extension of $m^{\Omega \downarrow \Theta}$ is

$$egin{aligned} m^{(\Omega\downarrow\Theta)\uparrow\Omega}(\{G,T\}) &= 0.4, \quad m^{(\Omega\downarrow\Theta)\uparrow\Omega}(\Omega) = 0.3, \ m^{(\Omega\downarrow\Theta)\uparrow\Omega}(\{R,S,O\}) &= 0.3. \end{aligned}$$

It is less precise that m^{Ω} : we have lost information when expressing m^{Ω} in a coarser frame.

Thierry Denœux

Compatible frames of discernment

Definition

Two frames are compatible if they have a common refinement.

Example:

3 × 1

Combination of mass functions on compatible frames

- Let m^{Θ1} and m^{Θ2} be two mass functions defined on compatible frames Θ1 and Θ2 with common refinement Ω.
- The orthogonal sum of m^{Θ_1} and m^{Θ_2} in Ω is

 $m^{\Theta_1} \oplus m^{\Theta_2} = m^{\Theta_1 \uparrow \Omega} \oplus m^{\Theta_2 \uparrow \Omega}$

• Example: assume that $m^{\Theta_1}(\{V\}) = 0.3$, $m^{\Theta_1}(\{\neg V\}) = 0.5$, $m^{\Theta_1}(\{V, \neg V\}) = 0.2$, and $m^{\Theta_2}(\{Gr\}) = 0.4$, $m^{\Theta_2}(\{\neg Gr\}) = 0.5$, $m^{\Theta_2}(\{Gr, \neg Gr\}) = 0.1$. Compute $m^{\Theta_1} \oplus m^{\Theta_2}$.

Case of product frames

Cylindrical extension

- Let us now assume that we have two frames Ω_X and Ω_Y related to two different questions about, e.g., the values of two unknown variables X and Y.
- Let Ω_{XY} = Ω_X × Ω_Y be the product space. It is a refinement of both Ω_X and Ω_Y.

We can define the following refining *ρ* from 2^{Ω_X} to 2^{Ω_{XY}}:

$$\rho(\mathbf{A}) = \mathbf{A} \times \Omega_{\mathbf{Y}},$$

for all $A \subseteq \Omega_X$. The set $\rho(A)$ is called the cylindrical extension of A in Ω_{XY} and is denoted by $A \uparrow \Omega_{XY}$.

(日)

Case of product frames

Projection

- Conversely, let *R* be a subset of Ω_{XY} .
- Its outer reduction is

$$\overline{
ho}^{-1}(R) = \{x \in \Omega_X \mid
ho(\{x\}) \cap R
eq \emptyset\} \ = \{x \in \Omega_X \mid \exists y \in \Omega_Y, (x, y) \in R\}.$$

Image: A matrix

ヨトイ

• This set is denoted by $R \downarrow \Omega_X$ and is called the projection of R on Ω_X

San

Case of product frames

Vacuous extension and marginalization

• The vacuous extension of a mass function m^X from Ω_X to Ω_{XY} is obtained by transferring each mass $m^X(B)$ for any subset *B* of Ω_X to the cylindrical extension of *B*:

$$m^{X\uparrow XY}(A) = egin{cases} m^X(B) & ext{if } A = B imes \Omega_Y \ 0 & ext{otherwise.} \end{cases}$$

Conversely, the restriction of a joint mass function m^{XY} on Ω_{XY} is

$$m^{XY\downarrow X}(A) = \sum_{B\downarrow \Omega_X = A} m^{XY}(B),$$

for all $A \subseteq \Omega_X$. The mass functions $m^{XY \downarrow X}$ and $m^{XY \downarrow Y}$ are called the marginals of m^{XY} and the operation that computes the marginals from a joint mass function is called marginalization. This operation extends both set projection and probabilistic marginalization.

(日)

Application to approximate reasoning

- Assume that we have:
 - Partial knowledge of X formalized as a mass function m^X
 - A joint mass function m^{XY} representing an uncertain relation between X and Y
- What can we say about Y?
- Solution:

$$m^{Y}=\left(m^{X\uparrow XY}\oplus m^{XY}\right)^{\downarrow Y}.$$

 Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

Example

- A machine fails if any one of two components fails.
- Let *Z*, *X* and *Y* be the binary variables describing the states of the two components, and the machine.

• We have the following prior knowledge about the states of the components:

$$m^{X}(\{1\}) = 0.1, m^{X}(\{0\}) = 0.3,$$

 $m^{X}(\{0,1\}) = 0.6$
 $m^{Y}(\{0,1\}) = 1$

• We observe that the machine fails. What are our beliefs about the states of the two components?

Image: Image:
Solution

• Pieces of evidence:

$$\begin{split} m_0^{XYZ}(\{(1,1,1),(1,0,1),(0,1,1),(0,0,0)\}) &= 1 \\ m^{X\uparrow XYZ}(\{1\}\times\Omega_{YZ}) &= 0.1, \ m^{X\uparrow XYZ}(\{0\}\times\Omega_{YZ}) = 0.3, \ m^{X\uparrow XYZ}(\Omega_{XYZ}) = 0.6 \\ m^{Y\uparrow XYZ}(\Omega_{XYZ}) &= 1, \ m^{Z\uparrow XYZ}(\Omega_{XY} \times \{1\}) = 1 \\ \bullet \text{ Let } m_1^{XYZ} &= m_0^{XYZ} \oplus m^{X\uparrow XYZ} \oplus m^{Z\uparrow XYZ}. \text{ We have} \\ m_1^{XYZ}(\{(1,1,1),(1,0,1)\}) &= 0.1, \ m_1^{XYZ}(\{(0,1,1)\}) = 0.3, \\ m_1^{XYZ}(\{(1,1,1),(1,0,1),(0,1,1)\}) = 0.6 \end{split}$$

• Marginalizing on X and Y, we get

$$m_1^{XYZ\downarrow X}(\{1\}) = 0.1, m_1^{XYZ\downarrow X}(\{0\}) = 0.3, m_1^{XYZ\downarrow X}(\{0,1\}) = 0.6$$
$$m_1^{XYZ\downarrow Y}(\{1\}) = 0.3, m_1^{XYZ\downarrow Y}(\{0,1\}) = 0.7$$

References

cf. http://www.hds.utc.fr/~tdenoeux

G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

Ph. Smets and R. Kennes.

The Transferable Belief Model.

Artificial Intelligence, 66:191-243, 1994.

D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.

International Journal of General Systems, 12(3):193-226, 1986.

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.

Artificial Intelligence, Vol. 172, pages 234-264, 2008.

- E - - E -