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Contents of this lecture

1 Fundamental concepts: belief, plausibility, commonality, conditioning,
basic combination rules.

2 Some more advanced concepts: informational ordering, cautious rule,
compatible frames.
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Theory of belief functions
History

A formal framework for representing and reasoning with uncertain
information.
Also known as Dempster-Shafer (DS) theory or Evidence theory.
Originates from the work of Dempster (1968) in the context of statistical
inference.
Formalized by Shafer (1976) as a theory of evidence.
Popularized and developed by Smets in the 1980’s and 1990’s as the
“Transferable Belief Model”.
Starting from the 1990’s, growing number of applications in information
fusion, knowledge representation, machine learning (classification,
clustering), reliability and risk analysis, etc.
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Theory of belief functions
Main idea

The theory of belief functions extends both logical/set-based formalisms
(such as Propositional Logic and Interval Analysis) and Probability
Theory:

A belief function may be viewed both as a generalized set and as a
nonadditive measure
The theory includes extensions of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection, union, inclusion,
etc.).

DS reasoning produces the same results as probabilistic reasoning or
interval analysis when provided with the same information.
However, the greater expressive power of the theory of belief functions
allows us to represent what we know in a more faithful way.

Thierry Denœux Introduction to belief functions BFTA 2019 4 / 74



Relationships with other theories

DS#theory#

Fuzzy#sets#&#
Possibility#theory#

Imprecise##
probability#

Rough#sets#

Probability##
theory#
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Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Compatible frames
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Basic notions Mass functions
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Basic notions Mass functions

Mass function
Definition

Definition (Frame of discernment, mass function, focal set)

Let Ω be a finite set called a frame of discernment. A mass function on Ω is a
mapping m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1

Every subset A of Ω such that m(A) > 0 is a focal set of m. If m(∅) = 0, m is
said to be normalized.

In DS theory, a mass function is used to represent evidence about a variable
X taking values in Ω.
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Basic notions Mass functions

Example: road scene analysis

Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments
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Basic notions Mass functions

Example: road scene analysis (continued)

Let X be the type of object in some region of the image, and
Ω = {G,R,T ,O,S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky.
Assume that a lidar sensor (laser telemeter) returns the information
X ∈ {T ,O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).
How to represent this information by a mass function?
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Basic notions Mass functions

Formalization

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	
T	
O	

G	
R	

S	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ {T ,O}.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by the following mass
function m on Ω:

m({T ,O}) = 0.9, m(Ω) = 0.1
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Basic notions Mass functions

Meaning of a mass function

In the previous example,
m({T ,O}) = 0.9 is the probability of knowing only that X ∈ {T ,O}, and
m(Ω) = 0.1 is the probability of knowing nothing.

In general, what is the meaning (semantics) of a mass function in DS
theory?
A precise interpretation was proposed by Shafer (1981): random code
semantics.
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Basic notions Mass functions

Random code semantics

We consider a situation in which we receive a coded message containing
reliable information about variable X ∈ Ω.
The message was encoded using some code in the set S = {c1, . . . , cn}.
There is a multi-valued mapping Γ : S → 2Ω \ {∅} that defines the
meaning of the message: if code ci was used, then the meaning of the
message is “X ∈ Γ(ci )”.
We don’t know which code was used, but we know that each code ci had
a chance pi of being selected, with

∑n
i=1 pi = 1.

Then m(A) is the probability that the meaning of the message is “X ∈ A”:

m(A) = P({c ∈ S | Γ(c) = A}) =
n∑

i=1

pi I(Γ(ci ) = A),

where I(·) is the indicator function.
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Basic notions Mass functions

Random code semantics (continued)

In practice, we do not receive randomly coded messages.
But we can construct a mass function by comparing our evidence about
some variable X , to a hypothetical situation in which we receive a
randomly coded message.
A mass function m is elicited by finding the “coded-message” canonical
example that is the most similar to our evidence.
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Basic notions Mass functions

Random set

The tuple (S,2S,P, Γ), where
(S, 2S ,P) is a probability space and
Γ is a mapping from S to 2Ω

is called a random set.
We have seen that, given the random set (S,2S,P, Γ), we can define the
mass function m : 2Ω → [0,1] such that

m(A) = P({c ∈ S | Γ(c) = A})

Conversely, given any mass function m : 2Ω → [0,1], we can define the
random set (S,2S,P, Γ) with

S = 2Ω,

P({A}) = m(A), A ⊆ Ω,

and
Γ(A) = A, A ⊆ Ω.
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Basic notions Mass functions

Special mass functions

Definition (Logical mass function)

If a mass function has only one focal set A ⊆ Ω., it is said to be logical; we
denote it as m[A]. It represents “infallible” evidence that tells us that X ∈ A for
sure and nothing more. (There is a one-to-one correspondence between
logical mass functions and nonempty sets).

Definition (Vacuous mass function)

The vacuous mass function m? is the logical mass function such that
m?(Ω) = 1. It represents total ignorance.

Definition (Bayesian mass function)

A mass function is Bayesian if its focal sets are singletons. It is equivalent to a
probability distribution.
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Basic notions Belief and plausibility functions
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Basic notions Belief and plausibility functions

Certainty and possibility

Assume our evidence tells us that X ∈ A for sure and nothing more, for
some A ⊆ Ω. It is represented by the logical mass function m[A].
Let B ⊆ Ω. What can we say about the proposition “X ∈ B”?

Ω
B

A

Ω
B

A

Ω
B

A

If A ⊆ B, we know for sure that X ∈ B. This
proposition is said to be certain. (It is
supported/implied by the evidence)

If A ∩ B 6= ∅, we cannot exclude that X ∈ B. This
proposition is said to be possible. (It is consistent
with the evidence)

If A∩B = ∅, the proposition “X ∈ B” is impossible.
(It is inconsistent with the evidence)
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Basic notions Belief and plausibility functions

Belief function

Let us now consider an arbitrary mass function m with (nonempty) focal
sets A1, . . . ,An.
Let B ⊆ Ω. If we know for sure that X ∈ Ai , the proposition X ∈ B is
supported by the evidence whenever Ai ⊆ B.
The probability that the proposition X ∈ B is supported by the evidence is

Bel(B) =
n∑

i=1

m(Ai )I(Ai ⊆ B).

The number Bel(B) is called the credibility of (degree of belief in) B, and
the mapping Bel : 2Ω → [0,1] is called the belief function induced by m.
Elementary properties: Bel(∅) = 0, Bel(Ω) = 1.
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Basic notions Belief and plausibility functions

Plausibility function

We can also compute the probability that the proposition X ∈ B is
consistent with the evidence as

Pl(B) =
n∑

i=1

m(Ai )I(Ai ∩ B 6= ∅).

The number Pl(B) is called the plausibility of B, and the mapping
Pl : 2Ω → [0,1] is called the plausibility function induced by m.
Elementary properties:

Pl(∅) = 0, Pl(Ω) = 1
For all B ⊆ Ω, Bel(B) ≤ Pl(B)
For any A,B ⊆ Ω, (A ∩ B = ∅ ⇔ A ⊆ B). Consequently,

Pl(B) = 1− Bel(B).

Function pl : Ω→ [0,1] such that pl(ω) = Pl({ω}) is called the contour
function of m.
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Basic notions Belief and plausibility functions

Two-dimensional representation

The uncertainty on a proposition B is represented by two numbers:
Bel(B) and Pl(B), with Bel(B) ≤ Pl(B).
The intervals [Bel(B),Pl(B)] have maximum length when m is the
vacuous mass function. Then,

[Bel(B),Pl(B)] = [0,1]

for all subset B of Ω, except ∅ and Ω.
The intervals [Bel(B),Pl(B)] are reduced to points when m is Bayesian.
Then,

Bel(B) = Pl(B)

for all B, and Bel = Pl is a probability measure.
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Basic notions Belief and plausibility functions

Broken sensor example

From
m(A) = 0.9, m(Ω) = 0.1

we get

A A Ω
Bel 0.9 0 1
Pl 1 0.1 1

We observe that

Bel(Ω) = Bel(A ∪ A) ≥ Bel(A) + Bel(A)

and
Pl(Ω) = Pl(A ∪ A) ≤ Pl(A) + Pl(A)

Bel and Pl are nonadditive measures. (Bel is superadditive and Pl is
subadditive).
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Basic notions Belief and plausibility functions

Characterization of belief functions

Function Bel : 2Ω → [0,1] is completely monotone: for any k ≥ 2 and for
any family A1, . . . ,Ak in 2Ω:

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

Conversely, to any completely monotone set function Bel such Bel(∅) = 0
and Bel(Ω) = 1 corresponds a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Basic notions Belief and plausibility functions

Relations between m, Bel and Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions.
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel and Pl are thus three equivalent representations of a piece of
evidence.
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Basic notions Belief and plausibility functions

Relationship with Possibility theory

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant.
The following relations then hold:

Pl(A ∪ B) = max (Pl(A),Pl(B)) , ∀A,B ⊆ Ω.

Pl is this a possibility measure, and Bel is the dual necessity measure.
The possibility distribution is the contour function:

pl(x) = Pl({x}), ∀x ∈ Ω

The theory of belief function can thus be considered as more expressive
than possibility theory (but the combination operations are different, as
we will see later).
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Basic notions Belief and plausibility functions

Credal set

A probability measure P on Ω is said to be compatible with m if

∀A ⊆ Ω, Bel(A) ≤ P(A) ≤ Pl(A)

The set P(m) of probability measures compatible with m is called the
credal set of m

P(m) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A)}

Bel is the lower envelope of P(m)

∀A ⊆ Ω, Bel(A) = min
P∈P(m)

P(A)

Not all lower envelopes of sets of probability measures are belief
functions!
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Basic notions Dempster’s rule
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Basic notions Dempster’s rule

Road scene example continued

Variable X was defined as the type of object in some region of the image,
and the frame was Ω = {G,R,T ,O,S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky
A lidar sensor gave us the following mass function:

m1({T ,O}) = 0.9, m1(Ω) = 0.1

Now, assume that a camera returns the mass function:

m2({G,T}) = 0.8, m2(Ω) = 0.2

How to combine these two pieces of evidence?
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Basic notions Dempster’s rule

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
O	

G	

R	
S	

If the two sensors are in states s1 and s2, then X ∈ Γ1(s1) ∩ Γ2(s2).
If the two pieces of evidence are independent, then the probability that
the sensors are in states s1 and s2 is P1({s1})P2({s2}).

Thierry Denœux Introduction to belief functions BFTA 2019 29 / 74



Basic notions Dempster’s rule

Computation

m1\m2 {T ,G} Ω
(0.8) (0.2)

{O,T} (0.9) {T} (0.72) {O,T} (0.18)
Ω (0.1) {T ,G} (0.08) Ω (0.02)

We then get the following combined mass function:

m({T}) = 0.72
m({O,T}) = 0.18
m({T ,G}) = 0.08

m(Ω) = 0.02
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Basic notions Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that the pair of states (s1, s2) cannot have
occurred.
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs.
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Basic notions Dempster’s rule

Computation

m1\m2 {G,R} Ω
(0.8) (0.2)

{O,T} (0.9) ∅ (0.72) {O,T} (0.18)
Ω (0.1) {G,R} (0.08) Ω (0.02)

We then get the following combined mass function,

m(∅) = 0
m({O,T}) = 0.18/0.28 = 9/14
m({G,R}) = 0.08/0.28 = 4/14

m(Ω) = 0.02/0.28 = 1/14
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Basic notions Dempster’s rule

Dempster’s rule

The orthogonal sum of two mass functions m1 and m2 on Ω is the mass
function m1 ⊕m2 defined as (m1 ⊕m2)(∅) = 0 and

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅,

where
κ =

∑
B∩C=∅

m1(B)m2(C)

is the degree of conflict between m1 and m2.
If κ = 1, m1 and m2 are not combinable.
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Basic notions Dempster’s rule

Properties of Dempster’s rule

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if m[A] and m[B] are logical mass functions
and A ∩ B 6= ∅, then

m[A] ⊕m[B] = m[A∩B]

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Basic notions Dempster’s rule

Dempster’s conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function m[A]. Notation:

m ⊕m[A] = m(· | A)

It can be shown that
Pl(B | A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and m[A] is a logical mass function, then m ⊕m[A] is a Bayesian mass
function corresponding to the conditioning of m by A.
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Basic notions Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Basic notions Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have

(Q1 ⊕Q2)(A) =
1

1− κ
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1

In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 = (1− κ)−1pl1pl2.
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Basic notions Dempster’s rule

Remarks on normalization

Mass functions expressing pieces of evidence are always normalized.
Smets introduced the unnormalized Dempster’s rule (TBM conjunctive
rule ∩©), which may yield an unnormalized mass function.
He proposed to interpret m(∅) as the mass committed to the hypothesis
that X might not take its value in Ω (open-world assumption).
I now think that this interpretation is problematic, as m(∅) increases
“mechanically” when combining more and more items of evidence.
Claim: unnormalized mass functions are convenient mathematically as
equivalent representations of normalized mass functions, but only
normalized mass functions make sense.
In particular, Bel and Pl should always be computed from normalized
mass functions.
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Basic notions Dempster’s rule

TBM disjunctive rule

Let m1 and m2 be two mass functions induced by random messages
(S1,P1, Γ1) and (S2,P2, Γ2).
Previously, we have assumed that both messages were reliable, i.e., if
the true codes are c1 ∈ S1 and c2 ∈ S2, we can conclude that
X ∈ Γ1(c1) ∩ Γ2(c2) for sure.
We can weaken this assumption by supposing only that at least one of
the two messages is reliable, i.e., if the true codes are c1 ∈ S1 and
c2 ∈ S2, we can only conclude that X ∈ Γ1(c1) ∪ Γ2(c2) for sure.
This leads to the TBM disjunctive rule:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω

Bel1 ∪©Bel2 = Bel1 · Bel2
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Selected advanced topics Informational orderings

Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Compatible frames

Thierry Denœux Introduction to belief functions BFTA 2019 40 / 74



Selected advanced topics Informational orderings

Informational comparison of belief functions

Let m1 and m2 be two mass functions on Ω

In what sense can we say that m1 is more informative (committed) than
m2?
Special case:

Let m[A] and m[B] be two logical mass functions
m[A] is more committed than m[B] iff A ⊆ B

Extension to arbitrary mass functions?
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Selected advanced topics Informational orderings

Plausibility ordering

Definition
m1 is pl-more committed than m2 (noted m1 vpl m2) if

Pl1(A) ≤ Pl2(A), ∀A ⊆ Ω

or, equivalently,
Bel1(A) ≥ Bel2(A), ∀A ⊆ Ω.

Imprecise probability interpretation:

m1 vpl m2 ⇔ P(m1) ⊆ P(m2)

Properties:
Extension of set inclusion:

m[A] vpl m[B] ⇔ A ⊆ B

Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Commonality ordering

If m1 = m ⊕m2 for some m, and if there is no conflict between m and m2,
then Q1(A) = Q(A)Q2(A) ≤ Q2(A) for all A ⊆ Ω

This property suggests that smaller values of the commonality function
are associated with richer information content of the mass function

Definition
m1 is q-more committed than m2 (noted m1 vq m2) if

Q1(A) ≤ Q2(A), ∀A ⊆ Ω

Properties:
Extension of set inclusion:

m[A] vq m[B] ⇔ A ⊆ B

Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Strong (specialization) ordering

Definition
m1 is a specialization of m2 (noted m1 vs m2) if m1 can be obtained from m2
by distributing each mass m2(B) to subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B.

S: specialization matrix
Properties:

Extension of set inclusion
Greatest element: m?

m1 vs m2 ⇒

{
m1 vpl m2

m1 vq m2
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Selected advanced topics Informational orderings

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the
least informative according to some informational ordering (if it exists) should
be selected

A very powerful method for constructing belief functions!
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Selected advanced topics Cautious rule

Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Compatible frames

Thierry Denœux Introduction to belief functions BFTA 2019 46 / 74



Selected advanced topics Cautious rule

Motivations

The basic rules ⊕ and ∪© assume the sources of information to be
independent, e.g.

experts with non overlapping experience/knowledge
non overlapping datasets

What to do in case of non independent evidence?
Describe the nature of the interaction between sources (difficult, requires a
lot of information)
Use a combination rule that tolerates redundancy in the combined
information

Such rules can be derived from the LCP using suitable informational
orderings.
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Selected advanced topics Cautious rule

Principle

Two sources provide mass functions m1 and m2, and the sources are
both considered to be reliable.
After receiving these m1 and m2, the agent’s state of belief should be
represented by a mass function m12 more committed than m1, and more
committed than m2.
Let Sx (m) be the set of mass functions m′ such that m′ vx m, for some
x ∈ {pl ,q, s, · · · }. We thus impose that

m12 ∈ Sx (m1) ∩ Sx (m2).

According to the LCP, we should select the x-least committed element in
Sx (m1) ∩ Sx (m2), if it exists.

Thierry Denœux Introduction to belief functions BFTA 2019 48 / 74



Selected advanced topics Cautious rule

Cautious rule
Problem

The above approach works for special cases.
Example (Dubois, Prade, Smets 2001): if m1 and m2 are consonant, then
the q-least committed element in Sq(m1) ∩ Sq(m2) exists and it is unique:
it is the consonant mass function with commonality function
Q12 = min(Q1,Q2).
In general, neither existence nor uniqueness of a solution can be
guaranteed with any of the x-orderings, x ∈ {pl ,q, s}.
We need to define a new ordering relation.
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Selected advanced topics Cautious rule

Simple mass functions

Definition: m is simple mass function if it has the following form

m(A) = 1− δ(A)

m(Ω) = δ(A)

for some A ⊂ Ω, A 6= ∅ and δ(A) ∈ (0,1].
The quantity w(A) = − ln δ(A) ≥ 0 is called the weight of evidence for A.
Mass function m is denoted by Aw(A).
Property:

Aw1(A) ⊕ Aw2(A) = Aw1(A)+w2(A).

Remark: In earlier work, following Smets’ terminology, I used the term
“weight” for δ(A). I now think it is better to reserve the term “weight” for
additive quantities. In recent work, Faux and Dubois use the term
“diffidence” for δ(A).
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Separable mass functions

Definition (Separable mass function)

A (normalized) mass function is separable if it can be written as the ⊕
combination of simple mass functions:

m =
⊕
∅6=A⊂Ω

Aw(A)

with w(A) ≥ 0 for all A ⊂ Ω, A 6= ∅.
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The w-ordering

Definition
Let m1 and m2 be two mass functions. We say that m1 is w-more committed
than m2 (denoted by m1 vw m2) if

m1 = m2 ⊕m.

for some separable mass function m.

How to check this condition?
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Weight function

If m is separable, the corresponding weights of evidence can be obtained
as

w(A) =
∑
B⊇A

(−1)|B|−|A| ln Q(B) (1)

for all A ⊆ Ω.
For any non dogmatic mass function m, (i.e., such that m(Ω) > 0), we
can still define “weights” from (1), but we can have w(A) < 0.
Function w is called the weight function.
m can also be recovered from w by

m =
⊕
∅6=A⊂Ω

Aw(A),

although Aw(A) is not a proper mass function when w(A) < 0.
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Properties of the weight function

m is separable iff
w(A) ≥ 0, ∀A ⊂ Ω,A 6= ∅.

Dempster’s rule can be computed using the w-function by

m1 ⊕m2 =
⊕
∅6=A⊂Ω

Aw1(A)+w2(A).

Characterization of the w-ordering

m1 vw m2 ⇔ w1(A) ≥ w2(A), ∀A ⊂ Ω,A 6= ∅.
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Cautious rule
Definition

Let m1 and m2 be two non dogmatic mass functions with weight functions w1
and w2.

Proposition

The w-least committed element in Sw (m1) ∩ Sw (m2) exists and is unique. It is
defined by:

m1 ∧©m2 =
⊕
∅6=A⊂Ω

Amax(w1(A),w2(A)).

Operator ∧© is called the (normalized) cautious rule.
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Computation

Cautious rule computation

m-space w-space
m1 −→ w1
m2 −→ w2

m1 ∧©m2 ←− max(w1,w2)

Remark: we often have simple mass functions in the first place, so that the w
function is readily available.
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Properties of the cautious rule

Commutative, associative
Idempotent : ∀m, m ∧©m = m
Distributivity of ⊕ with respect to ∧©

(m1 ⊕m2) ∧©(m1 ⊕m3) = m1 ⊕ (m2 ∧©m3),∀m1,m2,m3

The common item of evidence m1 is not counted twice!
No neutral element, but m? ∧©m = m iff m is separable
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Basic rules

Sources independent dependent
All reliable ⊕ ∧©
At least one reliable ∪© ∨©

∨© is the bold disjunctive rule
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Outline

1 Basic notions
Mass functions
Belief and plausibility functions
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Refinement and coarsening
Example

Let us come back to the road scene analysis example, with
Ω = {G,R,T ,O,S}.
Assume that we have a vegetation detector, which can determine if a
region of the image contains vegetation or not. For this detector, the
frame of discernment is Θ = {V ,¬V}, where V means that there is
vegetation, and ¬V means that there is no vegetation.
We have the correspondence

V → {G,T}
¬V → {R,O,S}

The elements of Ω can be obtained by splitting some or all of the
elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening
of Ω
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Refinement and coarsening
General definition

Θ	
 Ω	

θ1	  

θ2	  
θ3	  

ρ	


Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping ρ : 2Θ → 2Ω

(called a refining) such that:
{ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and
For all A ⊆ Ω, ρ(A) =

⋃
θ∈A ρ({θ}).
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Vacuous extension

In the road scene example, assume that the vegetation detector provides
the following mass function on Θ:

mΘ({V}) = 0.6, mΘ({¬V}) = 0.3, mΘ(Θ) = 0.1

How to express mΘ in Ω?
Solution: for all A ⊆ Θ, we transfer the mass mΘ(A) to ρ(A). Here,

mΘ({V}) = 0.6 → ρ({V}) = {G,T}
mΘ({¬V}) = 0.3 → ρ({¬V}) = {R,O,S}

mΘ(Θ) = 0.1 → ρ(Θ) = Ω

We finally the following mass function on Ω,

mΘ↑Ω({G,T}) = 0.6, mΘ↑Ω({R,O,S}) = 0.3, mΘ↑Ω(Ω) = 0.1.

mΘ↑Ω is called the vacuous extension of mΘ in Ω.
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Expression of information in a coarser frame

Let us now assume that we have the following mass function on Ω,

mΩ({T}) = 0.4, mΩ({T ,O}) = 0.3, mΩ({R,S}) = 0.3.

How to express mΩ in Θ?
We cannot do it without loss of information, because, for instance, there is
no A ⊆ Θ such that ρ(A) = {T}: the mapping ρ does not have an inverse.
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Inner and outer reductions

Θ Ω
θ1	

θ2	
θ3	

ρ B

We can approximate any subset B of Ω by two subsets in Θ:
The inner reduction of B:

ρ−1(B) = {θ ∈ Θ | ρ({θ}) ⊆ B}

The outer reduction of B:

ρ−1(B) = {θ ∈ Θ | ρ({θ}) ∩ B 6= ∅}.

In the example:

ρ−1({T}) = ρ−1({T ,O}) = ρ−1({R,S}) = ∅

ρ−1({T}) = {V}, ρ−1({T ,O}) = {V ,¬V}, ρ−1({R,S}) = {¬V}
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Restriction

Definition

The restriction of mΩ in Θ is obtained by transferring each mass mΩ(B) to the
outer reduction of B: for all subset A of Θ,

mΩ↓Θ(A) =
∑

ρ−1(B)=A

mΩ(B).

In the example, we thus have

mΩ↓Θ({V}) = 0.4, mΩ↓Θ(Θ) = 0.3, mΩ↓Θ({¬V}) = 0.3.

Remark: the vacuous extension of mΩ↓Θ is

m(Ω↓Θ)↑Ω({G,T}) = 0.4, m(Ω↓Θ)↑Ω(Ω) = 0.3,

m(Ω↓Θ)↑Ω({R,S,O}) = 0.3.

It is less precise that mΩ: we have lost information when expressing mΩ

in a coarser frame.
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Compatible frames of discernment

Definition
Two frames are compatible if they have a common refinement.

Example:

Ω

T	

O	

G	

R	 S	

V	

not	V	

Gr	 Not	Gr	

Θ1	

Θ2	
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Combination of mass functions on compatible frames

Let mΘ1 and mΘ2 be two mass functions defined on compatible frames Θ1
and Θ2 with common refinement Ω.
The orthogonal sum of mΘ1 and mΘ2 in Ω is

mΘ1 ⊕mΘ2 = mΘ1↑Ω ⊕mΘ2↑Ω

Example: assume that mΘ1 ({V}) = 0.3, mΘ1 ({¬V}) = 0.5,
mΘ1 ({V ,¬V}) = 0.2, and mΘ2 ({Gr}) = 0.4, mΘ2 ({¬Gr}) = 0.5,
mΘ2 ({Gr ,¬Gr}) = 0.1. Compute mΘ1 ⊕mΘ2 .
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Case of product frames
Cylindrical extension

Let us now assume that we have two frames ΩX and ΩY related to two
different questions about, e.g., the values of two unknown variables X
and Y .
Let ΩXY = ΩX × ΩY be the product space. It is a refinement of both ΩX
and ΩY .

		

ΩX	

ΩY	

A A	x	ΩY	

We can define the following refining ρ
from 2ΩX to 2ΩXY :

ρ(A) = A× ΩY ,

for all A ⊆ ΩX . The set ρ(A) is called the
cylindrical extension of A in ΩXY and is
denoted by A ↑ ΩXY .
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Case of product frames
Projection

ΩX	

ΩY	

R	A

Conversely, let R be a subset of ΩXY .
Its outer reduction is

ρ−1(R) = {x ∈ ΩX | ρ({x}) ∩ R 6= ∅}
= {x ∈ ΩX | ∃y ∈ ΩY , (x , y) ∈ R}.

This set is denoted by R ↓ ΩX and is called the projection of R on ΩX
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Case of product frames
Vacuous extension and marginalization

The vacuous extension of a mass function mX from ΩX to ΩXY is obtained
by transferring each mass mX (B) for any subset B of ΩX to the cylindrical
extension of B:

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise.

Conversely, the restriction of a joint mass function mXY on ΩXY is

mXY↓X (A) =
∑

B↓ΩX =A

mXY (B),

for all A ⊆ ΩX . The mass functions mXY↓X and mXY↓Y are called the
marginals of mXY and the operation that computes the marginals from a
joint mass function is called marginalization. This operation extends both
set projection and probabilistic marginalization.
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Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX

A joint mass function mXY representing an uncertain relation between X and
Y

What can we say about Y ?
Solution:

mY =
(
mX↑XY ⊕mXY )↓Y .

Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions.
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Example

A machine fails if any one of two components fails.
Let Z , X and Y be the binary variables describing the states of the two
components, and the machine.

Z	

X	 Y	

We have the following prior knowledge
about the states of the components:

mX ({1}) = 0.1,mX ({0}) = 0.3,

mX ({0,1}) = 0.6

mY ({0,1}) = 1

We observe that the machine fails. What
are our beliefs about the states of the two
components?
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Solution

Pieces of evidence:

mXYZ
0 ({(1,1,1), (1,0,1), (0,1,1), (0,0,0)}) = 1

mX↑XYZ ({1}×ΩYZ ) = 0.1, mX↑XYZ ({0}×ΩYZ ) = 0.3, mX↑XYZ (ΩXYZ ) = 0.6

mY↑XYZ (ΩXYZ ) = 1, mZ↑XYZ (ΩXY × {1}) = 1

Let mXYZ
1 = mXYZ

0 ⊕mX↑XYZ ⊕mZ↑XYZ . We have

mXYZ
1 ({(1,1,1), (1,0,1)}) = 0.1, mXYZ

1 ({(0,1,1)}) = 0.3,

mXYZ
1 ({(1,1,1), (1,0,1), (0,1,1)}) = 0.6

Marginalizing on X and Y , we get

mXYZ↓X
1 ({1}) = 0.1,mXYZ↓X

1 ({0}) = 0.3,mXYZ↓X
1 ({0,1}) = 0.6

mXYZ↓Y
1 ({1}) = 0.3,mXYZ↓Y

1 ({0,1}) = 0.7
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