Introduction to belief functions

Thierry Denœux

Université de technologie de Compiègne, France
Institut Universitaire de France
https://www.hds.utc.fr/~tdenoeux

Fifth School on Belief Functions and their Applications Sienna, Italy, October 27, 2019

Contents of this lecture

(1) Fundamental concepts: belief, plausibility, commonality, conditioning, basic combination rules.
(2) Some more advanced concepts: informational ordering, cautious rule, compatible frames.

Theory of belief functions

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory.
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's as the "Transferable Belief Model".
- Starting from the 1990's, growing number of applications in information fusion, knowledge representation, machine learning (classification, clustering), reliability and risk analysis, etc.

Theory of belief functions

- The theory of belief functions extends both logical/set-based formalisms (such as Propositional Logic and Interval Analysis) and Probability Theory:
- A belief function may be viewed both as a generalized set and as a nonadditive measure
- The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.).
- DS reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

Relationships with other theories

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Mass function

Definition

Definition (Frame of discernment, mass function, focal set)
Let Ω be a finite set called a frame of discernment. A mass function on Ω is a mapping $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

Every subset A of Ω such that $m(A)>0$ is a focal set of m. If $m(\emptyset)=0, m$ is said to be normalized.

In DS theory, a mass function is used to represent evidence about a variable X taking values in Ω.

Example: road scene analysis

Example: road scene analysis (continued)

- Let X be the type of object in some region of the image, and $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information $X \in\{T, O\}$, but we there is a probability $p=0.1$ that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

Formalization

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in\{T, O\}$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by the following mass function m on Ω :

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

Meaning of a mass function

- In the previous example,
- $m(\{T, O\})=0.9$ is the probability of knowing only that $X \in\{T, O\}$, and
- $m(\Omega)=0.1$ is the probability of knowing nothing.
- In general, what is the meaning (semantics) of a mass function in DS theory?
- A precise interpretation was proposed by Shafer (1981): random code semantics.

Random code semantics

- We consider a situation in which we receive a coded message containing reliable information about variable $X \in \Omega$.
- The message was encoded using some code in the set $S=\left\{c_{1}, \ldots, c_{n}\right\}$.
- There is a multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega} \backslash\{\emptyset\}$ that defines the meaning of the message: if code c_{i} was used, then the meaning of the message is " $X \in \Gamma\left(c_{i}\right)$ ".
- We don't know which code was used, but we know that each code c_{i} had a chance p_{i} of being selected, with $\sum_{i=1}^{n} p_{i}=1$.
- Then $m(A)$ is the probability that the meaning of the message is " $X \in A$ ":

$$
m(A)=P(\{c \in S \mid \Gamma(c)=A\})=\sum_{i=1}^{n} p_{i} I\left(\Gamma\left(c_{i}\right)=A\right)
$$

where $I(\cdot)$ is the indicator function.

Random code semantics (continued)

- In practice, we do not receive randomly coded messages.
- But we can construct a mass function by comparing our evidence about some variable X, to a hypothetical situation in which we receive a randomly coded message.
- A mass function m is elicited by finding the "coded-message" canonical example that is the most similar to our evidence.

Random set

- The tuple $\left(S, 2^{S}, P, \Gamma\right)$, where
- $\left(S, 2^{S}, P\right)$ is a probability space and
- 「 is a mapping from S to 2^{Ω}
is called a random set.
- We have seen that, given the random set $\left(S, 2^{S}, P, \Gamma\right)$, we can define the mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
m(A)=P(\{c \in S \mid \Gamma(c)=A\})
$$

- Conversely, given any mass function $m: 2^{\Omega} \rightarrow[0,1]$, we can define the random set ($S, 2^{S}, P, \Gamma$) with

$$
\begin{gathered}
S=2^{\Omega} \\
P(\{A\})=m(A), \quad A \subseteq \Omega
\end{gathered}
$$

and

$$
\Gamma(A)=A, \quad A \subseteq \Omega .
$$

Special mass functions

Definition (Logical mass function)

If a mass function has only one focal set $A \subseteq \Omega$., it is said to be logical; we denote it as $m_{[A]}$. It represents "infallible" evidence that tells us that $X \in A$ for sure and nothing more. (There is a one-to-one correspondence between logical mass functions and nonempty sets).

Definition (Vacuous mass function)

The vacuous mass function $m_{\text {? }}$ is the logical mass function such that $m_{?}(\Omega)=1$. It represents total ignorance.

Definition (Bayesian mass function)

A mass function is Bayesian if its focal sets are singletons. It is equivalent to a probability distribution.

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Certainty and possibility

- Assume our evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$. It is represented by the logical mass function $m_{[A]}$.
- Let $B \subseteq \Omega$. What can we say about the proposition " $X \in B$ "?

- If $A \subseteq B$, we know for sure that $X \in B$. This proposition is said to be certain. (It is supported/implied by the evidence)
- If $A \cap B \neq \emptyset$, we cannot exclude that $X \in B$. This proposition is said to be possible. (It is consistent with the evidence)
- If $A \cap B=\emptyset$, the proposition " $X \in B$ " is impossible. (It is inconsistent with the evidence)

Belief function

- Let us now consider an arbitrary mass function m with (nonempty) focal sets A_{1}, \ldots, A_{n}.
- Let $B \subseteq \Omega$. If we know for sure that $X \in A_{i}$, the proposition $X \in B$ is supported by the evidence whenever $A_{i} \subseteq B$.
- The probability that the proposition $X \in B$ is supported by the evidence is

$$
\operatorname{Bel}(B)=\sum_{i=1}^{n} m\left(A_{i}\right) /\left(A_{i} \subseteq B\right)
$$

- The number $\operatorname{Bel}(B)$ is called the credibility of (degree of belief in) B, and the mapping $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is called the belief function induced by m.
- Elementary properties: $\operatorname{Bel}(\emptyset)=0, \operatorname{Bel}(\Omega)=1$.

Plausibility function

- We can also compute the probability that the proposition $X \in B$ is consistent with the evidence as

$$
P I(B)=\sum_{i=1}^{n} m\left(A_{i}\right) l\left(A_{i} \cap B \neq \emptyset\right) .
$$

- The number $P /(B)$ is called the plausibility of B, and the mapping $P I: 2^{\Omega} \rightarrow[0,1]$ is called the plausibility function induced by m.
- Elementary properties:
- $P I(\emptyset)=0, P I(\Omega)=1$
- For all $B \subseteq \Omega, \operatorname{Bel}(B) \leq P I(B)$
- For any $A, B \subseteq \Omega,(A \cap B=\emptyset \Leftrightarrow A \subseteq \bar{B})$. Consequently,

$$
P l(B)=1-\operatorname{Bel}(\bar{B}) .
$$

- Function $p l: \Omega \rightarrow[0,1]$ such that $p l(\omega)=P l(\{\omega\})$ is called the contour function of m.

Two-dimensional representation

- The uncertainty on a proposition B is represented by two numbers: $B e l(B)$ and $P l(B)$, with $B e l(B) \leq P l(B)$.
- The intervals $[B e l(B), P l(B)]$ have maximum length when m is the vacuous mass function. Then,

$$
[B e l(B), P l(B)]=[0,1]
$$

for all subset B of Ω, except \emptyset and Ω.

- The intervals $[\operatorname{Bel}(B), P l(B)]$ are reduced to points when m is Bayesian. Then,

$$
B e l(B)=P l(B)
$$

for all B, and $B e l=P l$ is a probability measure.

Broken sensor example

- From

$$
m(A)=0.9, \quad m(\Omega)=0.1
$$

we get

	A	\bar{A}	Ω
Bel	0.9	0	1
$P l$	1	0.1	1

- We observe that

$$
\operatorname{Bel}(\Omega)=\operatorname{Bel}(A \cup \bar{A}) \geq \operatorname{Bel}(A)+\operatorname{Bel}(\bar{A})
$$

and

$$
P l(\Omega)=P l(A \cup \bar{A}) \leq P l(A)+P l(\bar{A})
$$

- Bel and $P l$ are nonadditive measures. (Bel is superadditive and $P /$ is subadditive).

Characterization of belief functions

- Function $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is completely monotone: for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω} :

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|| |+1} \operatorname{Bel}\left(\bigcap_{i \in I} A_{i}\right) .
$$

- Conversely, to any completely monotone set function Bel such $\operatorname{Bel}(\emptyset)=0$ and $\operatorname{Bel}(\Omega)=1$ corresponds a unique mass function m such that:

$$
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} B e l(B), \quad \forall A \subseteq \Omega .
$$

Relations between $m, B e l$ and $P l$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions.
- For all $A \subseteq \Omega$,

$$
\begin{gathered}
\operatorname{Bel}(A)=1-P l(\bar{A}) \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|+1} P l(\bar{B})
\end{gathered}
$$

- $m, B e l$ and Pl are thus three equivalent representations of a piece of evidence.

Relationship with Possibility theory

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant.
- The following relations then hold:

$$
P l(A \cup B)=\max (P l(A), P l(B)), \quad \forall A, B \subseteq \Omega .
$$

- $P /$ is this a possibility measure, and $B e l$ is the dual necessity measure.
- The possibility distribution is the contour function:

$$
p l(x)=P l(\{x\}), \quad \forall x \in \Omega
$$

- The theory of belief function can thus be considered as more expressive than possibility theory (but the combination operations are different, as we will see later).

Credal set

- A probability measure P on Ω is said to be compatible with m if

$$
\forall A \subseteq \Omega, \quad B e l(A) \leq P(A) \leq P I(A)
$$

- The set $\mathcal{P}(m)$ of probability measures compatible with m is called the credal set of m

$$
\mathcal{P}(m)=\{P: \forall A \subseteq \Omega, B e l(A) \leq P(A)\}
$$

- Bel is the lower envelope of $\mathcal{P}(m)$

$$
\forall A \subseteq \Omega, \quad \operatorname{Bel}(A)=\min _{P \in \mathcal{P}(m)} P(A)
$$

- Not all lower envelopes of sets of probability measures are belief functions!

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$
m_{1}(\{T, O\})=0.9, \quad m_{1}(\Omega)=0.1
$$

- Now, assume that a camera returns the mass function:

$$
m_{2}(\{G, T\})=0.8, \quad m_{2}(\Omega)=0.2
$$

- How to combine these two pieces of evidence?

Analysis

- If the two sensors are in states s_{1} and s_{2}, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$.
- If the two pieces of evidence are independent, then the probability that the sensors are in states s_{1} and s_{2} is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$.

Computation

$m_{1} \backslash m_{2}$	$\{T, G\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\{T\}(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{T, G\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function:

$$
\begin{aligned}
m(\{T\}) & =0.72 \\
m(\{O, T\}) & =0.18 \\
m(\{T, G\}) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that the pair of states (s_{1}, s_{2}) cannot have occurred.
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs.

Computation

$m_{1} \backslash m_{2}$	$\{G, R\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\emptyset(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{G, R\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(\{O, T\}) & =0.18 / 0.28=9 / 14 \\
m(\{G, R\}) & =0.08 / 0.28=4 / 14 \\
m(\Omega) & =0.02 / 0.28=1 / 14
\end{aligned}
$$

Dempster's rule

- The orthogonal sum of two mass functions m_{1} and m_{2} on Ω is the mass function $m_{1} \oplus m_{2}$ defined as $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$ and

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset,
$$

where

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

is the degree of conflict between m_{1} and m_{2}.

- If $\kappa=1, m_{1}$ and m_{2} are not combinable.

Properties of Dempster's rule

- Commutativity, associativity. Neutral element: $m_{\text {? }}$
- Generalization of intersection: if $m_{[A]}$ and $m_{[B]}$ are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{[A]} \oplus m_{[B]}=m_{[A \cap B]}
$$

- If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function $m_{[A]}$. Notation:

$$
m \oplus m_{[A]}=m(\cdot \mid A)
$$

- It can be shown that

$$
P I(B \mid A)=\frac{P l(A \cap B)}{P l(A)} .
$$

- Generalization of Bayes' conditioning: if m is a Bayesian mass function and $m_{[A]}$ is a logical mass function, then $m \oplus m_{[A]}$ is a Bayesian mass function corresponding to the conditioning of m by A.

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Q is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let $Q_{1} \oplus Q_{2}$ be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have

$$
\begin{gathered}
\left(Q_{1} \oplus Q_{2}\right)(A)=\frac{1}{1-\kappa} Q_{1}(A) \cdot Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

- In particular, $p l(\omega)=Q(\{\omega\})$. Consequently,

$$
p l_{1} \oplus p l_{2}=(1-\kappa)^{-1} p l_{1} p l_{2} .
$$

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized.
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule ©), which may yield an unnormalized mass function.
- He proposed to interpret $m(\emptyset)$ as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption).
- I now think that this interpretation is problematic, as $m(\emptyset)$ increases "mechanically" when combining more and more items of evidence.
- Claim: unnormalized mass functions are convenient mathematically as equivalent representations of normalized mass functions, but only normalized mass functions make sense.
- In particular, Bel and P/ should always be computed from normalized mass functions.

TBM disjunctive rule

- Let m_{1} and m_{2} be two mass functions induced by random messages $\left(S_{1}, P_{1}, \Gamma_{1}\right)$ and (S_{2}, P_{2}, Γ_{2}).
- Previously, we have assumed that both messages were reliable, i.e., if the true codes are $c_{1} \in S_{1}$ and $c_{2} \in S_{2}$, we can conclude that $X \in \Gamma_{1}\left(c_{1}\right) \cap \Gamma_{2}\left(c_{2}\right)$ for sure.
- We can weaken this assumption by supposing only that at least one of the two messages is reliable, i.e., if the true codes are $c_{1} \in S_{1}$ and $c_{2} \in S_{2}$, we can only conclude that $X \in \Gamma_{1}\left(c_{1}\right) \cup \Gamma_{2}\left(c_{2}\right)$ for sure.
- This leads to the TBM disjunctive rule:

$$
\left(m_{1}(\odot) m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega
$$

- $B e l_{1}(1) B e l_{2}=B e l_{1} \cdot B e l_{2}$

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Informational comparison of belief functions

- Let m_{1} and m_{2} be two mass functions on Ω
- In what sense can we say that m_{1} is more informative (committed) than m_{2} ?
- Special case:
- Let $m_{[A]}$ and $m_{[B]}$ be two logical mass functions
- $m_{[A]}$ is more committed than $m_{[B]}$ iff $A \subseteq B$
- Extension to arbitrary mass functions?

Plausibility ordering

Definition

m_{1} is pl-more committed than m_{2} (noted $m_{1} \sqsubseteq_{p l} m_{2}$) if

$$
P l_{1}(A) \leq P l_{2}(A), \quad \forall A \subseteq \Omega
$$

or, equivalently,

$$
B e l_{1}(A) \geq B e l_{2}(A), \quad \forall A \subseteq \Omega
$$

- Imprecise probability interpretation:

$$
m_{1} \sqsubseteq p l m_{2} \Leftrightarrow \mathcal{P}\left(m_{1}\right) \subseteq \mathcal{P}\left(m_{2}\right)
$$

- Properties:
- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{p l} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Commonality ordering

- If $m_{1}=m \oplus m_{2}$ for some m, and if there is no conflict between m and m_{2}, then $Q_{1}(A)=Q(A) Q_{2}(A) \leq Q_{2}(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function

Definition

m_{1} is q-more committed than m_{2} (noted $m_{1} \sqsubseteq_{q} m_{2}$) if

$$
Q_{1}(A) \leq Q_{2}(A), \quad \forall A \subseteq \Omega
$$

Properties:

- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{q} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Strong (specialization) ordering

Definition

m_{1} is a specialization of m_{2} (noted $m_{1} \sqsubseteq_{s} m_{2}$) if m_{1} can be obtained from m_{2} by distributing each mass $m_{2}(B)$ to subsets of B :

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega,
$$

where $S(A, B)=$ proportion of $m_{2}(B)$ transferred to $A \subseteq B$.

- S: specialization matrix
- Properties:
- Extension of set inclusion
- Greatest element: $m_{\text {? }}$
- $m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2}\end{array}\right.$

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

A very powerful method for constructing belief functions!

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Motivations

- The basic rules \oplus and $(\mathbb{)}$ assume the sources of information to be independent, e.g.
- experts with non overlapping experience/knowledge
- non overlapping datasets
- What to do in case of non independent evidence?
- Describe the nature of the interaction between sources (difficult, requires a lot of information)
- Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings.

Principle

- Two sources provide mass functions m_{1} and m_{2}, and the sources are both considered to be reliable.
- After receiving these m_{1} and m_{2}, the agent's state of belief should be represented by a mass function m_{12} more committed than m_{1}, and more committed than m_{2}.
- Let $\mathcal{S}_{x}(m)$ be the set of mass functions m^{\prime} such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, \cdots\}$. We thus impose that

$$
m_{12} \in \mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)
$$

- According to the LCP, we should select the x-least committed element in $\mathcal{S}_{\chi}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists.

Cautious rule

Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m_{1} and m_{2} are consonant, then the q-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12}=\min \left(Q_{1}, Q_{2}\right)$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in\{p l, q, s\}$.
- We need to define a new ordering relation.

Simple mass functions

- Definition: m is simple mass function if it has the following form

$$
\begin{aligned}
m(A) & =1-\delta(A) \\
m(\Omega) & =\delta(A)
\end{aligned}
$$

for some $A \subset \Omega, A \neq \emptyset$ and $\delta(A) \in(0,1]$.

- The quantity $w(A)=-\ln \delta(A) \geq 0$ is called the weight of evidence for A. Mass function m is denoted by $A^{w(A)}$.
- Property:

$$
A^{w_{1}(A)} \oplus A^{w_{2}(A)}=A^{w_{1}(A)+w_{2}(A)} .
$$

- Remark: In earlier work, following Smets' terminology, I used the term "weight" for $\delta(\boldsymbol{A})$. I now think it is better to reserve the term "weight" for additive quantities. In recent work, Faux and Dubois use the term "diffidence" for $\delta(\boldsymbol{A})$.

Separable mass functions

Definition (Separable mass function)
A (normalized) mass function is separable if it can be written as the \oplus combination of simple mass functions:

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

with $w(A) \geq 0$ for all $A \subset \Omega, A \neq \emptyset$.

The w-ordering

Definition

Let m_{1} and m_{2} be two mass functions. We say that m_{1} is w-more committed than m_{2} (denoted by $m_{1} \sqsubseteq_{w} m_{2}$) if

$$
m_{1}=m_{2} \oplus m
$$

for some separable mass function m.
How to check this condition?

Weight function

- If m is separable, the corresponding weights of evidence can be obtained as

$$
\begin{equation*}
w(A)=\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln Q(B) \tag{1}
\end{equation*}
$$

for all $A \subseteq \Omega$.

- For any non dogmatic mass function m, (i.e., such that $m(\Omega)>0$), we can still define "weights" from (1), but we can have $w(A)<0$.
- Function w is called the weight function.
- m can also be recovered from w by

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

although $A^{w(A)}$ is not a proper mass function when $w(A)<0$.

Properties of the weight function

- m is separable iff

$$
w(A) \geq 0, \quad \forall A \subset \Omega, A \neq \emptyset .
$$

- Dempster's rule can be computed using the w-function by

$$
m_{1} \oplus m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w_{1}(A)+w_{2}(A)}
$$

- Characterization of the w-ordering

$$
m_{1} \sqsubseteq_{w} m_{2} \Leftrightarrow w_{1}(A) \geq w_{2}(A), \quad \forall A \subset \Omega, A \neq \emptyset .
$$

Cautious rule

Definition

Let m_{1} and m_{2} be two non dogmatic mass functions with weight functions w_{1} and w_{2}.

Proposition

The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by:

$$
m_{1} \wedge m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{\max \left(w_{1}(A), w_{2}(A)\right)}
$$

Operator \otimes is called the (normalized) cautious rule.

Computation

Cautious rule computation

m-space		w-space
m_{1}	\longrightarrow	w_{1}
m_{2}	\longrightarrow	w_{2}
$m_{1} \wedge m_{2}$	\longleftrightarrow	$\max \left(w_{1}, w_{2}\right)$

Remark: we often have simple mass functions in the first place, so that the w function is readily available.

Properties of the cautious rule

- Commutative, associative
- Idempotent: $\forall m, m ® m=m$
- Distributivity of \oplus with respect to \otimes

$$
\left(m_{1} \oplus m_{2}\right) \bowtie\left(m_{1} \oplus m_{3}\right)=m_{1} \oplus\left(m_{2} \bowtie m_{3}\right), \forall m_{1}, m_{2}, m_{3}
$$

The common item of evidence m_{1} is not counted twice!

- No neutral element, but $m_{?} ® m=m$ iff m is separable

Basic rules

Sources	independent	dependent
All reliable	\oplus	\oplus
At least one reliable	\oplus	\oplus

(v) is the bold disjunctive rule

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Refinement and coarsening

Example

- Let us come back to the road scene analysis example, with $\Omega=\{G, R, T, O, S\}$.
- Assume that we have a vegetation detector, which can determine if a region of the image contains vegetation or not. For this detector, the frame of discernment is $\Theta=\{V, \neg V\}$, where V means that there is vegetation, and $\neg V$ means that there is no vegetation.
- We have the correspondence

$$
\begin{aligned}
V & \rightarrow\{G, T\} \\
\neg V & \rightarrow\{R, O, S\}
\end{aligned}
$$

- The elements of Ω can be obtained by splitting some or all of the elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening of Ω

Refinement and coarsening

General definition

Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping $\rho: 2^{\Theta} \rightarrow 2^{\Omega}$ (called a refining) such that:

- $\{\rho(\{\theta\}), \theta \in \Theta\} \subseteq 2^{\Omega}$ is a partition of Ω, and
- For all $A \subseteq \Omega, \rho(A)=\bigcup_{\theta \in A} \rho(\{\theta\})$.

Vacuous extension

- In the road scene example, assume that the vegetation detector provides the following mass function on Θ :

$$
m^{\ominus}(\{V\})=0.6, \quad m^{\Theta}(\{\neg V\})=0.3, \quad m^{\Theta}(\Theta)=0.1
$$

- How to express m^{\ominus} in Ω ?
- Solution: for all $A \subseteq \Theta$, we transfer the mass $m^{\Theta}(A)$ to $\rho(A)$. Here,

$$
\begin{aligned}
m^{\ominus}(\{V\})=0.6 & \rightarrow \rho(\{V\})=\{G, T\} \\
m^{\ominus}(\{\neg V\})=0.3 & \rightarrow \rho(\{\neg V\})=\{R, O, S\} \\
m^{\ominus}(\Theta)=0.1 & \rightarrow \rho(\Theta)=\Omega
\end{aligned}
$$

- We finally the following mass function on Ω,

$$
m^{\Theta \uparrow \Omega}(\{G, T\})=0.6, \quad m^{\Theta \uparrow \Omega}(\{R, O, S\})=0.3, \quad m^{\Theta \uparrow \Omega}(\Omega)=0.1
$$

- $m^{\ominus \uparrow \Omega}$ is called the vacuous extension of m^{\ominus} in Ω.

Expression of information in a coarser frame

- Let us now assume that we have the following mass function on Ω,

$$
m^{\Omega}(\{T\})=0.4, \quad m^{\Omega}(\{T, O\})=0.3, \quad m^{\Omega}(\{R, S\})=0.3
$$

- How to express m^{Ω} in Θ ?
- We cannot do it without loss of information, because, for instance, there is no $A \subseteq \Theta$ such that $\rho(\boldsymbol{A})=\{\boldsymbol{T}\}$: the mapping ρ does not have an inverse.

Inner and outer reductions

- We can approximate any subset B of Ω by two subsets in Θ :
- The inner reduction of B :

$$
\underline{\rho}^{-1}(B)=\{\theta \in \Theta \mid \rho(\{\theta\}) \subseteq B\}
$$

- The outer reduction of B :

$$
\bar{\rho}^{-1}(B)=\{\theta \in \Theta \mid \rho(\{\theta\}) \cap B \neq \emptyset\} .
$$

- In the example:

$$
\begin{gathered}
\underline{\rho}^{-1}(\{T\})=\underline{\rho}^{-1}(\{T, O\})=\underline{\rho}^{-1}(\{R, S\})=\emptyset \\
\bar{\rho}^{-1}(\{T\})=\{V\}, \quad \bar{\rho}^{-1}(\{T, O\})=\{V, \neg V\}, \quad \bar{\rho}^{-1}(\{R, S\})=\{\neg V\}
\end{gathered}
$$

Restriction

Definition

The restriction of m^{Ω} in Θ is obtained by transferring each mass $m^{\Omega}(B)$ to the outer reduction of B : for all subset A of Θ,

$$
m^{\Omega \downarrow \theta}(A)=\sum_{\bar{\rho}^{-1}(B)=A} m^{\Omega}(B) .
$$

- In the example, we thus have

$$
m^{\Omega \downarrow \Theta}(\{V\})=0.4, \quad m^{\Omega \downarrow \Theta}(\Theta)=0.3, \quad m^{\Omega \downarrow \Theta}(\{\neg V\})=0.3 .
$$

- Remark: the vacuous extension of $m^{\Omega \downarrow \theta}$ is

$$
\begin{gathered}
m^{(\Omega \downarrow \theta) \uparrow \Omega}(\{G, T\})=0.4, \quad m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\Omega)=0.3, \\
m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\{R, S, O\})=0.3 .
\end{gathered}
$$

It is less precise that m^{Ω} : we have lost information when expressing m^{Ω} in a coarser frame.

Compatible frames of discernment

Definition

Two frames are compatible if they have a common refinement.
Example:

Combination of mass functions on compatible frames

- Let $m^{\Theta_{1}}$ and $m^{\Theta_{2}}$ be two mass functions defined on compatible frames Θ_{1} and Θ_{2} with common refinement Ω.
- The orthogonal sum of $m^{\Theta_{1}}$ and $m^{\Theta_{2}}$ in Ω is

$$
m^{\Theta_{1}} \oplus m^{\Theta_{2}}=m^{\Theta_{1} \uparrow \Omega} \oplus m^{\Theta_{2} \uparrow \Omega}
$$

- Example: assume that $m^{\Theta_{1}}(\{V\})=0.3, m^{\Theta_{1}}(\{\neg V\})=0.5$, $m^{\Theta_{1}}(\{V, \neg V\})=0.2$, and $m^{\Theta_{2}}(\{G r\})=0.4, m^{\Theta_{2}}(\{\neg G r\})=0.5$, $m^{\Theta_{2}}(\{G r, \neg G r\})=0.1$. Compute $m^{\Theta_{1}} \oplus m^{\Theta_{2}}$.

Case of product frames

Cylindrical extension

- Let us now assume that we have two frames Ω_{X} and Ω_{Y} related to two different questions about, e.g., the values of two unknown variables X and Y.
- Let $\Omega_{X Y}=\Omega_{X} \times \Omega_{Y}$ be the product space. It is a refinement of both Ω_{X} and Ω_{Y}.

- We can define the following refining ρ from $2^{\Omega_{X}}$ to $2^{\Omega_{X Y}}$:

$$
\rho(A)=A \times \Omega_{Y},
$$

for all $A \subseteq \Omega_{X}$. The set $\rho(A)$ is called the cylindrical extension of A in $\Omega_{X Y}$ and is denoted by $A \uparrow \Omega_{X Y}$.

Case of product frames

Projection

- Conversely, let R be a subset of $\Omega_{X Y}$.
- Its outer reduction is

$$
\begin{aligned}
\bar{\rho}^{-1}(R) & =\left\{x \in \Omega_{x} \mid \rho(\{x\}) \cap R \neq \emptyset\right\} \\
& =\left\{x \in \Omega_{X} \mid \exists y \in \Omega_{Y},(x, y) \in R\right\}
\end{aligned}
$$

- This set is denoted by $R \downarrow \Omega_{X}$ and is called the projection of R on Ω_{X}

Case of product frames

- The vacuous extension of a mass function m^{X} from Ω_{X} to $\Omega_{X Y}$ is obtained by transferring each mass $m^{X}(B)$ for any subset B of Ω_{X} to the cylindrical extension of B :

$$
m^{X \uparrow X Y}(A)= \begin{cases}m^{X}(B) & \text { if } A=B \times \Omega_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

- Conversely, the restriction of a joint mass function $m^{X Y}$ on $\Omega_{X Y}$ is

$$
m^{X Y \downarrow X}(A)=\sum_{B \downarrow \Omega_{X}=A} m^{X Y}(B),
$$

for all $A \subseteq \Omega_{X}$. The mass functions $m^{X Y \downarrow X}$ and $m^{X Y \downarrow Y}$ are called the marginals of $m^{X Y}$ and the operation that computes the marginals from a joint mass function is called marginalization. This operation extends both set projection and probabilistic marginalization.

Application to approximate reasoning

- Assume that we have:
- Partial knowledge of X formalized as a mass function m^{X}
- A joint mass function $m^{X Y}$ representing an uncertain relation between X and Y
- What can we say about Y ?
- Solution:

$$
m^{Y}=\left(m^{X \uparrow X Y} \oplus m^{X Y}\right)^{\downarrow Y}
$$

- Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

Example

- A machine fails if any one of two components fails.
- Let Z, X and Y be the binary variables describing the states of the two components, and the machine.
- We have the following prior knowledge
 about the states of the components:

$$
\begin{gathered}
m^{X}(\{1\})=0.1, m^{X}(\{0\})=0.3, \\
m^{X}(\{0,1\})=0.6 \\
m^{Y}(\{0,1\})=1
\end{gathered}
$$

- We observe that the machine fails. What are our beliefs about the states of the two components?

Solution

- Pieces of evidence:

$$
\begin{gathered}
m_{0}^{X Y Z}(\{(1,1,1),(1,0,1),(0,1,1),(0,0,0)\})=1 \\
m^{X \uparrow X Y Z}\left(\{1\} \times \Omega_{Y Z}\right)=0.1, m^{X \uparrow X Y Z}\left(\{0\} \times \Omega_{Y Z}\right)=0.3, m^{X \uparrow X Y Z}\left(\Omega_{X Y Z}\right)=0.6 \\
m^{Y \uparrow X Y Z}\left(\Omega_{X Y Z}\right)=1, \quad m^{Z \uparrow X Y Z}\left(\Omega_{X Y} \times\{1\}\right)=1
\end{gathered}
$$

- Let $m_{1}^{X Y Z}=m_{0}^{X Y Z} \oplus m^{X \uparrow X Y Z} \oplus m^{Z \uparrow X Y Z}$. We have

$$
\begin{gathered}
m_{1}^{X Y Z}(\{(1,1,1),(1,0,1)\})=0.1, m_{1}^{X Y Z}(\{(0,1,1)\})=0.3, \\
m_{1}^{X Y Z}(\{(1,1,1),(1,0,1),(0,1,1)\})=0.6
\end{gathered}
$$

- Marginalizing on X and Y, we get

$$
\begin{gathered}
m_{1}^{X Y Z \downarrow X}(\{1\})=0.1, m_{1}^{X Y Z \downarrow X}(\{0\})=0.3, m_{1}^{X Y Z \downarrow X}(\{0,1\})=0.6 \\
m_{1}^{X Y Z \downarrow Y}(\{1\})=0.3, m_{1}^{X Y Z \downarrow Y}(\{0,1\})=0.7
\end{gathered}
$$

References

```
cf. http://www.hds.utc.fr/~tdenoeux
```G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.Ph. Smets and R. Kennes.
The Transferable Belief Model.
Artificial Intelligence, 66:191-243, 1994.D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.
International Journal of General Systems, 12(3):193-226, 1986.

目
T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.
Artificial Intelligence, Vol. 172, pages 234-264, 2008.```

