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Building belief functions

The basic theory tells us how to reason and compute with belief
functions, but it does not tell us where belief functions come from.
To use DS theory in real applications, we need methods for modeling
evidence from

Expert opinions or
Statistical information

Two main strategies, often combined in applications:
1 Decomposition: Start with elementary (often, simple) mass functions and

transform/combine them using extension, marginalization and Dempster’s
rule (original DS approach).

2 Global approach: Find the least (or the most) committed belief function
compatible with given constraints.

In this lecture, we will see several applications of these strategies.
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Least Commitment Principle

Least Commitment Principle

Definition (Least Commitment Principle (LCP))

When several belief functions are compatible with a set of constraints, the
least informative according to some informational ordering (if it exists) should
be selected.

General approach
1 Express partial information (provided, e.g., by an expert or statistical data)

as a set of constraints on an unknown mass function
2 Find the least-committed mass function (according to some informational

ordering), compatible with the constraints

Examples of partial information
1 Contour function
2 Conditional mass function
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Least Commitment Principle LC mass function with given contour function

Problem statement

Assume an expert gives us the plausibility π(ω) of each ω ∈ Ω.
We get a function π : Ω→ [0,1]. We assume that

max
ω∈Ω

π(ω) = 1.

LetM(π) be the set of mass functions m such that pl = π.
What is the least committed mass function inM(π)?
A solution exists according to the q-ordering.
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Least Commitment Principle LC mass function with given contour function

Solution

Let m ∈M(π) and Q its commonality function. We have

Q({ω}) = pl(ω) = π(ω), ∀ω ∈ Ω

and
Q(A) ≤ min

ω∈A
Q({ω}) = min

ω∈A
π(ω), ∀A ⊆ Ω,A 6= ∅,

Let Q∗ be defined as Q∗(∅) = 1 and

Q∗(A) = min
ω∈A

π(ω), ∀A ⊆ Ω,A 6= ∅.

Proposition

Q∗ is the commonality function of a consonant mass function m∗, which is the
q-least committed element inM(π).
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Least Commitment Principle LC mass function with given contour function

Calculation of the mass function

ω(1)	 ω(2)	 ω(3)	 ω(4)	

π(1)	

π(2)	

π(3)	

π(4)	

m*(A(1))	

m*(A(2))	

m*(A(3))	

m*(A(4))	

A(1)	
A(2)	
A(3)	
A(4)	
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Least Commitment Principle LC mass function with given contour function

Example

Consider, for instance, the following contour distribution defined on the
frame Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Least Commitment Principle Conditional embedding

Deconditioning

Ω
B

A
C

Let m0 be a mass function on Ω
expressing our beliefs about X in a
context where we know that X ∈ B.
We want to build a mass function m
verifying the constraint m(· | B) = m0.
Any m built from m0 by transferring each
mass m0(A) to A ∪ C for some C ⊆ B
satisfies the constraint.

Proposition

The s-least committed solution is obtained by transferring each mass m0(A) to
the largest such set, which is A ∪ B:

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B
0 otherwise.
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Least Commitment Principle Conditional embedding

Conditional embedding

More complex situation: two frames ΩX and ΩY .
Let mX

0 be a mass function on ΩX expressing our beliefs about X in a
context where we know that Y ∈ B for some B ⊆ ΩY .

We want to find mXY such that
(

mXY ⊕mY
[B]

)↓X
= mX

0 .

s-least committed solution: transfer mX
0 (A) to (A× ΩY ) ∪ (ΩX × B).

Notation mXY = (mX
0 )⇑XY (conditional embedding).
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Least Commitment Principle Conditional embedding

Discounting
Problem statement

A source of information provides:
a value
a set of values
a probability distribution, etc.

The information is:
not fully reliable or
not fully relevant.

Examples:
Possibly faulty sensor
Measurement performed in unfavorable experimental conditions
Information is related to a situation or an object that only has some similarity
with the situation or the object considered (case-based reasoning).
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Least Commitment Principle Conditional embedding

Discounting
Formalization

A source S provides a mass function mΩ
S .

S may be reliable or not. Let R = {R,NR}.
Assumptions:

If S is reliable, we accept mΩ
S as a representation of our beliefs:

mΩ(· | R) = mΩ
S

If S is not reliable, we know nothing:

mΩ(· | NR) = mΩ
?

The source has a probability α of not being reliable:

mR({NR}) = α, mR({R}) = 1− α

(α is called the discount rate).
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Least Commitment Principle Conditional embedding

Discounting
Solution

Solution:

αmΩ =
(
mR ⊕mΩ(· | R)⇑Ω×R)↓Ω = (1− α)mΩ

S + αmΩ
Ω.

αmΩ can also be written as

αmΩ = mΩ
S ∪©mΩ

0 ,

with mΩ
0 (Ω) = α and mΩ

0 (∅) = 1− α.
Contour function:

αpl(ω) = (1− α)pl(ω) + α, ∀ω ∈ Ω.

αmΩ is a s-less committed than (a generalization of) mΩ
S :

αmΩ ws mΩ
S .
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Least Commitment Principle Conditional embedding

Generalization: Contextual Discounting
Formalization

A more general model allowing us to take into account richer
meta-information about the source.
Let Θ = {θ1, . . . , θL} be a partition of Ω, representing different contexts.
Let mR(· | θk ) denote the mass function on R quantifying our belief in the
reliability of source S, when we know that the actual value of X is in θk .
We assume that:

mR({R} | θk ) = 1− αk , mR({NR} | θk ) = αk .

for each k ∈ {1, . . . ,L}.
Let α = (α1, . . . , αL).
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Least Commitment Principle Conditional embedding

Contextual Discounting
Example

Let us consider a simplified aerial target recognition problem, in which we
have three classes: airplane (ω1 ≡ a), helicopter (ω2 ≡ h) and rocket
(ω3 ≡ r ).
Let Ω = {a,h, r}.
The sensor provides the following mass function: mΩ

S({a}) = 0.5,
mΩ
S({r}) = 0.5.

We assume that
The probability that the source is reliable when the target is an airplane is
equal to 1− α1 = 0.4
The probability that the source is reliable when the target is either a
helicopter, or a rocket is equal to 1− α2 = 0.9.

We have Θ = {θ1, θ2}, with θ1 = {a}, θ2 = {h, r}, and α = (0.6,0.1).
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Least Commitment Principle Conditional embedding

Contextual Discounting
Solution

Solution:

αmΩ =

(
L⊕

k=1

mR(· | θk )⇑Ω×R ⊕mΩ(· | R)⇑Ω×R

)↓Ω
.

Result:
αmΩ = mΩ

S ∪©mΩ
1 ∪© . . . ∪©mΩ

L

with mΩ
k (θk ) = αk and mΩ

k (∅) = 1− αk .
Standard discounting is recovered as a special case when Θ = {Ω}.
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Least Commitment Principle Conditional embedding

Contextual Discounting
Example (continued)

The discounted mass function can be obtained by combining disjunctively
3 mass functions:

mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5
mΩ

1 ({a}) = 0.6, mΩ
1 (∅) = 0.4

mΩ
1 ({h, r}) = 0.1, mΩ

1 (∅) = 0.9.

Result:
A {h} {a} {r} {h,a} {h, r} {a, r} Ω

mΩ
S (A) 0 0.5 0.5 0 0 0 0

αmΩ(A) 0 0.45 0.18 0 0.02 0.27 0.08
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Least Commitment Principle Uncertainty measures
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Least Commitment Principle Uncertainty measures

Motivation

In some cases, the least committed mass function compatible with some
constraints does not exist, or cannot be found, for any informational
ordering.
An alternative approach is then to maximize a measure of uncertainty,
i.e., find the most uncertain mass function satisfying some constraints.
Many uncertainty measures have been proposed, some of which
generalize the Shannon entropy. They can be classified in three
categories:

1 Measures of imprecision
2 Measures of conflict
3 Measures of total uncertainty
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Least Commitment Principle Uncertainty measures

Measures of imprecision

Idea: imprecision is higher when masses are assigned to larger focal
sets:

I(m) =
∑
∅6=A⊆Ω

m(A)f (|A|)

with f = Id (expected cardinality), f (x) = −1/x (opposite of Yager’s
specificity), f = log2.(nonspecificy)
Nonspecificity N(m) generalizes the Hartley function for set
(H(A) = log2(|A|)) and was shown by Ramer (1987) to be the unique
measure verifying some axiomatic requirements such as

Additivity for non-interactive mass functions: N(mXY ) = N(mX ) + N(mY )
Subadditivity for interactive mass functions: N(mXY ) ≤ N(mX ) + N(mY )
...

Nonspecificity is equal to 0 for Bayesian mass function: we need to
measure another dimension of uncertainty.
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Least Commitment Principle Uncertainty measures

Measures of conflict

Idea: should be higher when masses are assigned to disjoint (or non
nested) focal sets.
Example: dissonance (Yager, 1983) is defined as

E(m) = −
∑
A⊆Ω

m(A) log2 Pl(A) = −
∑
A⊆Ω

m(A) log2 (1− K (A))

where K (A) =
∑

B∩A=∅m(B) can be interpreted as measuring the degree
to which the evidence conflicts with focal set A.
Replacing K (A) by

CON(A) =
∑
∅6=B⊆Ω

m(B)
|A \ B|
|A|

,

we get another conflict measure, called strife (Klir and Yuan, 1993).
Both dissonance and strife generalize the Shannon entropy.
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Least Commitment Principle Uncertainty measures

Measures of total uncertainty (1/2)

Measure the degree of uncertainty of a belief function, taking into
account the two dimensions of imprecision and conflict.
Composite measures, e.g.,

N(m) + S(m)
Total uncertainty (Pal et al., 1993)

H(m) = −
∑
∅6=A⊆Ω

m(A) log2
|A|

m(A)
= N(m)−

∑
∅6=A⊆Ω

m(A) log2 m(A)

Agregate uncertainty

AU(m) = max
p∈P(m)

(
−
∑
ω∈Ω

p(ω) log2 p(ω)

)

where P(m) is the credal set of m.
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Least Commitment Principle Uncertainty measures

Measures of total uncertainty (2/2)

Other idea: transform m into a probability distribution and compute the
corresponding Shannon entropy. Examples:

1 Jousselme et al. (2006):

EP(m) = −
∑
ω∈Ω

betpm(ω) log2 betpm(ω)

where betpm the pignistic probability distribution is defined by

betpm(ω) =
∑

A⊆Ω:ω∈A

m(A)

|A|

2 Jirousek and Shenoy (2017)

Hjs(m) = −
∑
ω∈Ω

pl∗(ω) log2 pl∗(ω) + N(m)

where pl∗(ω) = pl(ω)/
∑

ω′∈Ω pl(ω′) is the normalized plausibility.

Both measures extend the Hartley measure and the Shannon entropy.
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Least Commitment Principle Uncertainty measures

Application of uncertainty measures

Assume we are given (e.g., by an expert) some constraints that an
unknown mass function m should satisfy, e.g., Pl(Ai ) = αi , Bel(Ai ) ≥ βj ,
etc.
A minimally committed mass function can be found by maximizing some
uncertainty measure U(m), under the given constraints.
With U(m) = N(m) and linear constraints of the form Bel(Ai ) ≥ βj ,
Bel(Ai ) ≤ βj or Bel(Ai ) = βj , we have a linear optimization problem, but
the solution is generally not unique.
With other measures and arbitrary constraints, we generally have to solve
a non linear optimization problem.
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Least Commitment Principle Uncertainty measures

Combination under unknown dependence (1/2)

Consider two random sets (S1,P1, Γ1) and (S2,P2, Γ2) generating two
mass functions m1 and m2.
Let P12 on S1 × S2 be a joint probability measure with marginals P1 and
P2.
Let A1, . . . ,Ar denote the focal sets of m1, B1, . . . ,Bs the focal sets of m2,
pi = m1(Ai ), qj = m2(Bj ), and

pij = P12 ({(s1, s2) ∈ S1 × S2 | Γ1(s1) = Ai , Γ2(s2) = Bj}) .

Assuming both sources to be reliable, the unnormalized combined mass
function m has the following expression:

m(A) =
∑

Ai∩Bj =A

pij , ∀A ⊆ Ω.

Independence assumption of Dempster’s rule: ∀(i , j), pij = pipj .
How to find the pij ’s when the independence assumption is relaxed?
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Least Commitment Principle Uncertainty measures

Combination under unknown dependence (2/2)

Maximizing the Shannon entropy of the pij ’s yields Dempster’s rule.
A least specific combined mass function (without normalization) can be
found by solving the following linear optimization problem:

max
pij

∑
{(i,j)|Ai∩Bi 6=∅}

pij log2 |Ai ∩ Bj |

under the constraints
∑

i,j pij = 1 and∑
i

pij = pj , j = 1, . . . , s

∑
j

pij = pi , i = 1, . . . , r

The mass function obtained as as solution of the above problem can be
normalized.
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Combining elementary mass functions

Decomposition approach

In the original approach introduced by Dempster and Shafer, the available
evidence is broken down into elementary items, each modeled by a mass
function. The mass functions are then combined by Dempster’s rule.
Contrary to a common opinion, this approach can be applied even in
situations where the frame of discernment is very large, provided

The combined mass functions have a simple form
We do not need to compute the full combined belief function, but only some
partial information useful, e.g., for decision making.

Two examples in which elementary mass functions are defined based on
distances:

1 Clustering
2 Association
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Combining elementary mass functions Clustering
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Combining elementary mass functions Clustering

Clustering

Finding a meaningful partition of a
dataset.
Assuming there is a true unknown
partition, our frame of discernment
should be the set R of all partitions of
the set of n objects.
But this set is huge!
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Combining elementary mass functions Clustering

Number of partitions of n objects

0 50 100 150 200

1e
−

11
1e

+
49

1e
+

10
9

1e
+

22
9

Bell numbers

n

nu
m

be
r 

of
 p

ar
tit

io
ns

 o
f n

 o
bj

ec
ts

Number of atoms in the universe ≈ 1080

Can we implement evidential reasoning in such a large space?
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Combining elementary mass functions Clustering

Model

Evidence: n × n matrix D = (dij ) of dissimilarities between the n objects.
For any i < j , let Θij = {sij ,¬sij}, where sij means “objects i and j belong
to the same group” and ¬sij is the negation of sij .
Assumptions:

1 Two objects have all the more chance to belong to the same group, that they
are more similar. Each dissimilarity is a piece of evidence represented by
the following mass function on Θij ,

mij ({sij}) = ϕ(dij ),

mij (Θij ) = 1− ϕ(dij ),

where ϕ is a non-increasing mapping from [0,+∞) to [0, 1).
2 The mass functions mij encode independent pieces of evidence

(questionable, but acceptable as an approximation).

How to combine these n(n − 1)/2 mass functions to find the most
plausible partition of the n objects?

Thierry Denœux Methods for building belief functions BFTA 2019 35 / 74



Combining elementary mass functions Clustering

Vacuous extension

To be combined, the mass functions mij must be carried to the same
frame, which will be the set R of all partitions of the dataset

Θij	

sij	

not	sij	

R 

Rij	

Rij	

Let Rij denote the set of partitions
of the n objects such that objects
oi and oj are in the same group
(rij = 1).
Each mass function mij can be
vacuously extended to the R of all
partitions:

mij ({sij}) −→ Rij
mij (Θ) −→ R

Thierry Denœux Methods for building belief functions BFTA 2019 36 / 74



Combining elementary mass functions Clustering

Combination

The extended mass functions can then be combined by Dempster’s rule.
We will only combine the contour functions. The contour function of mij is

plij (R) =

{
mij (Rij ) + mij (R) if R ∈ Rij ,

mij (R) otherwise,

=

{
1 if rij = 1,
1− ϕ(dij ) otherwise,

= (1− ϕ(dij ))1−rij

Combined contour function:

pl(R) ∝
∏
i<j

(1− ϕ(dij ))1−rij

for any R ∈ R.
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Combining elementary mass functions Clustering

Decision

The logarithm of the contour function can be written as

ln pl(R) = −
∑
i<j

rij log(1− ϕ(dij )) + C

Finding the most plausible partition is thus a binary linear programming
problem. It can be solved exactly only for small n.
However, the problem can be solved approximately using a heuristic
greedy search procedure: the Ek -NNclus algorithm (Denoeux et al.,
2015).
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Combining elementary mass functions Object association
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Combining elementary mass functions Object association

Problem description

Let E = {e1, . . . ,en} and F = {f1, . . . , fp} be two sets of objects perceived
by two sensors, or by one sensor at two different times.
Problem: given information about each object (position, velocity, class,
etc.), find a matching between the two sets, in such a way that each
object in one set is matched with at most one object in the other set.
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Combining elementary mass functions Object association

Method of approach

1 For each pair of objects (ei , fj ) ∈ E × F , use sensor information to build a
pairwise mass function mij on the frame Θij = {sij ,¬sij}, where

sij denotes the hypothesis that ei and fj are the same objects, and
¬sij is the negation of sij .

2 Vacuously extend the np mass functions mij in the frame R containing all
admissible matching relations.

3 Combine the np extended mass functions m↑Rij and find the matching
relation with the highest plausibility.
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Combining elementary mass functions Object association

Building the pairwise mass functions
Using position information

Assume that each sensor provides an estimated position for each object.
Let dij denote the distance between the estimated positions of ei and fj ,
computed using some distance measure.
A small value of dij supports hypothesis sij , while a large value of dij
supports hypothesis ¬sij . Depending on sensor reliability, a fraction of the
unit mass should also be assigned to Θij = {sij ,¬sij}.

This line of reasoning justifies a mass function m(p)
ij of the form:

m(p)
ij ({sij}) = αϕ(dij )

m(p)
ij ({¬sij}) = α (1− ϕ(dij ))

m(p)
ij (Θij ) = 1− α,

where α ∈ [0,1] is a degree of confidence in the sensor information and ϕ
is a decreasing function taking values in [0,1].
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Combining elementary mass functions Object association

Building the pairwise mass functions
Using velocity information

Let us now assume that each sensor returns a velocity vector for each
object. Let d ′ij denote the distance between the velocities of objects ei
and fj .
Here, a large value of d ′ij supports the hypothesis ¬sij , whereas a small
value of d ′ij does not support specifically sij or ¬sij , as two distinct objects
may have similar velocities.

Consequently, the following form of the mass function m(v)
ij induce by d ′ij

seems appropriate:

m(v)
ij ({¬sij}) = α′

(
1− ψ(d ′ij )

)
m(v)

ij (Θij ) = 1− α′
(
1− ψ(d ′ij )

)
,

where α′ ∈ [0,1] is a degree of confidence in the sensor information and
ψ is a decreasing function taking values in [0,1].
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Combining elementary mass functions Object association

Building the pairwise mass functions
Using class information

Let us assume that the objects belong to classes. Let Ω be the set of
possible classes, and let mi and mj denote mass functions representing
evidence about the class membership of objects ei and fj .
If ei and fj do not belong to the same class, they cannot be the same
object. However, if ei and fj do belong to the same class, they may or
may not be the same object.

Using this line of reasoning, we can show that the mass function m(c)
ij on

Θij derived from mi and mj has the following expression:

m(c)
ij ({¬sij}) = κij

m(c)
ij (Θij ) = 1− κij ,

where κij is the degree of conflict between mi and mj .
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Combining elementary mass functions Object association

Building the pairwise mass functions
Aggregation and vacuous extension

For each object pair (ei , fj ), a pairwise mass function mΘij representing all
the available evidence about Θij can finally be obtained as:

mij = m(p)
ij ⊕m(v)

ij ⊕m(c)
ij .

Let R be the set of all admissible matching relations, and let Rij ⊆ R be
the subset of relations R such that (ei , fj ) ∈ R.
Vacuously extending mij in R yields the following mass function:

m↑Rij (Rij ) = mij ({sij}) = αij

m↑Rij (Rij ) = mij ({¬sij}) = βij

m↑Rij (R) = mij (Θij ) = 1− αij − βij .
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Combining elementary mass functions Object association

Combining pairwise mass functions

Let plij denote the contour function corresponding to m↑Rij . For all R ∈ R,

plij (R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,

= (1− βij )
rij (1− αij )

1−rij

Consequently, the contour function corresponding to the combined mass
function

mR =
⊕

i,j

m↑Rij

is
pl(R) ∝

∏
i,j

(1− βij )
rij (1− αij )

1−rij .
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Combining elementary mass functions Object association

Finding the most plausible matching

We have

ln pl(R) =
∑
i,j

[rij ln(1− βij ) + (1− rij ) ln(1− αij )] + C.

The most plausible relation R∗ can thus be found by solving the following
binary linear optimization problem:

max
n∑

i=1

p∑
j=1

rij ln
1− βij

1− αij

subject to
∑p

j=1 rij ≤ 1, ∀i and
∑n

i=1 rij ≤ 1, ∀j .
This problem can be shown to be equivalent to a linear assignment
problem and can be solved in o(max(n,m)3) time.
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Predictive belief functions

Outline

1 Least Commitment Principle
LC mass function with given contour function
Conditional embedding
Uncertainty measures

2 Combining elementary mass functions
Clustering
Object association

3 Predictive belief functions
Continuous belief functions
Application to prediction
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Predictive belief functions

Prediction vs. estimation

Consider an urn with an unknown proportion θ of black balls
Assume that we have drawn n balls with replacement from the urn, x of
which were black
Two categories of problems:

Estimation: What can we say about θ?
Prediction: What can we say about the color Y of the next ball to be

drawn from the urn?
Both kinds of problems have been addressed in the DS framework,
starting from Dempster’s original work.
Problem addressed in this lecture:

How to quantify uncertainty in statistical prediction problems?

We need to construct and manipulate continuous belief functions.
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Predictive belief functions Continuous belief functions

Outline

1 Least Commitment Principle
LC mass function with given contour function
Conditional embedding
Uncertainty measures

2 Combining elementary mass functions
Clustering
Object association

3 Predictive belief functions
Continuous belief functions
Application to prediction
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Predictive belief functions Continuous belief functions

Belief function: general definition

Definition (Belief function)

Let Ω be a set and B be an algebra of subsets of Ω (a nonempty family of
subsets of Ω, closed under complementation and finite intersection).
A mapping Bel : B → [0,1] is a belief function (BF) iff Bel(∅) = 0,
Bel(Ω) = 1 and Bel is completely monotone: for any k ≥ 2 and any
collection B1, . . . ,Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)

Definition (Plausibility function)

Given a belief function Bel : B → [0,1], the function Pl : B → [0,1] such that
Pl(B) = 1− Bel(B) is called its dual plausibility function.
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Predictive belief functions Continuous belief functions

Belief function induced by a random set

s Γ(s)

Γ
(S,A,P) (Ω,B)

Consider a random set defined by a probability space (S,A,P), a set Ω
equipped with an algebra B and a multi-valued mapping Γ from S to 2Ω \ ∅.

Proposition

Under measurability conditions, the lower probability measure defined by

P∗(B) = P({s ∈ S | Γ(s) ⊆ B}), ∀B ∈ B

is a belief function, and the upper probability measure

P∗(B) = P({s ∈ S | Γ(s) ∩ B 6= ∅}), ∀B ∈ B

is the corresponding dual plausibility function.
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Predictive belief functions Continuous belief functions

Possibility measures

If, for any (s, s′) ∈ S2, Γ(s) ⊆ Γ(s′) or Γ(s′) ⊆ Γ(s), the BF Bel is said to
be consonant.
The plausibility distribution is then a possibility measure: it verifies

Pl(A ∪ B) = max (Pl(A),Pl(B)) , ∀(A,B) ∈ B2,

and
Pl(A) = sup

ω∈A
pl(ω),

where the mapping pl : ω → Pl({ω}) (called the contour function of Bel)
is the corresponding possibility distribution.
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Predictive belief functions Continuous belief functions

Monte Carlo approximation

Except in very simple cases, it is usually impossible to derive exact
expressions for

Bel(B) = P({s ∈ S | Γ(s) ⊆ B})
and

Pl(B) = P({s ∈ S | Γ(s) ∩ B 6= ∅})
for a given B ∈ B.
We can approximate these quantities by drawing N elements s1, . . . , sN of
S randomly from P. By the law of large numbers,

B̂el(B) =
1
N

N∑
i=1

I(Γ(si ) ⊆ B)
a.s.−→ Bel(B)

and

P̂l(B) =
1
N

N∑
i=1

I(Γ(si ) ∩ B 6= ∅) a.s.−→ Pl(B).

as N −→∞.
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Predictive belief functions Application to prediction

Outline

1 Least Commitment Principle
LC mass function with given contour function
Conditional embedding
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Predictive belief functions Application to prediction

Example of a prediction problem

As an example of a statistical prediction problem, consider an AR(1) model

Xt = ρXt−1 + εt , t = 1,2, . . . ,

where ρ ∈ (−1,1) is a parameter and εt ∼ N (0, σ2).

0 5 10 15 20 25 30

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

t

x(
t)

Problem: having observed x1:T = (x1, . . . , xT ), predict the next h future values
Y = (XT +1, . . . ,XT +h).
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Predictive belief functions Application to prediction

General approach

Approach: express Y as a function of the parameter θ = (ρ, σ) and a random
vector with known distribution.

For instance, assuming h = 2, we can write

XT +1 = ρxT + εT +1 = ρxT + σΦ−1(U1)

XT +2 = ρXT +1 + εT +2

= ρ2xT + ρσΦ−1(U1) + σΦ−1(U2)

with U1,U2 ∼ Unif(0,1), so we have

Y = (XT +1,XT +2) = ϕ(θ,U)

where U = (U1,U2) ∼ Unif([0,1]2).
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Predictive belief functions Application to prediction

Random vs. epistemic uncertainty

The “ϕ-equation”
Y = ϕ(θ,U)

allows us to separate the two sources of uncertainty on Y :
1 Uncertainty on U (random/aleatory uncertainty)
2 Uncertainty on θ (epistemic uncertainty)

Two-step method:
1 Represent uncertainty on θ using an estimative belief function Belθ

constructed from the observed data
2 Combine Belθ with the probability distribution of U to obtain a predictive

belief function BelY
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Predictive belief functions Application to prediction

Properties of the predictive BF

The properties of the predictive BF BelY depends on the BF Belθ:
If Belθ({θ0}) = 1, where θ0 is the true value of θ, then BelY is the true
probability distribution of Y given xT .

If Belθ({θ̂}) = 1, where θ̂ is the MLE of θ, then BelY is the plug-in
estimate of the true probability distribution of Y given xT .
If Belθ(A) = I(R1−α ⊆ A), where R1−α is a 1− α confidence region on θ,
then BelY has a frequentist property: it is dominated by the true
conditional distribution of Y given xT with probability 1− α.
If Belθ is the likelihood-based BF, then BelY generalizes the Bayesian
posterior probability distribution of Y .

Here, I focus on the last method as an illustration.
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Predictive belief functions Application to prediction

Likelihood-based belief function

Definition (Likelihood-based belief function)

The likelihood-based belief function is the consonant BF with contour function
(possibility distribution)

pl(θ) =
p(x1:T ;θ)

p(x1:T ; θ̂)
=

L(θ; x1:T )

L(θ̂; x1:T )
,

where L denotes the likelihood function and θ̂ the MLE of θ. It represents the
information provided by the data about θ.

We then have
Plθ(A) = sup

θ∈A
pl(θ) for all A ⊆ Θ.

Combining Belθ with a Bayesian prior on θ then yields the Bayesian
posterior.
Justified by axiomatic arguments (Denœux, 2014).
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Predictive belief functions Application to prediction

Example

ρ

σ
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Plθ(A) = 0.3

Belθ(A) = 1− Plθ(A) = 0

Plθ(B) = 1

Belθ(B) = 1− Plθ(B) = 0.3
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Predictive belief functions Application to prediction

Random set representation of Belθ

We can show that the likelihood-based BF Belθ on θ is induced by the
random set

Γ(V ) = {θ ∈ Θ | pl(θ) ≥ V}

with V ∼ Unif(0,1).

ρ

σ
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V	~	Unif(0,1)		
Γ(V)	

θ1	

θ2	

pl(θ)	

0	

1	

We have

Belθ(A) = P (Γ(V ) ⊆ A) and Plθ(A) = P (Γ(V ) ∩ A 6= ∅)
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Predictive belief functions Application to prediction

Predictive belief function
A predictive BF BelY on Y is obtained by propagating Belθ together with the
probability distribution of U through the ϕ-equation Y = ϕ(θ,U):
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Λ(U,V)=ϕ(Γ(V),U)	V	~	Unif(0,1)		

xT+1	

Γ(V)	

θ1	

θ2	

pl(θ)	

0	

1	

U2	

U	~	Unif([0,1]2)	

B	

0	

1	

1	

The mapping Λ : (U,V )→ ϕ(Γ(V ),U) defines the predictive BF BelY on Y .
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Predictive belief functions Application to prediction

Practical computation of BelY

The belief and plausibility degrees of events B ⊆ Rh, defined as

BelY (B) = P (ϕ(Γ(V ),U) ⊆ B) , and

PlY (B) = P (ϕ(Γ(V ),U) ∩ B 6= ∅)

can be approximated by combining Monte Carlo (MC) simulation and set
representation techniques:

We start by approximating the parameter space Θ by a finite set of points
Θ̃ = {θ1, . . . ,θM} ⊂ Θ.
For each v ∈ [0,1], the set Γ(v) is approximated by the finite set
Γ̃(v) = {θ ∈ Θ̃ | pl(θ) > v}.
The distributions of U and V are approximated by MC simulation
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Predictive belief functions Application to prediction

Point cloud representation
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Predictive belief functions Application to prediction

Point cloud propagation
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Predictive belief functions Application to prediction

Point cloud propagation algorithm

Require: Point cloud Θ̃ := {θ1, . . . ,θM} ⊂ Θ
Require: Desired number of focal sets N

for i = 1 to N do
Draw independently vi from Unif([0,1]) and ui from Unif([0,1]2)

Find Γ̃(vi ) := {θ ∈ Θ̃ | pl(θ) > vi}
Compute B̃i := ϕ(Γ̃(vi ),ui )

end for
B̂el(B) := 1

N

∑N
i=1 I(B̃i ⊆ B)

P̂l(B) := 1
N

∑N
i=1 I(B̃i ∩ B 6= ∅)
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Predictive belief functions Application to prediction

Example
Approximated focal sets (h = 3)
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2-D projections of focal sets B̃i = ϕ(Γ̃(vi ),ui ) for vi = 0.1 and three different
values of ui
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Predictive belief functions Application to prediction

Example
100 focal sets Λ̃(si ,ui ) (h = 3)
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Convex hulls of the two-dimensional projections of 100 focal sets
B̃i = ϕ(Γ̃(vi ),ui ) on the planes spanned by (Y1,Y2) (left) and (Y2,Y3) (right)
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Predictive belief functions Application to prediction

Example
Belief and plausibility of some events

Event Bel Pl True proba.
(XT +1 > XT +2 > XT +3) 0.26 0.38 0.31

(XT +1 < 0) & (XT +2 < 0) & (XT +3 < 0) 0.024 0.073 0.086
(XT +1 > 0) & (XT +2 > 0) & (XT +3 > 0) 0.51 0.75 0.50
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Predictive belief functions Application to prediction

Summary

Developing practical applications using the Dempster-Shafer framework
requires modeling expert knowledge and statistical information using
belief functions:
Systematic and principled methods now exist:

Least-commitment principle
GBT
Likelihood-based belief function
Predictive belief functions
etc.

Specific methods will be studied in following lectures (correction
mechanisms, classification, clustering, etc.).
More research on expert knowledge elicitation and statistical inference is
needed.
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