Methods for building belief functions

Thierry Denœux

Université de technologie de Compiègne, France Institut Universitaire de France https://www.hds.utc.fr/~tdenoeux

Fifth School on Belief Functions and their Applications Sienna, Italy, October 28, 2019

= 200

・ロト ・同ト ・ヨト ・ヨト

Building belief functions

- The basic theory tells us how to reason and compute with belief functions, but it does not tell us where belief functions come from.
- To use DS theory in real applications, we need methods for modeling evidence from
 - Expert opinions or
 - Statistical information
- Two main strategies, often combined in applications:
 - Decomposition: Start with elementary (often, simple) mass functions and transform/combine them using extension, marginalization and Dempster's rule (original DS approach).
 - Global approach: Find the least (or the most) committed belief function compatible with given constraints.
- In this lecture, we will see several applications of these strategies.

(日)

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

2 Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ㅋ . . ㅋ

Least Commitment Principle

Definition (Least Commitment Principle (LCP))

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

• General approach

- Express partial information (provided, e.g., by an expert or statistical data) as a set of constraints on an unknown mass function
- Find the least-committed mass function (according to some informational ordering), compatible with the constraints

• Examples of partial information

- Contour function
- Conditional mass function

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

▶ 4 臣

Problem statement

- Assume an expert gives us the plausibility $\pi(\omega)$ of each $\omega \in \Omega$.
- We get a function $\pi: \Omega \to [0, 1]$. We assume that

$$\max_{\omega\in\Omega}\pi(\omega)=\mathbf{1}.$$

- Let $\mathcal{M}(\pi)$ be the set of mass functions *m* such that $pl = \pi$.
- What is the least committed mass function in M(π)?
- A solution exists according to the *q*-ordering.

<ロ > < 同 > < 三 > < 三 > 三 三 < < 0 < < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Solution

• Let $m \in \mathcal{M}(\pi)$ and Q its commonality function. We have

$$Q(\{\omega\}) = pl(\omega) = \pi(\omega), \quad \forall \omega \in \Omega$$

and

$$Q(A) \leq \min_{\omega \in A} Q(\{\omega\}) = \min_{\omega \in A} \pi(\omega), \quad \forall A \subseteq \Omega, A \neq \emptyset,$$

• Let Q^* be defined as $Q^*(\emptyset) = 1$ and

$$Q^*(A) = \min_{\omega \in A} \pi(\omega), \quad \forall A \subseteq \Omega, A \neq \emptyset.$$

Proposition

 Q^* is the commonality function of a consonant mass function m^* , which is the *q*-least committed element in $\mathcal{M}(\pi)$.

Image: A matrix

ㅋㅋ ㅋㅋ

Calculation of the mass function

Example

Consider, for instance, the following contour distribution defined on the frame Ω = {a, b, c, d}:

ω	а	b	С	d
$pl(\omega)$	0.3	0.5	1	0.7

The corresponding mass function is

$$m(\{c\}) = 1 - 0.7 = 0.3$$
$$m(\{c, d\}) = 0.7 - 0.5 = 0.2$$
$$m(\{c, d, b\}) = 0.5 - 0.3 = 0.2$$
$$m(\{c, d, b, a\}) = 0.3.$$

= = ~ ~ ~ ~

イロト イヨト イヨト イヨト

Outline

Least Commitment Principle

LC mass function with given contour function

Conditional embedding

Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ㅋㅋㅋㅋ

San

Deconditioning

- Let m₀ be a mass function on Ω expressing our beliefs about X in a context where we know that X ∈ B.
- We want to build a mass function m verifying the constraint m(· | B) = m₀.
- Any *m* built from m_0 by transferring each mass $m_0(A)$ to $A \cup C$ for some $C \subseteq \overline{B}$ satisfies the constraint.

< A

Proposition

The *s*-least committed solution is obtained by transferring each mass $m_0(A)$ to the largest such set, which is $A \cup \overline{B}$:

$$m(D) = \begin{cases} m_0(A) & \text{if } D = A \cup \overline{B} \text{ for some } A \subseteq B \\ 0 & \text{otherwise.} \end{cases}$$

BFTA 2019 12 / 74

Conditional embedding

- More complex situation: two frames Ω_X and Ω_Y .
- Let m₀^X be a mass function on Ω_X expressing our beliefs about X in a context where we know that Y ∈ B for some B ⊆ Ω_Y.
- We want to find m^{XY} such that $\left(m^{XY} \oplus m_{[B]}^{Y}\right)^{\downarrow X} = m_{0}^{X}$.
- s-least committed solution: transfer $m_0^X(A)$ to $(A \times \Omega_Y) \cup (\Omega_X \times \overline{B})$.
- Notation $m^{XY} = (m_0^X)^{\uparrow XY}$ (conditional embedding).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discounting

Problem statement

- A source of information provides:
 - a value
 - a set of values
 - a probability distribution, etc.
- The information is:
 - not fully reliable or
 - not fully relevant.
- Examples:
 - Possibly faulty sensor
 - Measurement performed in unfavorable experimental conditions
 - Information is related to a situation or an object that only has some similarity with the situation or the object considered (case-based reasoning).

Sac

Discounting

Formalization

- A source S provides a mass function m_S^{Ω} .
- S may be reliable or not. Let $\mathcal{R} = \{R, NR\}$.
- Assumptions:
 - If S is reliable, we accept m_S^{Ω} as a representation of our beliefs:

 $m^{\Omega}(\cdot \mid R) = m^{\Omega}_{S}$

• If S is not reliable, we know nothing:

 $m^{\Omega}(\cdot \mid NR) = m^{\Omega}_{?}$

• The source has a probability α of not being reliable:

$$m^{\mathcal{R}}(\{NR\}) = \alpha, \quad m^{\mathcal{R}}(\{R\}) = 1 - \alpha$$

(α is called the discount rate).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Discounting

Solution

Solution:

$${}^{\alpha}m^{\Omega} = \left(m^{\mathcal{R}} \oplus m^{\Omega}(\cdot \mid R)^{\uparrow \Omega \times \mathcal{R}}\right)^{\downarrow \Omega} = (1 - \alpha)m^{\Omega}_{\mathcal{S}} + \alpha m^{\Omega}_{\Omega}.$$

• ${}^{\alpha}m^{\Omega}$ can also be written as

$$^{\alpha}m^{\Omega} = m^{\Omega}_{S} \odot m^{\Omega}_{0}$$

with
$$m_0^{\Omega}(\Omega) = \alpha$$
 and $m_0^{\Omega}(\emptyset) = 1 - \alpha$.

Contour function:

$$^{\alpha} pl(\omega) = (1 - \alpha)pl(\omega) + \alpha, \quad \forall \omega \in \Omega.$$

• ${}^{\alpha}m^{\Omega}$ is a s-less committed than (a generalization of) m_{S}^{Ω} :

$$^{\alpha}m^{\Omega} \sqsupseteq_{s} m_{S}^{\Omega}.$$

EL NOR

・ロト ・ 同ト ・ ヨト ・ ヨト

Generalization: Contextual Discounting

Formalization

- A more general model allowing us to take into account richer meta-information about the source.
- Let $\Theta = \{\theta_1, \dots, \theta_L\}$ be a partition of Ω , representing different contexts.
- Let m^R(· | θ_k) denote the mass function on R quantifying our belief in the reliability of source S, when we know that the actual value of X is in θ_k.
- We assume that:

$$m^{\mathcal{R}}(\{R\} \mid \theta_k) = 1 - \alpha_k, \quad m^{\mathcal{R}}(\{NR\} \mid \theta_k) = \alpha_k.$$

for each $k \in \{1, ..., L\}$.

• Let $\alpha = (\alpha_1, \ldots, \alpha_L)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ = ● ○ ○ ○

Conditional embedding

Contextual Discounting

- Let us consider a simplified aerial target recognition problem, in which we have three classes: airplane ($\omega_1 \equiv a$), helicopter ($\omega_2 \equiv h$) and rocket $(\omega_3 \equiv r).$
- Let $\Omega = \{a, h, r\}$.

Example

- The sensor provides the following mass function: $m_{S}^{\Omega}(\{a\}) = 0.5$, $m_{S}^{\Omega}(\{r\}) = 0.5.$
- We assume that
 - The probability that the source is reliable when the target is an airplane is equal to $1 - \alpha_1 = 0.4$
 - The probability that the source is reliable when the target is either a helicopter, or a rocket is equal to $1 - \alpha_2 = 0.9$.
- We have $\Theta = \{\theta_1, \theta_2\}$, with $\theta_1 = \{a\}, \theta_2 = \{h, r\}$, and $\alpha = (0.6, 0.1)$.

<□> <同> <同> < 回> < 回> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contextual Discounting

Solution

Solution:

$${}^{\boldsymbol{\alpha}}\boldsymbol{m}^{\boldsymbol{\Omega}} = \left(\bigoplus_{k=1}^{L} \boldsymbol{m}^{\mathcal{R}}(\cdot \mid \boldsymbol{\theta}_{k})^{\uparrow \boldsymbol{\Omega} \times \mathcal{R}} \oplus \boldsymbol{m}^{\boldsymbol{\Omega}}(\cdot \mid \boldsymbol{R})^{\uparrow \boldsymbol{\Omega} \times \mathcal{R}}\right)^{\downarrow \boldsymbol{\Omega}}.$$

Result:

$${}^{\alpha}m^{\Omega}=m^{\Omega}_{\mathcal{S}}\bigcirc m^{\Omega}_{1}\bigcirc\ldots \bigcirc m^{\Omega}_{L}$$

with $m_k^{\Omega}(\theta_k) = \alpha_k$ and $m_k^{\Omega}(\emptyset) = 1 - \alpha_k$.

• Standard discounting is recovered as a special case when $\Theta = \{\Omega\}$.

Contextual Discounting

Example (continued)

• The discounted mass function can be obtained by combining disjunctively 3 mass functions:

•
$$m_{S}^{\Omega}(\{a\}) = 0.5, \, m_{S}^{\Omega}(\{r\}) = 0.5$$

•
$$m_1^{\Omega}(\{a\}) = 0.6, \, m_1^{\Omega}(\emptyset) = 0.4$$

•
$$m_1^{\Omega}(\{h,r\}) = 0.1, \, m_1^{\Omega}(\emptyset) = 0.9.$$

Result:

Α	{ <i>h</i> }	{ a }	{ <i>r</i> }	{ <i>h</i> , <i>a</i> }	{ <i>h</i> , <i>r</i> }	{ a , r }	Ω
$m_S^{\Omega}(A)$	0	0.5	0.5	0	0	0	0
$^{\alpha}\tilde{m^{\Omega}}(A)$	0	0.45	0.18	0	0.02	0.27	0.08

Sac

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ㅋ ト イ ヨ

San

Motivation

- In some cases, the least committed mass function compatible with some constraints does not exist, or cannot be found, for any informational ordering.
- An alternative approach is then to maximize a measure of uncertainty, i.e., find the most uncertain mass function satisfying some constraints.
- Many uncertainty measures have been proposed, some of which generalize the Shannon entropy. They can be classified in three categories:
 - Measures of imprecision
 - Measures of conflict
 - Measures of total uncertainty

Measures of imprecision

Idea: imprecision is higher when masses are assigned to larger focal sets:

$$\mathcal{I}(m) = \sum_{\emptyset \neq A \subseteq \Omega} m(A) f(|A|)$$

with f = Id (expected cardinality), f(x) = -1/x (opposite of Yager's specificity), $f = \log_2$.(nonspecificy)

- Nonspecificity N(m) generalizes the Hartley function for set $(H(A) = \log_2(|A|))$ and was shown by Ramer (1987) to be the unique measure verifying some axiomatic requirements such as
 - Additivity for non-interactive mass functions: $N(m^{XY}) = N(m^X) + N(m^Y)$
 - Subadditivity for interactive mass functions: $N(m^{XY}) < N(m^X) + N(m^Y)$
 - ...
- Nonspecificity is equal to 0 for Bayesian mass function: we need to measure another dimension of uncertainty.

(日)

Measures of conflict

- Idea: should be higher when masses are assigned to disjoint (or non nested) focal sets.
- Example: dissonance (Yager, 1983) is defined as

$$E(m) = -\sum_{A \subseteq \Omega} m(A) \log_2 PI(A) = -\sum_{A \subseteq \Omega} m(A) \log_2 (1 - K(A))$$

where $K(A) = \sum_{B \cap A = \emptyset} m(B)$ can be interpreted as measuring the degree to which the evidence conflicts with focal set *A*.

• Replacing *K*(*A*) by

$$CON(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \setminus B|}{|A|},$$

we get another conflict measure, called strife (Klir and Yuan, 1993).

• Both dissonance and strife generalize the Shannon entropy.

(日)

Measures of total uncertainty (1/2)

- Measure the degree of uncertainty of a belief function, taking into account the two dimensions of imprecision and conflict.
- Composite measures, e.g.,
 - N(m) + S(m)
 - Total uncertainty (Pal et al., 1993)

$$H(m) = -\sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 \frac{|A|}{m(A)} = N(m) - \sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 m(A)$$

• Agregate uncertainty

$$AU(m) = \max_{p \in \mathcal{P}(m)} \left(-\sum_{\omega \in \Omega} p(\omega) \log_2 p(\omega) \right)$$

where $\mathcal{P}(m)$ is the credal set of *m*.

Measures of total uncertainty (2/2)

- Other idea: transform m into a probability distribution and compute the corresponding Shannon entropy. Examples:
 - Jousselme et al. (2006):

$$EP(m) = -\sum_{\omega \in \Omega} betp_m(\omega) \log_2 betp_m(\omega)$$

where $betp_m$ the pignistic probability distribution is defined by

$$betp_m(\omega) = \sum_{A \subseteq \Omega: \omega \in A} \frac{m(A)}{|A|}$$

Irousek and Shenoy (2017)

$$H_{js}(m) = -\sum_{\omega \in \Omega} p l^*(\omega) \log_2 p l^*(\omega) + N(m)$$

where $pl^*(\omega) = pl(\omega) / \sum_{\omega' \in \Omega} pl(\omega')$ is the normalized plausibility.

Both measures extend the Hartley measure and the Shannon entropy.

(日)

Application of uncertainty measures

- Assume we are given (e.g., by an expert) some constraints that an unknown mass function *m* should satisfy, e.g., *Pl*(*A_i*) = α_i, *Bel*(*A_i*) ≥ β_j, etc.
- A minimally committed mass function can be found by maximizing some uncertainty measure *U*(*m*), under the given constraints.
- With U(m) = N(m) and linear constraints of the form Bel(A_i) ≥ β_j, Bel(A_i) ≤ β_j or Bel(A_i) = β_j, we have a linear optimization problem, but the solution is generally not unique.
- With other measures and arbitrary constraints, we generally have to solve a non linear optimization problem.

(日)

Combination under unknown dependence (1/2)

- Consider two random sets (S₁, P₁, Γ₁) and (S₂, P₂, Γ₂) generating two mass functions m₁ and m₂.
- Let P_{12} on $S_1 \times S_2$ be a joint probability measure with marginals P_1 and P_2 .
- Let A_1, \ldots, A_r denote the focal sets of m_1, B_1, \ldots, B_s the focal sets of m_2 , $p_i = m_1(A_i), q_j = m_2(B_j)$, and

$$p_{ij} = P_{12}(\{(s_1, s_2) \in S_1 \times S_2 \mid \Gamma_1(s_1) = A_i, \Gamma_2(s_2) = B_j\}).$$

• Assuming both sources to be reliable, the unnormalized combined mass function *m* has the following expression:

$$m(A) = \sum_{A_i \cap B_j = A} p_{ij}, \quad \forall A \subseteq \Omega.$$

- Independence assumption of Dempster's rule: $\forall (i, j), p_{ij} = p_i p_j$.
- How to find the *p_{ij}*'s when the independence assumption is relaxed?

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖圖 のQ@

Combination under unknown dependence (2/2)

- Maximizing the Shannon entropy of the *p_{ij}*'s yields Dempster's rule.
- A least specific combined mass function (without normalization) can be found by solving the following linear optimization problem:

$$\max_{\rho_{ij}} \sum_{\{(i,j)|A_i \cap B_i \neq \emptyset\}} \rho_{ij} \log_2 |A_i \cap B_j|$$

under the constraints $\sum_{i,j} p_{ij} = 1$ and

$$\sum_{i} p_{ij} = p_j, \quad j = 1, \dots, s$$
$$\sum_{i} p_{ij} = p_i, \quad i = 1, \dots, r$$

• The mass function obtained as as solution of the above problem can be normalized.

BFTA 2019 29 / 74

(日)

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ヨトーモ

Decomposition approach

- In the original approach introduced by Dempster and Shafer, the available evidence is broken down into elementary items, each modeled by a mass function. The mass functions are then combined by Dempster's rule.
- Contrary to a common opinion, this approach can be applied even in situations where the frame of discernment is very large, provided
 - The combined mass functions have a simple form
 - We do not need to compute the full combined belief function, but only some partial information useful, e.g., for decision making.
- Two examples in which elementary mass functions are defined based on distances:
 - Clustering
 - Association

▲□▶▲□▶▲□▶▲□▶ □□ のQ∩

Outline

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions Clustering

۲

- Continuous belief functions
- Application to prediction

Image: Image:

ヨトーモ

Clustering

- Finding a meaningful partition of a dataset.
- Assuming there is a true unknown partition, our frame of discernment should be the set \mathcal{R} of all partitions of the set of *n* objects.
- But this set is huge!

Number of partitions of *n* objects

- $\bullet\,$ Number of atoms in the universe $\approx 10^{80}$
- Can we implement evidential reasoning in such a large space?

Model

- Evidence: $n \times n$ matrix $D = (d_{ij})$ of dissimilarities between the *n* objects.
- For any *i* < *j*, let Θ_{ij} = {*s*_{ij}, ¬*s*_{ij}}, where *s*_{ij} means "objects *i* and *j* belong to the same group" and ¬*s*_{ij} is the negation of *s*_{ij}.
- Assumptions:
 - Two objects have all the more chance to belong to the same group, that they are more similar. Each dissimilarity is a piece of evidence represented by the following mass function on Θ_{ij},

$$egin{aligned} m_{ij}(\{s_{ij}\}) &= arphi(d_{ij}), \ m_{ij}(\Theta_{ij}) &= 1 - arphi(d_{ij}), \end{aligned}$$

where φ is a non-increasing mapping from $[0, +\infty)$ to [0, 1).

- The mass functions m_{ij} encode independent pieces of evidence (questionable, but acceptable as an approximation).
- How to combine these n(n-1)/2 mass functions to find the most plausible partition of the *n* objects?

Clustering

Vacuous extension

 To be combined, the mass functions m_{ii} must be carried to the same frame, which will be the set \mathcal{R} of all partitions of the dataset

- Let \mathcal{R}_{ii} denote the set of partitions of the *n* objects such that objects o_i and o_i are in the same group $(r_{ii} = 1).$
- Each mass function *m_{ii}* can be vacuously extended to the \mathcal{R} of all partitions:

$$egin{array}{rcl} m_{ij}(\{m{s}_{ij}\}) & \longrightarrow & \mathcal{R}_{ij} \ m_{ij}(\Theta) & \longrightarrow & \mathcal{R} \end{array}$$
Combination

- The extended mass functions can then be combined by Dempster's rule.
- We will only combine the contour functions. The contour function of *m*_{ij} is

$$egin{aligned} &
holi_{ij}(R) = egin{cases} m_{ij}(\mathcal{R}_{ij}) + m_{ij}(\mathcal{R}) & ext{if } R \in \mathcal{R}_{ij}, \ m_{ij}(\mathcal{R}) & ext{otherwise}, \ & = egin{cases} 1 & ext{if } r_{ij} = 1, \ 1 - arphi(d_{ij}) & ext{otherwise}, \ & = (1 - arphi(d_{ij}))^{1 - r_{ij}} \end{aligned}$$

• Combined contour function:

$$pl(R) \propto \prod_{i < j} (1 - \varphi(d_{ij}))^{1 - r_{ij}}$$

Image: A matrix and a matrix

for any $R \in \mathcal{R}$.

Thierry Denœux

프 네 프

Decision

The logarithm of the contour function can be written as

$$\ln pl(R) = -\sum_{i < j} r_{ij} \log(1 - \varphi(d_{ij})) + C$$

- Finding the most plausible partition is thus a binary linear programming problem. It can be solved exactly only for small n.
- However, the problem can be solved approximately using a heuristic greedy search procedure: the Ek-NNclus algorithm (Denoeux et al., 2015).

イロト イポト イヨト イヨト

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

ㅋ ト イ ヨ

Image: Image:

Problem description

- Let $E = \{e_1, \ldots, e_n\}$ and $F = \{f_1, \ldots, f_p\}$ be two sets of objects perceived by two sensors, or by one sensor at two different times.
- Problem: given information about each object (position, velocity, class, etc.), find a matching between the two sets, in such a way that each object in one set is matched with at most one object in the other set.

• □ ▶ • □ ▶ • □ ▶ •

Object association

Method of approach

- For each pair of objects $(e_i, f_i) \in E \times F$, use sensor information to build a pairwise mass function m_{ii} on the frame $\Theta_{ii} = \{s_{ii}, \neg s_{ii}\}$, where
 - s_{ii} denotes the hypothesis that e_i and f_i are the same objects, and
 - $\neg s_{ii}$ is the negation of s_{ii} .
- Solution Vacuously extend the np mass functions m_{ii} in the frame \mathcal{R} containing all admissible matching relations.
- Some the *np* extended mass functions $m_{ii}^{\uparrow \mathcal{R}}$ and find the matching relation with the highest plausibility.

(日)

Using position information

- Assume that each sensor provides an estimated position for each object. Let d_{ii} denote the distance between the estimated positions of e_i and f_i , computed using some distance measure.
- A small value of d_{ii} supports hypothesis s_{ii}, while a large value of d_{ii} supports hypothesis $\neg s_{ij}$. Depending on sensor reliability, a fraction of the unit mass should also be assigned to $\Theta_{ii} = \{s_{ii}, \neg s_{ii}\}$.
- This line of reasoning justifies a mass function $m_{ii}^{(p)}$ of the form:

$$egin{aligned} m_{ij}^{(p)}(\{m{s}_{ij}\}) &= lpha arphi(m{d}_{ij}) \ m_{ij}^{(p)}(\{
eg m{s}_{ij}\}) &= lpha \left(m{1} - arphi(m{d}_{ij})
ight) \ m_{ij}^{(p)}(\Theta_{ij}) &= m{1} - lpha, \end{aligned}$$

where $\alpha \in [0, 1]$ is a degree of confidence in the sensor information and φ is a decreasing function taking values in [0, 1].

(日)

Using velocity information

- Let us now assume that each sensor returns a velocity vector for each object. Let d'_{ii} denote the distance between the velocities of objects e_i and f_i .
- Here, a large value of d'_{ii} supports the hypothesis $\neg s_{ii}$, whereas a small value of d'_{ij} does not support specifically s_{ij} or $\neg s_{ij}$, as two distinct objects may have similar velocities.
- Consequently, the following form of the mass function $m_{ii}^{(v)}$ induce by d'_{ii} seems appropriate:

$$egin{aligned} m_{ij}^{(m{v})}(\{
eg m{s}_{ij}\}) &= lpha' \left(1 - \psi(m{d}'_{ij})
ight) \ m_{ij}^{(m{v})}(\Theta_{ij}) &= 1 - lpha' \left(1 - \psi(m{d}'_{ij})
ight), \end{aligned}$$

where $\alpha' \in [0, 1]$ is a degree of confidence in the sensor information and ψ is a decreasing function taking values in [0, 1].

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶ ◆ ○ ●

Using class information

- Let us assume that the objects belong to classes. Let Ω be the set of possible classes, and let m_i and m_i denote mass functions representing evidence about the class membership of objects e_i and f_i .
- If e_i and f_i do not belong to the same class, they cannot be the same object. However, if e_i and f_i do belong to the same class, they may or may not be the same object.
- Using this line of reasoning, we can show that the mass function $m_{ii}^{(c)}$ on Θ_{ii} derived from m_i and m_i has the following expression:

$$egin{aligned} m_{ij}^{(c)}(\{
eg s_{ij}\}) &= \kappa_{ij}\ m_{ij}^{(c)}(\Theta_{ij}) &= \mathsf{1} - \kappa_{ij} \end{aligned}$$

where κ_{ij} is the degree of conflict between m_i and m_i .

(日) (局) (王) (王) (王)

Aggregation and vacuous extension

• For each object pair (e_i, f_i) , a pairwise mass function $m^{\Theta_{ij}}$ representing all the available evidence about Θ_{ii} can finally be obtained as:

$$m_{ij}=m_{ij}^{(
ho)}\oplus m_{ij}^{(
ho)}\oplus m_{ij}^{(c)}.$$

- Let \mathcal{R} be the set of all admissible matching relations, and let $\mathcal{R}_{ii} \subseteq \mathcal{R}$ be the subset of relations *R* such that $(e_i, f_i) \in R$.
- Vacuously extending m_{ii} in \mathcal{R} yields the following mass function:

$$\begin{split} m_{ij}^{\uparrow \mathcal{R}}(\mathcal{R}_{ij}) &= m_{ij}(\{\boldsymbol{s}_{ij}\}) = \alpha_{ij} \\ m_{ij}^{\uparrow \mathcal{R}}(\overline{\mathcal{R}_{ij}}) &= m_{ij}(\{\neg \boldsymbol{s}_{ij}\}) = \beta_{ij} \\ m_{ij}^{\uparrow \mathcal{R}}(\mathcal{R}) &= m_{ij}(\Theta_{ij}) = 1 - \alpha_{ij} - \beta_{ij}. \end{split}$$

Combining pairwise mass functions

• Let pl_{ij} denote the contour function corresponding to $m_{ii}^{\uparrow \mathcal{R}}$. For all $R \in \mathcal{R}$,

$$\mathcal{D}l_{ij}(R) = egin{cases} 1-eta_{ij} & ext{if } R\in\mathcal{R}_{ij},\ 1-lpha_{ij} & ext{otherwise},\ = (1-eta_{ij})^{r_{ij}}(1-lpha_{ij})^{1-r_{ij}}, \end{cases}$$

 Consequently, the contour function corresponding to the combined mass function

$$m^{\mathcal{R}} = \bigoplus_{i,j} m_{ij}^{\uparrow \mathcal{R}}$$

is

$$pl(R) \propto \prod_{i,j} (1 - \beta_{ij})^{r_{ij}} (1 - \alpha_{ij})^{1-r_{ij}}.$$

(日)

Finding the most plausible matching

We have

$$\ln pl(\mathbf{R}) = \sum_{i,j} \left[r_{ij} \ln(1 - \beta_{ij}) + (1 - r_{ij}) \ln(1 - \alpha_{ij}) \right] + \mathbf{C}.$$

• The most plausible relation *R*^{*} can thus be found by solving the following binary linear optimization problem:

$$\max \sum_{i=1}^{n} \sum_{j=1}^{p} r_{ij} \ln \frac{1-\beta_{ij}}{1-\alpha_{ij}}$$

subject to $\sum_{j=1}^{p} r_{ij} \leq 1$, $\forall i$ and $\sum_{i=1}^{n} r_{ij} \leq 1$, $\forall j$.

• This problem can be shown to be equivalent to a linear assignment problem and can be solved in $o(\max(n, m)^3)$ time.

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

< 口 > < 同

Prediction vs. estimation

- Consider an urn with an unknown proportion θ of black balls
- Assume that we have drawn *n* balls with replacement from the urn, *x* of which were black
- Two categories of problems:

Estimation: What can we say about θ ?

Prediction: What can we say about the color *Y* of the next ball to be drawn from the urn?

- Both kinds of problems have been addressed in the DS framework, starting from Dempster's original work.
- Problem addressed in this lecture:

How to quantify uncertainty in statistical prediction problems?

• We need to construct and manipulate continuous belief functions.

3 3 9 9 9 9

(日)

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ヨトーモ

Belief function: general definition

Definition (Belief function)

- Let Ω be a set and B be an algebra of subsets of Ω (a nonempty family of subsets of Ω, closed under complementation and finite intersection).
- A mapping Bel : B → [0, 1] is a belief function (BF) iff Bel(Ø) = 0, Bel(Ω) = 1 and Bel is completely monotone: for any k ≥ 2 and any collection B₁,..., B_k of elements of B,

$$\textit{Bel}\left(\bigcup_{i=1}^{k}B_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,...,k\}} (-1)^{|I|+1}\textit{Bel}\left(\bigcap_{i \in I}B_{i}\right)$$

Definition (Plausibility function)

Given a belief function Bel : $\mathcal{B} \to [0, 1]$, the function Pl : $\mathcal{B} \to [0, 1]$ such that $Pl(B) = 1 - Bel(\overline{B})$ is called its dual plausibility function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Belief function induced by a random set

Consider a random set defined by a probability space $(S, \mathcal{A}, \mathbb{P})$, a set Ω equipped with an algebra \mathcal{B} and a multi-valued mapping Γ from S to $2^{\Omega} \setminus \emptyset$.

Proposition

Under measurability conditions, the lower probability measure defined by

 $\mathbb{P}_*(B) = \mathbb{P}(\{s \in S \mid \Gamma(s) \subseteq B\}), \quad \forall B \in \mathcal{B}$

is a belief function, and the upper probability measure

 $\mathbb{P}^*(B) = \mathbb{P}(\{s \in S \mid \Gamma(s) \cap B \neq \emptyset\}), \quad \forall B \in \mathcal{B}$

is the corresponding dual plausibility function.

Thierry Denœux

Possibility measures

- If, for any (s, s') ∈ S², Γ(s) ⊆ Γ(s') or Γ(s') ⊆ Γ(s), the BF Bel is said to be consonant.
- The plausibility distribution is then a possibility measure: it verifies

$$PI(A \cup B) = \max(PI(A), PI(B)), \quad \forall (A, B) \in \mathcal{B}^2,$$

and

$$PI(A) = \sup_{\omega \in A} pI(\omega),$$

where the mapping $pl : \omega \to Pl(\{\omega\})$ (called the contour function of *Bel*) is the corresponding possibility distribution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monte Carlo approximation

Except in very simple cases, it is usually impossible to derive exact expressions for

$$Bel(B) = \mathbb{P}(\{s \in S \mid \Gamma(s) \subseteq B\})$$

and

$$PI(B) = \mathbb{P}(\{s \in S \mid \Gamma(s) \cap B \neq \emptyset\})$$

for a given $B \in \mathcal{B}$.

We can approximate these quantities by drawing *N* elements *s*₁,..., *s*_N of *S* randomly from ℙ. By the law of large numbers,

$$\widehat{\mathit{Bel}}(B) = \frac{1}{N} \sum_{i=1}^{N} \mathit{I}(\Gamma(s_i) \subseteq B) \xrightarrow{a.s.} \mathit{Bel}(B)$$

and

$$\widehat{P}I(B) = rac{1}{N} \sum_{i=1}^{N} I(\Gamma(s_i) \cap B \neq \emptyset) \xrightarrow{a.s.} PI(B).$$

as $N \longrightarrow \infty$.

(日)

Outline

Least Commitment Principle

- LC mass function with given contour function
- Conditional embedding
- Uncertainty measures

Combining elementary mass functions

- Clustering
- Object association

Predictive belief functions

- Continuous belief functions
- Application to prediction

Image: Image:

ヨトーモ

Example of a prediction problem

As an example of a statistical prediction problem, consider an AR(1) model

$$X_t = \rho X_{t-1} + \epsilon_t, \quad t = 1, 2, \dots,$$

where $\rho \in (-1, 1)$ is a parameter and $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Problem: having observed $\mathbf{x}_{1:T} = (x_1, \dots, x_T)$, predict the next *h* future values $\mathbf{Y} = (X_{T+1}, \dots, X_{T+h})$.

Thierry Denœux

General approach

Approach: express **Y** as a function of the parameter $\theta = (\rho, \sigma)$ and a random vector with known distribution.

• For instance, assuming h = 2, we can write

$$\begin{aligned} X_{T+1} &= \rho x_T + \epsilon_{T+1} = \rho x_T + \sigma \Phi^{-1}(U_1) \\ X_{T+2} &= \rho X_{T+1} + \epsilon_{T+2} \\ &= \rho^2 x_T + \rho \sigma \Phi^{-1}(U_1) + \sigma \Phi^{-1}(U_2) \end{aligned}$$

with $U_1, U_2 \sim \text{Unif}(0, 1)$, so we have

$$\boldsymbol{Y} = (X_{T+1}, X_{T+2}) = \varphi(\boldsymbol{\theta}, \boldsymbol{U})$$

where $U = (U_1, U_2) \sim \text{Unif}([0, 1]^2)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Random vs. epistemic uncertainty

The " φ -equation"

 $\pmb{Y} = \varphi(\pmb{\theta}, \pmb{U})$

allows us to separate the two sources of uncertainty on Y:

- Uncertainty on U (random/aleatory uncertainty)
- **2** Uncertainty on θ (epistemic uncertainty)

Two-step method:

- Represent uncertainty on θ using an estimative belief function Bel_{θ} constructed from the observed data
- Combine Bel_{θ} with the probability distribution of U to obtain a predictive belief function Bel_{Y}

<ロ > < 同 > < 三 > < 三 > 三 三 < < 0 < < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Properties of the predictive BF

The properties of the predictive BF Bel_{Y} depends on the BF Bel_{θ} :

- If Bel_θ({θ₀}) = 1, where θ₀ is the true value of θ, then Bel_Y is the true probability distribution of Y given x_T.
- If $Bel_{\theta}(\{\widehat{\theta}\}) = 1$, where $\widehat{\theta}$ is the MLE of θ , then Bel_{Y} is the plug-in estimate of the true probability distribution of **Y** given x_{T} .
- If Bel_θ(A) = I(R_{1-α} ⊆ A), where R_{1-α} is a 1 α confidence region on θ, then Bel_Y has a frequentist property: it is dominated by the true conditional distribution of Y given x_T with probability 1 α.
- If Bel_{θ} is the likelihood-based BF, then Bel_{Y} generalizes the Bayesian posterior probability distribution of Y.

Here, I focus on the last method as an illustration.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Likelihood-based belief function

Definition (Likelihood-based belief function)

The likelihood-based belief function is the consonant BF with contour function (possibility distribution)

$$pl(\theta) = \frac{p(\boldsymbol{x}_{1:T}; \theta)}{p(\boldsymbol{x}_{1:T}; \widehat{\theta})} = \frac{L(\theta; \boldsymbol{x}_{1:T})}{L(\widehat{\theta}; \boldsymbol{x}_{1:T})},$$

where L denotes the likelihood function and $\hat{\theta}$ the MLE of θ . It represents the information provided by the data about θ .

We then have

$$Pl_{\theta}(A) = \sup_{\theta \in A} pl(\theta) \text{ for all } A \subseteq \Theta.$$

- Combining Bel_{θ} with a Bayesian prior on θ then yields the Bayesian posterior.
- Justified by axiomatic arguments (Denœux, 2014).

Thierry Denœux

Example

$$Pl_{ heta}(A) = 0.3$$

 $Bel_{ heta}(A) = 1 - Pl_{ heta}(\overline{A}) = 0$
 $Pl_{ heta}(B) = 1$
 $Bel_{ heta}(B) = 1 - Pl_{ heta}(\overline{B}) = 0.3$

イロト イヨト イヨト イヨト

1 BFTA 2019 61 / 74

= 990

Random set representation of Bel_{θ}

• We can show that the likelihood-based BF Bel_{θ} on θ is induced by the random set

$$\Gamma(V) = \{ oldsymbol{ heta} \in oldsymbol{\Theta} \mid oldsymbol{
holdsymbol{
holdsymbol{ heta}} \mid oldsymbol{
holdsymbol{ heta}} \mid oldsymbol{
holdsymbol{
holdsymbol{ heta}} \in oldsymbol{\Theta} \mid oldsymbol{
holdsymbol{ heta}} \mid oldsymbol{ heta} \mid oldsymbol{ het$$

with $V \sim \text{Unif}(0, 1)$.

We have

 $\textit{Bel}_{\theta}(\textit{A}) = \mathbb{P}\left(\Gamma(\textit{V}) \subseteq \textit{A} \right) \quad \text{and} \quad \textit{Pl}_{\theta}(\textit{A}) = \mathbb{P}\left(\Gamma(\textit{V}) \cap \textit{A} \neq \emptyset \right)$

Image: Image:

- E - - E -

Predictive belief function

A predictive BF $Bel_{\mathbf{Y}}$ on \mathbf{Y} is obtained by propagating Bel_{θ} together with the probability distribution of \mathbf{U} through the φ -equation $\mathbf{Y} = \varphi(\theta, \mathbf{U})$:

The mapping $\Lambda : (\boldsymbol{U}, \boldsymbol{V}) \rightarrow \varphi(\Gamma(\boldsymbol{V}), \boldsymbol{U})$ defines the predictive BF $Bel_{\boldsymbol{Y}}$ on \boldsymbol{Y} .

Thierry Denœux

Practical computation of Bely

The belief and plausibility degrees of events $B \subseteq \mathbb{R}^h$, defined as

$$Bel_{\mathbf{Y}}(B) = \mathbb{P}\left(\varphi(\Gamma(V), \mathbf{U}) \subseteq B\right),$$
 and

$$Pl_{\mathbf{Y}}(B) = \mathbb{P}\left(\varphi(\Gamma(V), \mathbf{U}) \cap B \neq \emptyset\right)$$

can be approximated by combining Monte Carlo (MC) simulation and set representation techniques:

- We start by approximating the parameter space Θ by a finite set of points $\widetilde{\Theta} = \{\theta_1, \dots, \theta_M\} \subset \Theta$.
- For each $v \in [0, 1]$, the set $\Gamma(v)$ is approximated by the finite set $\widetilde{\Gamma}(v) = \{ \theta \in \widetilde{\Theta} \mid \rho l(\theta) > v \}.$
- The distributions of **U** and V are approximated by MC simulation

(日)

Point cloud representation

< **□** ► < **□**

BFTA 2019 65 / 74

Point cloud propagation

< □ > < @

Point cloud propagation algorithm

Require: Point cloud $\widetilde{\Theta} := \{\theta_1, \dots, \theta_M\} \subset \Theta$ **Require:** Desired number of focal sets *N* for *i* = 1 to *N* do Draw independently *v_i* from Unif([0, 1]) and *u_i* from Unif([0, 1]²) Find $\widetilde{\Gamma}(v_i) := \{\theta \in \widetilde{\Theta} \mid pl(\theta) > v_i\}$ Compute $\widetilde{B}_i := \varphi(\widetilde{\Gamma}(v_i), u_i)$ end for $\widehat{Bel}(B) := \frac{1}{N} \sum_{i=1}^{N} I(\widetilde{B}_i \subseteq B)$ $\widehat{Pl}(B) := \frac{1}{N} \sum_{i=1}^{N} I(\widetilde{B}_i \cap B \neq \emptyset)$

・ロト ・同ト ・ヨト ・ヨト

Example Approximated focal sets (h = 3)

2-D projections of focal sets $\widetilde{B}_i = \varphi(\widetilde{\Gamma}(v_i), u_i)$ for $v_i = 0.1$ and three different values of u_i

Thierry Denœux

Example 100 focal sets $\tilde{\Lambda}(s_i, \boldsymbol{u}_i)$ (h = 3)

Convex hulls of the two-dimensional projections of 100 focal sets $\widetilde{B}_i = \varphi(\widetilde{\Gamma}(v_i), \boldsymbol{u}_i)$ on the planes spanned by (Y_1, Y_2) (left) and (Y_2, Y_3) (right)

Thierry Denœux

Methods for building belief functions

Example

Belief and plausibility of some events

Event	Bel	PI	True proba.
$(X_{T+1} > X_{T+2} > X_{T+3})$	0.26	0.38	0.31
$(X_{T+1} < 0)$ & $(X_{T+2} < 0)$ & $(X_{T+3} < 0)$	0.024	0.073	0.086
$(X_{T+1} > 0) \& (X_{T+2} > 0) \& (X_{T+3} > 0)$	0.51	0.75	0.50

三日 のへの

・ロト ・日下 ・ヨト ・ヨト

Summary

- Developing practical applications using the Dempster-Shafer framework requires modeling expert knowledge and statistical information using belief functions:
- Systematic and principled methods now exist:
 - Least-commitment principle
 - GBT
 - Likelihood-based belief function
 - Predictive belief functions
 - etc.
- Specific methods will be studied in following lectures (correction mechanisms, classification, clustering, etc.).
- More research on expert knowledge elicitation and statistical inference is needed.

<ロ > < 同 > < 三 > < 三 > 三 三 < < 0 < < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

References I

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux and P. Smets.

Classification using Belief Functions: the Relationship between the Case-based and Model-based Approaches

IEEE Transactions on Systems, Man and Cybernetics B, 36(6):1395–1406, 2006.

T. Denœux, O. Kanjanatarakul and S. Sriboonchitta.

EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule.

Knowledge-Based Systems, 88:57–69, 2015.

T. Denœux, N. El Zoghby, V. Cherfaoui and A. Jouglet. Optimal object association in the Dempster-Shafer framework. *IEEE Transactions on Cybernetics*, 44(22):2521–2531, 2014.

イロト イポト イヨト イヨト
References II

cf. https://www.hds.utc.fr/~tdenoeux

Т.

T. Denœux.

Likelihood-based belief function: justification and some extensions to low-quality data.

International Journal of Approximate Reasoning, 55(7):1535–1547, 2014.

O. Kanjanatarakul, T. Denœux and S. Sriboonchitta.

Prediction of future observations using belief functions: a likelihood-based approach.

International Journal of Approximate Reasoning, 72:71–94, 2016.

T. Denœux and S. Li.

Frequency-Calibrated Belief Functions: Review and New Insights. International Journal of Approximate Reasoning, 92:232–254, 2018.

イロト イポト イヨト イヨト

References III

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux and O. Kanjanatarakul.

Multistep Prediction using Point-Cloud Approximation of Continuous Belief Functions.

2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2019), New Orleans, USA, June 23-26, 2019.

< 口 > < 同