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Classification

We consider a population of objects partitioned in c groups (classes).
Each object is described by a feature vector X = (X1, . . . ,Xd ) ∈ X of d
features and a class variable Y ∈ Θ indicating group membership.
Problem: given a learning set {(xi , yi )}n

i=1 containing observations of X
and Y for n objects, build a classifier

C : X −→ Θ

that predicts the value of Y given X .
Example: digit recognition, X = [0,1]16×16, Θ = {0, . . . ,9}.
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Clustering
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Goal: find a meaningful structure in the
data set, usually a partition into c
subsets, or a more complex
mathematical representation (fuzzy
partition, etc.)
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Why can belief functions be useful?

1 Exploit the high expressiveness of belief functions to
1 Quantify prediction uncertainty (for, e.g., combining several classifiers, or

providing the user with richer information about the uncertainty of the
classification)

2 Reveal richer information about the data (clustering problems)
2 Represent uncertainty about the data themselves:

1 Uncertain/soft class labels (partially supervised learning)
2 Clustering of imprecise/uncertain data
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Overview of the main approaches
Classification

1 Classifier fusion: convert the outputs from standard classifiers into belief
functions and combine them using, e.g., Dempster’s rule (e.g., Quost al.,
2011)

2 Evidential classifiers directly providing belief functions as outputs:
Generalized Bayes theorem, extends the Bayesian classifier when class
densities and priors are ill-known (Appriou, 1991; Denœux and Smets, 2008)
Distance-based classifiers: evidential K -NN rule (Denœux, 1995), evidential
neural network classifier (Denœux, 2000)
Neural networks and many other machine learning models are evidential
classifiers! (Denœux, 2019)
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Overview of the main approaches
Clustering

Express uncertainty about the membership of objects to clusters using the
notion of credal partition:

1 Match degrees of conflict with inter-point distances: EVCLUS algorithm
(Denœux and Masson, 2004; Denœux et al., 2016)

2 Extend prototype-based clustering methods such as the hard or fuzzy
c-means: Evidential c-means (Masson and Denœux, 2008)

3 Decision-directed clustering using the evidential K -NN classifier:
EK -NNclus algorithm (Denœux et al, 2015)
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Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS
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Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS

Thierry Denœux Classification and clustering BFTA 2019 8 / 103



Evidential distance-based classifiers Evidential K -NN rule
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Evidential distance-based classifiers Evidential K -NN rule

Principle

Xj	

dj	

X	

Let NK (x) ⊂ L denote the set of the K
nearest neighbors of x in L, based on some
distance measure
Each xj ∈ NK (x) can be considered as a
piece of evidence regarding the class of x
The strength of this evidence decreases
with the distance dj between x and xj
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Evidential distance-based classifiers Evidential K -NN rule

Definition

Frame of discernment: Θ = {θ1, . . . , θc}.
The evidence of (xj , yj ) can be represented by the following mass
function on Θ:

m̂j ({θk}) = ϕk (dj ) yjk , k = 1, . . . , c
m̂j (Θ) = 1− ϕk (dj )

where
yjk = I(yj = θk )
ϕk , k = 1, . . . , c are decreasing functions from [0,+∞) to [0, 1] such that
limd→+∞ ϕk (d) = 0

The evidence of the K nearest neighbors of x is pooled using Dempster’s
rule of combination

m̂ =
⊕

xj∈NK (x)

m̂j

Decision: maximum plausibility.
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Evidential distance-based classifiers Evidential K -NN rule

Learning

Choice of functions ϕk : for instance, ϕk (d) = α exp(−γk d2).
Parameters γ1, . . . , γc can be optimized (see below).
Parameter γ = (γ1, . . . , γc) can be learnt from the data by minimizing the
following cost function

C(γ) =
n∑

i=1

c∑
k=1

(p̂l i (ωk )− yik )2,

where p̂l i is the contour function corresponding to m̂i computed using the
K-NN of observation xi .
Function C(γ) can be minimized by an iterative nonlinear optimization
algorithm.
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Evidential distance-based classifiers Evidential K -NN rule

Example: Vehicles dataset

The data were used to distinguish 3D objects within a 2-D silhouette of
the objects.
Four classes: bus, Chevrolet van, Saab 9000 and Opel Manta.
846 instances, 18 numeric attributes.
The first 564 objects are training data, the rest are test data.
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Evidential distance-based classifiers Evidential K -NN rule

Vehicles datasets: result
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Evidential distance-based classifiers Evidential K -NN rule

Partially supervised data

We now consider a learning set of the form

L = {(xi ,mi ), i = 1, . . . ,n}

where
xi is the attribute vector for instance i , and
mi is a mass function representing uncertain expert knowledge about the
class yi of instance i (soft label)

Special cases:
mi ({ωk}) = 1 for all i : supervised data
mi (Ω) = 1 for all i : unsupervised data
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Evidential distance-based classifiers Evidential K -NN rule

Evidential k -NN rule for partially supervised data

(xj,mj)	

dj	

x	

Each mass function mj is discounted with a
rate depending on the distance dj :

m̂j (A) = ϕ (di ) mj (A), ∀A ⊂ Θ

m̂j (Θ) = 1−
∑
A⊂Ω

m̂j (A)

The K mass functions m̂i are combined
using Dempster’s rule:

m̂ =
⊕

xj∈NK (x)

m̂j
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Evidential distance-based classifiers Contextual Discounting Evidential K -NN
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Evidential distance-based classifiers Contextual Discounting Evidential K -NN

Contextual Discounting Evidential K -NN

A recent variant introduced by Denoeux and Kanjanatarajul (2019).
We consider partially labeled data L = {(xi ,mi )}n

i=1.
The mass function m̂j induced by xj ∈ NK (x) is now obtained from mj by
the contextual discounting operation with discount rates 1− βk (dj ), with

βk (dj ) = α exp(−γk d2
j ), k = 1, . . . , c,

with α ∈ [0,1] and γk ≥ 0, k = 1, . . . , c.
Combined contour function:

p̂l(θk ) ∝
∏

xj∈NK (x)

[1− βk (dj ) + βk (dj )plj (θk )] , k = 1, . . . , c.

p̂l can be computed, up to a multiplicative constant, in time proportional
to the number K of neighbors and the number of c of classes.
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Evidential distance-based classifiers Contextual Discounting Evidential K -NN

Learning

To learn the parameters ψ = (α, γ1, . . . , γc) of the CD-EKNN classifier, we
maximize the evidential likelihood function introduced in by Denoeux
(2013).
Case of fully supervised data L = {(xi , yi )}n

i=1: the conditional likelihood
after observing the true class labels y1, . . . , yn is

Lc(ψ) =
n∏

i=1

c∏
k=1

p̂i (θk )yik =
n∏

i=1

c∑
k=1

p̂i (θk )yik ,

where p̂i be the probability distribution obtained from p̂l i by normalization.
Extension to partially supervised data L = {(xi ,mi )}n

i=1:

Le(ψ) =
n∏

i=1

c∑
k=1

p̂i (θk )pli (θk )︸ ︷︷ ︸
expected plausibility

,
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Evidential distance-based classifiers Contextual Discounting Evidential K -NN

Results: simulated data with hard labels
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Evidential distance-based classifiers Contextual Discounting Evidential K -NN

Results: simulated data with soft labels
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Evidential distance-based classifiers Evidential neural network classifier
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Evidential distance-based classifiers Evidential neural network classifier

Principle

pi
di

X

The learning set is summarized by r
prototypes.
Each prototype pi has membership
degree uik to each class ωk , with∑c

k=1 uik = 1.
Each prototype pi is a piece of evidence
about the class of x, whose reliability
decreases with the distance di between
x and pi .
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Evidential distance-based classifiers Evidential neural network classifier

Propagation equations

Mass function induced by prototype pi :

mi ({θk}) = αiuik exp(−γid2
i ), k = 1, . . . , c

mi (Θ) = 1− αi exp(−γid2
i )

Combination:

m =
r⊕

i=1

mi

The combined mass function m has as focal sets the singletons {θk},
k = 1, . . . , c and Θ.
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Evidential distance-based classifiers Evidential neural network classifier

Neural network implementation
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Evidential distance-based classifiers Evidential neural network classifier

Learning

The parameters are the
The prototypes pi , i = 1, . . . , r (rp parameters)
The membership degrees uik , i = 1, . . . , r , k = 1 . . . , c (rc parameters)
The αi and γi , i = 1 . . . , r (2r parameters).

Let ψ denote the vector of all parameters. It can be estimated by
minimizing a cost function such as

C(ψ) =
n∑

i=1

c∑
k=1

(plik − yik )2 + λ

r∑
i=1

αi

where plik is the output plausibility for instance i and class k , and µ is a
regularization coefficient (hyperparameter).
The hyperparameter λ can be optimized by cross-validation.
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Mass on Θ
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Plausibility of {θ1}
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Plausibility of {θ3}

Pl({ω3})

Petal.Length

Pe
ta
l.W

id
th

0 2 4 6 8

−2
−1

0
1

2
3

4

Thierry Denœux Classification and clustering BFTA 2019 33 / 103



Neural networks as evidential classifiers

Outline
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Neural networks as evidential classifiers

Deep Learning

(From Le Cun et al., Nature, 2015)

In recent years, applications of Machine Learning (ML) have been
flourishing following new developments in deep learning technology.
A lot of progress has been made in extracting high-order features from
data, so as to solve very complex classification problems.
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Neural networks as evidential classifiers

Some challenges

ML algorithms (and especially deep learning models) are essentially
black boxes.
Major challenges:

1 Make ML algorithms more transparent so that machine predictions can be
interpreted (and trusted) by humans

2 Assess the uncertainty of the predictions, to make ML algorithms reliable
and suitable for safety-critical applications.

To meet these challenges, we need new perspectives on how
classification algorithms actually work.
One such perspective is provided by the theory of belief functions.
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Neural networks as evidential classifiers Logistic regression and extensions
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Neural networks as evidential classifiers Logistic regression and extensions

Binomial Logistic regression

Consider a binary classification problem with Y ∈ Θ = {θ1, θ2}.
Let p(x) denote the probability that Y = θ1 given that X = x .
(Binomial) Logistic Regression (LR) model:

ln
p(x)

1− p(x)
= βT x + β0,

with β ∈ Rd and β0 ∈ R. Equivalently,

p(x) = σ(βT x + β0),

where σ(u) = (1 + exp(−u))−1 is the logistic function.
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Neural networks as evidential classifiers Logistic regression and extensions

Binomial Logistic Regression (continued)
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Given a learning set {(xi , yi )}n
i=1, parameters β and β0 are usually estimated

by minimizing the cross-entropy error function:

C(β, β0) = −
n∑

i=1

{I(yi = θ1) ln p(xi ) + I(yi = θ2) ln [1− p(xi )]}
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Neural networks as evidential classifiers Logistic regression and extensions

Multinomial Logistic Regression

Multinomial logistic regression (MLR) extends binomial LR to c > 2
classes by assuming the following model:

ln pk (x) = βT
k x + βk0 + γ,

where pk (x) = P(Y = θk |X = x), βk ∈ Rd , βk0 ∈ R and γ ∈ R is a
constant that does not depend on k .
The posterior probability of class θk can then be expressed using the
softmax transformation as

pk (x) =
exp(βT

k x + βk0)∑K
l=1 exp(βT

l x + βl0)
.
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Neural networks as evidential classifiers Logistic regression and extensions

Multinomial Logistic Regression (continued)
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Parameters (βk , βk0), k = 1 . . . , c can be estimated by minimizing the
cross-entropy as in the binomial case.
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Neural networks as evidential classifiers Logistic regression and extensions

Nonlinear generalized LR classifiers
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LR classifiers are linear classifiers (they separate classes in feature
space by hyperplanes).
LR can be applied to transformed features φj (x), j = 1, . . . , J, where the
φj ’s are nonlinear mappings from Rd to R. We get nonlinear generalized
LR classifiers.
Both the new features φj (x) and the coefficients (βk , βk0) are usually
learnt simultaneously by minimizing some cost function.
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Neural networks as evidential classifiers Logistic regression and extensions

Generalized LR models

Generalized additive models:
φj (x) = ϕj (xj )

Radial basis function networks:

φj (x) = ϕ(‖x − vj‖)

Support vector machines:
φj (x) = K(x , xj )

Multilayer feedforward neural networks (NNs)
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Neural networks as evidential classifiers Logistic regression and extensions

Multilayer feedforward neural networks

Feedforward NNs are models composed of elementary computing units
(or “neurons”) arranged in layers. Each layer computes a vector of new
features as functions of the outputs from the previous layer as

φ
(l)
j = h

(
w (l)T

j φ(l−1) + w (l)
j0

)
, j = 1, . . . , Jl ,

where φ(l−1) ∈ RJl−1 is the vector of outputs from the previous layer.
For c-class classification, the output layer is typically a softmax layer with
c output units.
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Neural networks as evidential classifiers Logistic regression and extensions

Relation with DS theory?

LR and NN models seem totally unrelated to DS theory.
Yet...
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Neural networks as evidential classifiers Binomial classifiers
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Neural networks as evidential classifiers Binomial classifiers

Features as evidence

Consider a binary classification problem with c = 2 classes in
Θ = {θ1, θ2}. Let φ(x) = (φ1(x), . . . , φJ(x)) be a vector of J features.
Each feature value φj (x) is a piece of evidence about the class Y ∈ Θ of
the instance under consideration.
Assume that this evidence points either to θ1 or θ2 depending on the sign
of

wj := βjφj (x) + αj ,

where βj and αj are two coefficients:
If wj ≥ 0, feature φj supports class θ1 with weight of evidence wj

If wj < 0, feature φj supports class θ2 with weight of evidence −wj
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Neural networks as evidential classifiers Binomial classifiers

Features as evidence (continued)
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Neural networks as evidential classifiers Binomial classifiers

Feature-based latent mass function

Under this model, the consideration of feature φj induces a simple mass
function

mj = {θ1}w+
j ⊕ {θ2}w−

j ,

where
w+

j = max(0,wj ) is the positive part of wj and

w−j = max(0,−wj ) is the negative part.
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Neural networks as evidential classifiers Binomial classifiers

Combined latent mass function

Assuming that the values of the J features can be considered as independent
pieces of evidence, the feature-based latent mass functions can be combined
by Dempster’s rule:

m =
J⊕

j=1

(
{θ1}w+

j ⊕ {θ2}w−
j

)

=

 J⊕
j=1

{θ1}w+
j

⊕
 J⊕

j=1

{θ2}w−
j


= {θ1}w+

⊕ {θ2}w−
,

where
w+ :=

∑J
j=1 w+

j is the total weight of evidence supporting θ1

w− :=
∑J

j=1 w−j is the total weight of evidence supporting θ2.
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Neural networks as evidential classifiers Binomial classifiers

Expression of m

m({θ1}) =
[1− exp(−w+)] exp(−w−)

1− κ

m({θ2}) =
[1− exp(−w−)] exp(−w+)

1− κ

m(Θ) =
exp(−w+ − w−)

1− κ

where κ is the degree of conflict:

κ = [1− exp(−w+)][1− exp(−w−)]
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Neural networks as evidential classifiers Binomial classifiers

m({θ1}) and m(Θ) vs. weights of evidence
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Neural networks as evidential classifiers Binomial classifiers

Degree of conflict vs. weights of evidence
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Neural networks as evidential classifiers Binomial classifiers

Normalized plausibilities

The normalized plausibility of class θ1 as

Pl({θ1})
Pl({θ1}) + Pl({θ2})

=
m({θ1}) + m(Θ)

m({θ1}) + m({θ2}) + 2m(Θ)

=
1

1 + exp[−(βTφ(x) + β0)]︸ ︷︷ ︸
logistic transformation

= p(x)

with β = (β1, . . . , βJ) and β0 =
∑J

j=1 αj .

Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the binomial LR model: the two models are equivalent.
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Neural networks as evidential classifiers Binomial classifiers

Two Views of Binomial Logistic Regression
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Neural networks as evidential classifiers Binomial classifiers

Parameter identification

As explained before, parameters β0, β1, . . . , βJ can be estimated by
maximizing the likelihood. Let β̂0, β̂1, . . . , β̂J be the corresponding MLEs.
However, the DS model has J more additional parameters α1, . . . , αJ

linked to β0 by the relation
∑J

i=1 αj = β0: the problem is underdetermined.
Solution: find the parameter values α∗1, . . . , α

∗
J that give us the least

informative mass function.
The least informative mass function is defined as the one based on the
smallest weights of evidence.
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Neural networks as evidential classifiers Binomial classifiers

Minimizing the sum of squared weights of evidence

Let {(xi , yi )}n
i=1 be the learning set and let α = (α1, . . . , αJ).

The values α∗j minimizing the sum of squared weights of evidence can be
found by solving the following minimization problem:

min f (α) =
n∑

i=1

J∑
j=1

(
β̂jφj (xi ) + αj

)2

subject to
∑J

j=1 αj = β̂0.
Solution:

α∗j =
β̂0

J
+

1
J

J∑
q=1

β̂qµq − β̂jµj

with µj = 1
nφj (xi ).

Thierry Denœux Classification and clustering BFTA 2019 57 / 103



Neural networks as evidential classifiers Binomial classifiers

Example

Data about the intensity of ischemic heart disease risk factors in a rural
area of South Africa. Population: white males between 15 and 64.
Response variable: presence or absence of myocardial infarction (MI).
Two variables: age and LDL (“bad” cholesterol).

age

ld
l

20 30 40 50 60 70

0
5

10
15

Thierry Denœux Classification and clustering BFTA 2019 58 / 103



Neural networks as evidential classifiers Binomial classifiers

Weights of evidence
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Neural networks as evidential classifiers Binomial classifiers

Feature mass functions
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Neural networks as evidential classifiers Binomial classifiers

Degrees of belief (positive class)
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Neural networks as evidential classifiers Binomial classifiers

Degrees of Plausibility (positive class)
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Neural networks as evidential classifiers Binomial classifiers

Mass on Θ and degree of conflict
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Neural networks as evidential classifiers Binomial classifiers

Decision regions
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Neural networks as evidential classifiers Multinomial classifers

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS
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Neural networks as evidential classifiers Multinomial classifers

Model

Let Θ = {θ1, . . . , θc} with c > 2.
Each feature φj now induces c simple mass functions mj1, . . . ,mjc .
Mass function mjk points either to the singleton {θk} or to its complement
{θk}, depending on the sign of

wjk = βjkφj (x) + αjk ,

where (βjk , αjk ), k = 1, . . . , c, j = 1, . . . , J are parameters.
Expression of mjk :

mjk = {θk}w+
jk ⊕ {θk}

w−
jk
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Neural networks as evidential classifiers Multinomial classifers

Combined latent mass function

The latent mass function induced by feature φj is

mj =
c⊕

k=1

(
{θk}w+

jk ⊕ {θk}
w−

jk

)
.

Assuming the evidence from the J features to be independent, the
combined mass function is

m =
J⊕

j=1

c⊕
k=1

(
{θk}w+

jk ⊕ {θk}
w−

jk

)

=
c⊕

k=1

(
{θk}w+

k ⊕ {θk}
w−

k

)
,

where
w+

k =
∑J

j=1 w+
jk is the total weight of evidence for class θk

w−k =
∑J

j=1 w−jk is the total weight of evidence against class θk
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Neural networks as evidential classifiers Multinomial classifers

Link with multinomial logistic regression

The normalized plausibility of class θk is:

Pl({θk})∑c
l=1 Pl({θl})

=
exp

(∑J
j=1 βjkφj (x) + β0k

)
∑c

l=1 exp
(∑J

j=1 βjlφj (x) + β0l

)
︸ ︷︷ ︸

softmax transformation

= pk (x),

with

β0k =
J∑

j=1

αjk .

Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the multinomial LR model: the two models are equivalent.
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Neural networks as evidential classifiers Multinomial classifers

Multinomial Logistic Regression: DS view
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Neural networks as evidential classifiers Multinomial classifers

Example
Dataset: 900 instances, 3 equiprobable classes with Gaussian distributions
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Neural networks as evidential classifiers Multinomial classifers

NN model

NN with 2 layers of 20 and 10 neurons
ReLU activation functions in hidden layers, softmax output layer
Batch learning, minibatch size=100
L2 regularization in the last layer (λ = 1).
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ1}

m({θ1})
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ2}

m({θ2})
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ3}

m({θ3})
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ1, θ2}

m({θ1,θ2})
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ1, θ3}

m({θ1,θ3})
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Neural networks as evidential classifiers Multinomial classifers

Mass on {θ2, θ3}

m({θ2,θ3})
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Neural networks as evidential classifiers Multinomial classifers

Mass on Θ

m(Θ)
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Neural networks as evidential classifiers Multinomial classifers

Hidden unit 2
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Neural networks as evidential classifiers Multinomial classifers

Decision regions
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Clustering

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS
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Clustering

Hard and soft clustering concepts

Clustering = finding groups in data.

Hard clustering: no representation of uncertainty. Each object is assigned to
one and only one group. Group membership is represented by
binary variables uik such that uik = 1 if object i belongs to group
k and uik = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uik ∈ [0,1] to each
group, with

∑c
k=1 uik = 1. The uik ’s can be interpreted as

probabilities.
Possibilistic clustering: the uik are free to take any value in [0,1]c . Each

number uik is interpreted as a degree of possibility that object i
belongs to group k .
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Clustering

Hard and soft clustering concepts

Rough clustering: each cluster ωk is characterized by a lower approximation
ωk and an upper approximation ωk , with ωk ⊆ ωk ; the
membership of object i to cluster k is described by a pair
(uik ,uik ) ∈ {0,1}2, with uik ≤ uik ,

∑c
k=1 uik ≤ 1 and∑c

k=1 uik ≥ 1.
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Clustering

Clustering and belief functions

clustering structure uncertainty framework
fuzzy partition probability theory

possibilistic partition possibility theory
rough partition (rough) sets

? belief functions

As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework
for cluster analysis?
Objectives:

Unify the various approaches to clustering
Achieve a richer and more accurate representation of uncertainty
New clustering algorithms and new tools to compare and combine clustering
results.
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Clustering Credal partition

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS
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Clustering Credal partition

Evidential clustering

Let O = {o1, . . . ,on} be a set of n objects and Ω = {ω1, . . . , ωc} be a set
of c groups (clusters).
Each object oi belongs to at most one group.
Evidence about the group membership of object oi is represented by a
mass function mi on Ω:

for any nonempty set of clusters A ⊆ Ω, mi (A) is the probability of knowing
only that oi belong to one of the clusters in A.
mi (∅) is the probability of knowing that oi does not belong to any of the c
groups.

Definition

The n-tuple M = (m1, . . . ,mn) is called a credal partition.
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Clustering Credal partition

Example
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∅ {ω1} {ω2} {ω1, ω2}
m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Clustering Credal partition

Relationship with other clustering structures

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	

mi	certain	

mi	Bayesian	 mi	consonant	 mi	logical	

mi	general	
More	general	

Less	general	
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Clustering Credal partition

Rough clustering as a special case

Assume that each mi is logical, i.e., mi (Ai ) = 1 for some Ai ⊆ Ω, Ai 6= ∅.
We can then define the lower and upper approximations of cluster ωk as

ωk = {oi ∈ O | Ai = {ωk}}, ωk = {oi ∈ O | ωk ∈ Ai}.

The membership values to the lower and upper approximations of cluster
ωk are uik = Beli ({ωk}) and uik = Pli ({ωk}).

m({ω1})=1( m({ω1, ω2})=1( m({ω2})=1(

Lower(
approxima4ons(

Upper(
approxima4ons(

ω1
L( ω2

L( ω2
U(ω1

U(
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Clustering Credal partition

Summarization of a credal partition

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	
More	complex	

Less	complex	

interval	dominance	
or	maximum	mass	plausibility		

of	singletons	

maximum	
plausibility	maximum	

probability	

plausibility-probability		
transforma'on	
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Clustering Credal partition

Evidential clustering algorithms

1 Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data
HCM, FCM family

2 EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):
Attribute or proximity (possibly non metric) data
Multidimensional scaling approach

3 EK-NNclus (Denoeux et al, 2015)
Attribute or proximity data
Searches for the most plausible partition of a dataset

Thierry Denœux Classification and clustering BFTA 2019 91 / 103



Clustering EVCLUS

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Contextual Discounting Evidential K -NN
Evidential neural network classifier

2 Neural networks as evidential classifiers
Logistic regression and extensions
Binomial classifiers
Multinomial classifers

3 Clustering
Credal partition
EVCLUS
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Clustering EVCLUS

Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij ), how to build a
“reasonable” credal partition ?
We need a model that relates cluster membership to dissimilarities.
Basic idea: “The more similar two objects, the more plausible it is that
they belong to the same group”.
How to formalize this idea?
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Clustering EVCLUS

Formalization

Let mi and mj be mass functions regarding the group membership of
objects oi and oj .
It can be shown that the plausibility that objects oi and oj belong to the
same group is

plij (S) =
∑

A∩B 6=∅

mi (A)mj (B) = 1− κij

where κij = degree of conflict between mi and mj .
Problem: find a credal partition M = (m1, . . . ,mn) such that larger
degrees of conflict κij correspond to larger dissimilarities dij .
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Clustering EVCLUS

Cost function

Approach: minimize the discrepancy between the dissimilarities dij and
the degrees of conflict κij .
Example of a cost (stress) function:

J(M) =
∑
i<j

(κij − ϕ(dij ))2

where ϕ is an increasing function from [0,+∞) to [0,1], for instance

ϕ(d) = 1− exp(−γd2).
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Clustering EVCLUS

Butterfly example
Data and dissimilarities

Determination of γ in ϕ(d) = 1− exp(−γd2): fix α ∈ (0,1) and d0 such that,
for any two objects (oi ,oj ) with dij ≥ d0, the plausibility that they belong to the
same cluster is at least 1− α.
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Clustering EVCLUS

Butterfly example
Credal partition
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Clustering EVCLUS

Butterfly example
Shepard diagram
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Clustering EVCLUS

Example with a four-class dataset (2000 objects)

−5 0 5 10

−
5

0
5

10

x[, 1]

x[
, 2

]

−5 0 5 10

−
5

0
5

10

x[, 1]

x[
, 2

]

−5 0 5 10

−
5

0
5

10

x[, 1]

x[
, 2

]

−5 0 5 10

−
5

0
5

10

x[, 1]

x[
, 2

]

Thierry Denœux Classification and clustering BFTA 2019 99 / 103



Clustering EVCLUS

Modifications of EVCLUS for large datasets

Initially, EVCLUS used a gradient descent algorithm to minimize the
stress function, and it required to store the whole dissimilarity matrix: it
was limited to small sets of proximity data (a few hundreds of objects).
Recent improvements to EVCLUS (Denœux et al., 2016) make it
applicable to large datasets (∼ 104 − 105 objects and hundreds of
classes).
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Summary

Summary

The theory of belief function has great potential for solving challenging
machine learning problems:

Classification (supervised learning)
Clustering (unsupervised learning)

Belief functions allow us to:
Learn from weak information (partially supervised learning, imprecise and
uncertain data)
Quantify uncertainty on the outputs of a learning system (e.g., prediction
uncertainty,credal partition)
Combine the outputs from several learning systems (ensemble classification
and clustering)

Recent developments make it possible to address problems in very large
frames (multilabel classification, clustering, preference learning, etc.)
R packages evclass and evclust available from CRAN at

https://cran.r-project.org/web/packages
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