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Classification

@ We consider a population of objects partitioned in ¢ groups (classes).
Each object is described by a feature vector X = (Xi,..., Xy) € X of d
features and a class variable Y € © indicating group membership.

@ Problem: given a learning set {(x;, y;)}_; containing observations of X
and Y for n objects, build a classifier

C: X —o0

that predicts the value of Y given X.
@ Example: digit recognition, X = [0,1]'*'6, © = {0,...,9}.

Q0DQCC
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Clustering

HCM

@ n objects described by
o Attribute vectors X, ..., X, (attribute
data) or
e Dissimilarities (proximity data)

@ Goal: find a meaningful structure in the
data set, usually a partition into ¢
subsets, or a more complex
mathematical representation (fuzzy

- - ° 2 partition, etc.)
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Why can belief functions be useful?

@ Exploit the high expressiveness of belief functions to
@ Quantify prediction uncertainty (for, e.g., combining several classifiers, or
providing the user with richer information about the uncertainty of the
classification)
@ Reveal richer information about the data (clustering problems)
@ Represent uncertainty about the data themselves:

@ Uncertain/soft class labels (partially supervised learning)
@ Clustering of imprecise/uncertain data
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Overview of the main approaches

Classification

@ Classifier fusion: convert the outputs from standard classifiers into belief
functions and combine them using, e.g., Dempster’s rule (e.g., Quost al.,
2011)

@ Evidential classifiers directly providing belief functions as outputs:

o Generalized Bayes theorem, extends the Bayesian classifier when class
densities and priors are ill-known (Appriou, 1991; Denceux and Smets, 2008)

e Distance-based classifiers: evidential K-NN rule (Denceux, 1995), evidential
neural network classifier (Denceux, 2000)

o Neural networks and many other machine learning models are evidential
classifiers! (Denceux, 2019)
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Overview of the main approaches

Clustering

Express uncertainty about the membership of objects to clusters using the
notion of credal partition:

@ Maitch degrees of conflict with inter-point distances: EVCLUS algorithm
(Denceux and Masson, 2004; Denceux et al., 2016)

@ Extend prototype-based clustering methods such as the hard or fuzzy
c-means: Evidential c-means (Masson and Denceux, 2008)

@ Decision-directed clustering using the evidential K-NN classifier:
EK-NNclus algorithm (Denceux et al, 2015)
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Outline

@ Evidential distance-based classifiers
@ Evidential K-NN rule
@ Contextual Discounting Evidential K-NN
@ Evidential neural network classifier

@ Neural networks as evidential classifiers
@ Logistic regression and extensions
@ Binomial classifiers
@ Multinomial classifers

e Clustering
@ Credal partition

@ EVCLUS
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Evidential distance-based classifiers

Outline

@ Evidential distance-based classifiers
@ Evidential K-NN rule
@ Contextual Discounting Evidential K-NN
@ Evidential neural network classifier

Thierry Denceux Classification and clustering

BFTA 2019

8/103



@ Evidential distance-based classifiers
@ Evidential K-NN rule
@ Contextual Discounting Evidential K-NN
@ Evidential neural network classifier

e Neural networks as evidential classifiers
@ Logistic regression and extensions
@ Binomial classifiers
@ Multinomial classifers

e Clustering
@ Credal partition

@ EVCLUS
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Evidential distance-based classifiers Evidential K-NN rule

Principle
o
O X @ Let Nk(x) C L denote the set of the K
o d ® o nearest neighbors of x in £, based on some
1/ distance measure
B xo @ Each x; € Nk(x) can be considered as a
[~ piece of evidence regarding the class of x
O @ The strength of this evidence decreases
(o) ° with the distance o; between x and x;
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Evidential distance-based classifiers Evidential K-NN rule

Definition

@ Frame of discernment: © = {64,...,6.}.

@ The evidence of (x;, ;) can be represented by the following mass
function on ©:

mi({0k}) = vk () vy, k=1,....c
mi(©) =1 — ok (d))

where
o yik = I(y; = bk)
® vk, k=1,...,care decreasing functions from [0, +o0) to [0, 1] such that
|imdﬁ+oo gok(d) =0
@ The evidence of the K nearest neighbors of x is pooled using Dempster’s
rule of combination
m= @ m

X; GNK(X)

@ Decision: maximum plausibility.
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Evidential distance-based classifiers Evidential K-NN rule

Learning

@ Choice of functions yy: for instance, px(d) = a exp(—y,ad?).
@ Parameters ~4, ..., can be optimized (see below).

@ Parameter v = (71,...,7¢) can be learnt from the data by minimizing the
following cost function

ZZP/ wi) = Yik)?,

i=1 k=1

where El,- is the contour function corresponding to m; computed using the
K-NN of observation x;.

@ Function C(+) can be minimized by an iterative nonlinear optimization
algorithm.
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Evidential distance-based classifiers Evidential K-NN rule

Example: Vehicles dataset

@ The data were used to distinguish 3D objects within a 2-D silhouette of
the objects.

@ Four classes: bus, Chevrolet van, Saab 9000 and Opel Manta.
@ 846 instances, 18 numeric attributes.
@ The first 564 objects are training data, the rest are test data.
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Evidential distance-based classifiers Evidential K-NN rule

Vehicles datasets: result
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Evidential distance-based classifiers Evidential K-NN rule

Partially supervised data

@ We now consider a learning set of the form
L={(x;,m),i=1,...,n}

where
@ X; is the attribute vector for instance i, and
@ m; is a mass function representing uncertain expert knowledge about the
class y; of instance i (soft label)
@ Special cases:

o mi({wk}) =1 for all i: supervised data
e m;(Q2) = 1 for all iz unsupervised data
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Evidential distance-based classifiers Evidential K-NN rule

Evidential k-NN rule for partially supervised data
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Thierry Denceux

@ Each mass function my; is discounted with a
rate depending on the distance dj:

mi(A) = ¢ (di) mi(A), VAC©

@ The K mass functions m; are combined
using Dempster’s rule:

m=- @ m

X/ENK(X)
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Evidential distance-based classifiers Contextual Discounting Evidential K-NN

Outline

0 Evidential distance-based classifiers

@ Contextual Discounting Evidential K-NN
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Evidential distance-based classifiers Contextual Discounting Evidential K-NN

Contextual Discounting Evidential K-NN

@ Arecent variant introduced by Denoeux and Kanjanatarajul (2019).
@ We consider partially labeled data £ = {(x;, m;)}7 .

@ The mass function m; induced by x; € Nk(x) is now obtained from m; by
the contextual discounting operation with discount rates 1 — gk(d}), with

Bi(d)) = aexp(—udf), k=1.....c,

witha € [0,1]and v >0, k=1,...,c.
@ Combined contour function:

plok) o« T 11— Br(d) + Bu(a)pl(0k)], k=1,....c.

X €ENk(X)

° E/ can be computed, up to a multiplicative constant, in time proportional
to the number K of neighbors and the number of ¢ of classes.
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Evidential distance-based classifiers Contextual Discounting Evidential K-NN

Learning

@ To learn the parameters ¢ = («, 71, . .., 7¢) of the CD-EKNN classifier, we
maximize the evidential likelihood function introduced in by Denoeux
(2013).

@ Case of fully supervised data £ = {(x;, y;)}_,: the conditional likelihood
after observing the true class labels y1, ..., y,is

Le(v) = H H,O/ k)" =T D BilOx)yix,

i=1 k=1 i=1 k=1

where p; be the probability distribution obtained from /5/,- by normalization.
@ Extension to partially supervised data £ = {(x;, m;)}7_;:

n

Le(v) = [ [ D_ Bi(6x)ph(0%),

i=1 k=1

expected plausibility
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Evidential distance-based classifiers Contextual Discounting Evidential K-NN

Results: simulated data with hard labels

Simulated data
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Evidential distance-based classifiers Contextual Discounting Evidential K-NN

Results: simulated data with soft labels

Simulated data, p=0.5

LOO error rate
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Evidential distance-based classifiers Evidential neural network classifier

Outline

0 Evidential distance-based classifiers

@ Evidential neural network classifier
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Evidential distance-based classifiers Evidential neural network classifier

Principle

@ The learning set is summarized by r
O  prototypes.
O o O. 2 @ Each prototype p; has membership
.|:| d, /,. degree uj to each class wy, with
O PO O S U = 1.
@ Each prototype p; is a piece of evidence
A A about the class of x, whose reliability
A a A decreases with the distance d; between
A x and p;.
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Evidential distance-based classifiers Evidential neural network classifier

Propagation equations

@ Mass function induced by prototype p;:

m,-({ek}) = ojlUjk exp(—y,-d,?), k = 1,. ..,C
m,(@) =1—q; exp(—w,-d,?)

@ Combination:

r
m= @m;
i=1

@ The combined mass function m has as focal sets the singletons {6},
k=1,...,cand ©.
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Evidential distance-based classifiers Evidential neural network classifier

Neural network implementation
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Evidential distance-based classifiers Evidential neural network classifier

Learning

@ The parameters are the

e The prototypes pi, i = 1,...,r (rp parameters)
@ The membership degrees uy, i=1,...,r, k =1..., c (rc parameters)
e Theajand~;, i=1...,r (2r parameters).

@ Let ¢ denote the vector of all parameters. It can be estimated by
minimizing a cost function such as

ZZ pllk_y/k +)\Zal

i=1 k=1

where pli is the output plausibility for instance i and class k, and p is a
regularization coefficient (hyperparameter).

@ The hyperparameter A can be optimized by cross-validation.
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Mass on {6}

Petal. Width
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Mass on {62}

Petal.Width

Petal.Length
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Mass on {63}
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data

Mass on ©
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Plausibility of {61}
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Plausibility of {6}
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Evidential distance-based classifiers Evidential neural network classifier

Results on the Iris data
Plausibility of {63}
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Neural networks as evidential classifiers

Outline

@ Neural networks as evidential classifiers
@ Logistic regression and extensions
@ Binomial classifiers
@ Multinomial classifers
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Neural networks as evidential classifiers

Deep Learning

Samoyed (16); Papillon (5.7);

Convolutions and ReLU
LT G L M LT T MY S S M L T e o o i & M S T s e &

””’ﬁ"’"’gﬂ - - - - T LA

Convolutions and ReLU

LT - - - - L £ LT L L5 S

" A

Convolutions and ReLU

\' L
’f [ 3 3 ’::d_, s e

(From Le Cun et al., Nature, 2015)

@ In recent years, applications of Machine Learning (ML) have been
flourishing following new developments in deep learning technology.

@ A lot of progress has been made in extracting high-order features from

data, so as to solve very complex classification problems.
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Neural networks as evidential classifiers

Some challenges

@ ML algorithms (and especially deep learning models) are essentially
black boxes.
@ Major challenges:
@ Make ML algorithms more transparent so that machine predictions can be
interpreted (and trusted) by humans
@ Assess the uncertainty of the predictions, to make ML algorithms reliable
and suitable for safety-critical applications.
@ To meet these challenges, we need new perspectives on how
classification algorithms actually work.

@ One such perspective is provided by the theory of belief functions.
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Neural networks as evidential classifiers Logistic regression and extensions

Outline

@ Neural networks as evidential classifiers
@ Logistic regression and extensions
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Neural networks as evidential classifiers Logistic regression and extensions

Binomial Logistic regression

@ Consider a binary classification problem with Y € © = {64, 6,}.
@ Let p(x) denote the probability that Y = 6 given that X = x.
@ (Binomial) Logistic Regression (LR) model:

p(x)

RETE)

with 8 € R? and §y € R. Equivalently,
p(x) = o(B"x + fo),

where o(u) = (1 + exp(—u))~" is the logistic function.

= B7x + Bo,
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Neural networks as evidential classifiers Logistic regression and extensions

Binomial Logistic Regression (continued)

p(x)

Logistic
transformation

Given a learning set {(x;, i)}, parameters 8 and 3, are usually estimated
by minimizing the cross-entropy error function:

C(B. Bo) = Z{/y,—01)Inp(x,)+/(y,—92)ln[1— PO}

i=1
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Neural networks as evidential classifiers Logistic regression and extensions

Multinomial Logistic Regression

@ Multinomial logistic regression (MLR) extends binomial LR to ¢ > 2
classes by assuming the following model:

In pk(x) = BEx + Bro + 7,
where px(x) = P(Y = 0x|X = x), Bx €RY, Byo € Rand y c Ris a
constant that does not depend on k.

@ The posterior probability of class 6, can then be expressed using the
softmax transformation as

exp(Br X + Bro)
X) = .
pe) S exp(8] x + Bio)
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Neural networks as evidential classifiers Logistic regression and extensions

Multinomial Logistic Regression (continued)

s pl(x)
58 f

> .E S > pk(X)
A2 :
S :

> £ pc(X)

Parameters (3, Bko), K = 1..., c can be estimated by minimizing the
cross-entropy as in the binomial case.
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Neural networks as evidential classifiers Logistic regression and extensions

Nonlinear generalized LR classifiers

p4(x)

pL(X)

softmax

p.(x)

@ LR classifiers are linear classifiers (they separate classes in feature
space by hyperplanes).

@ LR can be applied to transformed features ¢;(x), j=1,...,J, where the
¢;’s are nonlinear mappings from RY to R. We get nonlinear generalized
LR classifiers.

@ Both the new features ¢;(x) and the coefficients (5, Sko) are usually
learnt simultaneously by minimizing some cost function.

Thierry Denceux Classification and clustering BFTA 2019 42/103



Neural networks as evidential classifiers Logistic regression and extensions

Generalized LR models

Generalized additive models:
oi(x) = vj(x))
Radial basis function networks:
3i(x) = (X = vill)

Support vector machines:
¢j(x) = K(x, X))

Multilayer feedforward neural networks (NNs)
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Neural networks as evidential classifiers Logistic regression and extensions
Multilayer feedforward neural networks

hidden layer 1 hidden laver 2 hidden layer 3

input layer
\\\

=9

@ Feedforward NNs are models composed of elementary computing units
(or “neurons”) arranged in layers. Each layer computes a vector of new
features as functions of the outputs from the previous layer as

o = b (ng/)rqs(/m i W,-(é)) c =1, d

where ¢!=") € RY-1 is the vector of outputs from the previous layer.
@ For c-class classification, the output layer is typically a softmax layer with
¢ output units.
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Neural networks as evidential classifiers Logistic regression and extensions

Relation with DS theory?

@ LR and NN models seem totally unrelated to DS theory.
@ Yet...
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o Evidential distance-based classifiers
@ Evidential K-NN rule
@ Contextual Discounting Evidential K-NN
@ Evidential neural network classifier

@ Neural networks as evidential classifiers
@ Logistic regression and extensions
@ Binomial classifiers
@ Multinomial classifers

e Clustering
@ Credal partition

@ EVCLUS
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Neural networks as evidential classifiers Binomial

Features as evidence

@ Consider a binary classification problem with ¢ = 2 classes in
© = {61,02}. Let ¢(x) = (¢1(x), ..., dy(x)) be a vector of J features.
@ Each feature value ¢;(x) is a piece of evidence about the class Y € © of
the instance under consideration.
@ Assume that this evidence points either to 64 or 6, depending on the sign
of
W == Bigj(X) + qj,
where j; and o; are two coefficients:

e If w; > 0, feature ¢; supports class ¢; with weight of evidence w;
e If w; < 0, feature ¢; supports class 0> with weight of evidence —w;
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Neural networks as evidential ifi Binomial

Features as evidence (continued)

w;=p; ¢;(x) + oy

weight of evidence

support of 0, ’ support of 0,

=} 5 = = == DA
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Neural networks as evidential classifiers Binomial

Feature-based latent mass function

Under this model, the consideration of feature ¢; induces a simple mass
function

m; = {91}W;r S5 {92}”’/'—,
where
° Wj+ = max(0, w;) is the positive part of w; and

e w; = max(0, —w;) is the negative part.

Thierry Denceux Classification and clustering BFTA 2019

49/103



Neural networks as evidential classifi

Binomial classifi

Combined latent mass function

Assuming that the values of the J features can be considered as independent

pieces of evidence, the feature-based latent mass functions can be combined
by Dempster’s rule:

3
@L

(16 @ {62}
:

J J
= (@{91}%*) ® (@{Qz}w’)
j=1 j=1

={0}" @ {02},

-
Il

where

o w = 21411 Wj+ is the total weight of evidence supporting 64

o w~ =Y/ w is the total weight of evidence supporting 6,.
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Neural networks as evidential classifiers Binomial

Expression of m

[1 — exp(—w")]exp(—w")

m({0:}) = .
mi{s)) = L= R lexpCw)
m(©) = exp(—1wjﬁ— wo)

where « is the degree of conflict:

k=1 —exp(—w")][1 —exp(—w")]
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Neural networks as evidential classifiers Binomial classifi

m({61}) and m(©) vs. weights of evidence

m({61}) m(©)
0 v 4
0.01
< < 4
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Neural networks as evidential classifiers Binomial classifi

Degree of conflict vs. weights of evidence
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Neural networks as evidential classifiers

Normalized plausibilities

Binomial classifi

The normalized plausibility of class 61 as

PI({61}) _ m({61}) + m(®)
PI({61}) + PI({62}) — m({61}) + m({62}) + 2m(O)
1

" 1 expl (870 + Bo)] Pe)

logistic transformation

with 8 = (B1,...,6y) and 5o = 2}1:1 .

Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the binomial LR model: the two models are equivalent.
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Neural networks as evidential ifi Binomial

Two Views of Binomial Logistic Regression

1
¢1(x) .
: L5
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Neural networks as evidential classifiers Binomial

Parameter identification

@ As explained before, parameters fo, 51, . . ., 84 can be estimated by
maximizing the likelihood. Let 8y, 54, - . . , B4 be the corresponding MLEs.

@ However, the DS model has J more additional parameters aq, ..., ay
linked to By by the relation Z;; aj = fp: the problem is underdetermined.

@ Solution: find the parameter values o7, ..., o} that give us the least
informative mass function.

@ The least informative mass function is defined as the one based on the
smallest weights of evidence.
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Neural networks as evidential classifiers Binomial

Minimizing the sum of squared weights of evidence

@ Let {(x;,yi)}7_, be the learning set and let o = (o1, ..., ay).

@ The values o minimizing the sum of squared weights of evidence can be
found by solving the following minimization problem:

min f(cx Z Z (ﬁ,qﬁ/(x, + a,)

i=1 j=1

subject to Y7 ; aj = fo.
@ Solution:

. B
Q; = j JZBqu ﬂ/ﬂ/

with Hj = 1ﬁ¢j(Xf)-
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Neural networks as evidential classifiers Binomial

Example

@ Data about the intensity of ischemic heart disease risk factors in a rural
area of South Africa. Population: white males between 15 and 64.
Response variable: presence or absence of myocardial infarction (Ml).

@ Two variables: age and LDL (“bad” cholesterol).

15
1

10
1

]
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Neural networks as evidential cl Binomial

Weights of evidence
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Neural networks as evidential ifi Binomial

Feature mass functions
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Neural networks as evidential classifi Binomial

Degrees of belief (positive class)
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Neural networks as evidential ifi Binomial

Degrees of Plausibility (positive class)
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Neural networks as evidential ifi Binomial

Mass on © and degree of conflict
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Neural networks as evidential ifi Binomial

Decision regions
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Neural networks as evidential classifiers Multinomial classifers

Model

@ Let© = {04,...,60:.} withc > 2.
@ Each feature ¢; now induces ¢ simple mass functions mjq, ..., mg.
@ Mass function my points either to the singleton {64} or to its complement

{6k}, depending on the sign of

Wik = Bidj(X) + vk,

where (Bj, k), k =1,...,¢,j=1,...,J are parameters.

@ Expression of m:
my = {0} @ {0k}
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Neural networks as evidential classifiers Multinomial classifers

Combined latent mass function

@ The latent mass function induced by feature ¢; is

c

m; =P <{9k}W’; EB{Hk}W’k> .

k=1

@ Assuming the evidence from the J features to be independent, the
combined mass function is

c

J -
m=P <{9k}w,; ® [0} " >
j=1 k=1
c w-
.
- <{9k}wk o {0 ) |
k=1
where
o W, = E].J:1 wy is the total weight of evidence for class 6«
o w, =37, wyis the total weight of evidence against class 6«
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Neural networks as evidential classifiers Multinomial classifers

Link with multinomial logistic regression

The normalized plausibility of class 6 is:

Pi({6}) &P (Z,-L Biedj(X) + ﬂOk)
S PIHOY) ¢ exp (Z}/:1 Bindi(x) + 50/)

softmax transformation

= Pk(x),

with

J
Bok = Y _ k-
j=1

Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the multinomial LR model: the two models are equivalent.
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Multinomial Logistic Regression: DS view

94(x) T m,
q)j(x) .. m; ~ m
4
< g —> pl(x)
g % g pki(x)
(I)J(X) A mj * > pc(x)
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Example

Dataset: 900 instances, 3 equiprobable classes with Gaussian distributions
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NN model

@ NN with 2 layers of 20 and 10 neurons

@ Rel.U activation functions in hidden layers, softmax output layer
@ Batch learning, minibatch size=100

@ L, regularization in the last layer (A = 1).
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Mass on {0}

m({61})

02— 075
0.3 -2:25

-2 -1 0 1 2
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Mass on {02}

-2 -1 0 1 2
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Mass on {03}

m({8s})

-2 -1 0 1 2
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Mass on {61,602}

m({61,62})

] 0.04
0.95 5708
007 7508

o

o

- _|

]

o

]
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Mass on {61, 03}

m({61,03})

-2 -1 0 1 2
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Mass on {65, 03}

m({6,,63})

-2 -1 0 1 2
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Mass on ©

m(©)

-2 -1 0 1 2
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Hidden unit 2

1.0

mass
0.6 0.8

0.4

0.2

0.0

0 10 20 30 40 50
unit output
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Decision regions

92 {61162163}
| 01,6}
o {62163}
b T T T T I
-2 -1 0 1 2
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Clustering

Hard and soft clustering concepts

Clustering = finding groups in data.

Hard clustering: no representation of uncertainty. Each object is assigned to
one and only one group. Group membership is represented by
binary variables uy such that uy = 1 if object / belongs to group
k and uy = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uy € [0, 1] to each
group, with "¢, ux = 1. The u’s can be interpreted as
probabilities.

Possibilistic clustering: the uj are free to take any value in [0, 1]°. Each

number uj is interpreted as a degree of possibility that object i
belongs to group k.
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Clustering

Hard and soft clustering concepts

Rough clustering: each cluster wy is characterized by a lower approximation
wy and an upper approximation wg, with w, C wy; the
membership of object i to cluster k is described by a pair
(U, Uik) € {0,1}2, with uy < T, >4 Uy < 1 and
>kt Uik > 1.
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Clustering

Clustering and belief functions

clustering structure  uncertainty framework

fuzzy partition probability theory
possibilistic partition possibility theory
rough partition (rough) sets
? belief functions

@ As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework
for cluster analysis?

@ Objectives:

e Unify the various approaches to clustering

@ Achieve a richer and more accurate representation of uncertainty

e New clustering algorithms and new tools to compare and combine clustering
results.
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Clustering Credal partition

Evidential clustering

@ Let O={o04,...,0,} be a set of nobjects and Q = {wy,...,wc} be a set
of ¢ groups (clusters).
@ Each object o; belongs to at most one group.

@ Evidence about the group membership of object o; is represented by a
mass function m; on Q:
e for any nonempty set of clusters A C Q, m;(A) is the probability of knowing
only that o; belong to one of the clusters in A.
e m;(0) is the probability of knowing that o; does not belong to any of the ¢
groups.

Definition
The n-tuple M = (my, ..., my) is called a credal partition.
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Clustering Credal partition

Example
Butterfly data
2 12
* Credal partition
“1 0 {wi} {wo} {wi,wn}
2 < ms 0 1 0 0
. . ms 0 05 0 0.5
Y172 ‘\,:’ 10 s mg O 0 0 1
441 3 51617 911 me 09 0 01 0
\ 7/ /
“\'\’? 4 % 8 .7 ‘
-5 0 5 10
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Clustering Credal partition

Relationship with other clustering structures

More general

1 Credal partition m; general
Fuzzy partition Possibilistic partition Rough partition
m, Bayesian m; consonant m; logical
Hard partition | m; certain

Less general
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Clustering Credal partition

Rough clustering as a special case

@ Assume that each mj is logical, i.e., m;(A;) = 1 for some A; C Q, A; # 0.
@ We can then define the lower and upper approximations of cluster wy as

wi =10 € O Ai={wi}}, @k={0 € O|wk€ A}

@ The membership values to the lower and upper approximations of cluster
wg are Uy = Be/,-({wk}) and Uy = P/,-({wk}).

mfw)=1  m(wy, 0=l m({wh)=1

Lower

Upper
approximations 4

approximations

L | ¢ A A1
(] L al
1 u
,Y ,
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Summarization of a ¢

More complex

plausibility-probability
transformation

Clustering Credal partition

redal partition

| Credal partition |

plausibility
of singletons

Fuzzy partition |

| Possibilistic partition |

maximum
probability

/

Less complex

Thierry Denceux

maximum
plausibility

Classification and clustering

interval dominance

or maximum mass

| Rough partition
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Clustering Credal partition

Evidential clustering algorithms

@ Evidential c-means (ECM): (Masson and Denoeux, 2008):

o Attribute data
e HCM, FCM family

©@ EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):

e Attribute or proximity (possibly non metric) data
e Multidimensional scaling approach

© EK-NNclus (Denoeux et al, 2015)

o Attribute or proximity data
e Searches for the most plausible partition of a dataset
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Clustering EVCLUS

Learning a Credal Partition from proximity data

@ Problem: given the dissimilarity matrix D = (dj), how to build a
“reasonable” credal partition ?

@ We need a model that relates cluster membership to dissimilarities.

@ Basic idea: “The more similar two objects, the more plausible it is that
they belong to the same group”.

@ How to formalize this idea?
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Clustering EVCLUS

Formalization

@ Let m; and m; be mass functions regarding the group membership of
objects o; and o;.

@ It can be shown that the plausibility that objects o; and o; belong to the
same group is

pli(S) = > mi(A)m(B) =1—x;
ANB£()

where x;; = degree of conflict between m; and m;.

@ Problem: find a credal partition M = (my, ..., mp) such that larger
degrees of conflict x; correspond to larger dissimilarities dj.
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Cost function

@ Approach: minimize the discrepancy between the dissimilarities dj; and

the degrees of conflict ;.
@ Example of a cost (stress) function:

JM) = (ki — (dy))?

i<j
where ¢ is an increasing function from [0, +c0) to [0, 1], for instance

p(d) =1~ exp(—7d?).
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Butterfly example

Data and dissimilarities

Determination of v in ¢(d) = 1 — exp(—~d?): fix a € (0,1) and d, such that,
for any two objects (0;, 0;) with dj > db, the plausibility that they belong to the
same cluster is at least 1 — a.

Butterfly data

Eh 12

1.0
I

h 00—
[

0.8

X2

4

|
o(d)
So

0.4
I

“12 10 /

<41 356 7 911 N

- T 4 T 8 T T 1 \7/ T T ‘dD T T
-5 0 5 10 0 5 10 15 20
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Butterfly example

Credal partition

Butterfly data
SR 12 o |
o -
@ _|
s
©
g ,
X 8
£
‘o' ,
"1 2 10
N
3
41 3 56 7 911 -
l?‘ B 4 8 g 1 T T T T T T
T T T T
-5 0 5 10 2 4 6 8 10 12
X1 objects
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Butterfly example
Shepard diagram

1.0

%o

0.8

0.6

degrees of conflict
0.4

0.
o
o
oo

T T T T T
0.2 0.4 0.6 0.8 1.0

transformed dissimilarities
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Example with a four-class dataset (2000 objects)

X[, 2]

X[, 2]
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Clustering EVCLUS

Modifications of EVCLUS for large datasets

@ Initially, EVCLUS used a gradient descent algorithm to minimize the
stress function, and it required to store the whole dissimilarity matrix: it
was limited to small sets of proximity data (a few hundreds of objects).

@ Recent improvements to EVCLUS (Denceux et al., 2016) make it
applicable to large datasets (~ 10* — 10° objects and hundreds of
classes).
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Summary

Summary

@ The theory of belief function has great potential for solving challenging
machine learning problems:

o Classification (supervised learning)
o Clustering (unsupervised learning)
@ Belief functions allow us to:

o Learn from weak information (partially supervised learning, imprecise and
uncertain data)

e Quantify uncertainty on the outputs of a learning system (e.g., prediction
uncertainty,credal partition)

e Combine the outputs from several learning systems (ensemble classification
and clustering)

@ Recent developments make it possible to address problems in very large
frames (multilabel classification, clustering, preference learning, etc.)

@ R packages evclass and evclust available from CRAN at
https://cran.r—-project.org/web/packages
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