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Contents of this lecture

1 Fundamental concepts: belief, plausibility, commonality, conditioning,
basic combination rules.

2 Some more advanced concepts: informational ordering, cautious rule,
compatible frames.
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Theory of belief functions
History

A formal framework for representing and reasoning with uncertain
information.
Also known as Dempster-Shafer (DS) theory or Evidence theory.
Originates from the work of Dempster (1967)1 in the context of statistical
inference.
Formalized by Shafer (1976)2 as a theory of evidence.
Popularized and developed by Smets in the 1980’s and 1990’s as the
“Transferable Belief Model”.
Starting from the 1990’s, growing number of applications in information
fusion, knowledge representation, machine learning (classification,
clustering), reliability and risk analysis, etc.

1A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping, Annals of
Mathematical Statistics, 38:325–339, 1967.

2G. Shafer. A mathematical theory of evidence. Princeton University Press, Princeton, N.J.,
1976.
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Theory of belief functions
Main idea

The theory of belief functions extends both logical/set-based formalisms
(such as Propositional Logic and Interval Analysis) and Probability
Theory:

I A belief function may be viewed both as a generalized set and as a
nonadditive measure

I The theory includes extensions of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection, union, inclusion,
etc.).

DS reasoning produces the same results as probabilistic reasoning or
interval analysis when provided with the same information.
However, the greater expressive power of the theory of belief functions
allows us to represent what we know in a more faithful way.
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Relationships with other theories

DS#theory#

Fuzzy#sets#&#
Possibility#theory#

Imprecise##
probability#

Rough#sets#

Probability##
theory#
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Mass functions
Belief and plausibility functions
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2 Selected advanced topics
Informational orderings
Cautious rule
Compatible frames
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Basic notions Mass functions
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Basic notions Mass functions

Mass function
Definition

Definition (Frame of discernment, mass function, focal set)
Let Ω be the finite set called a frame of discernment. A mass function on Ω is
a mapping m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1

Every subset A of Ω such that m(A) > 0 is a focal set of m. If m(∅) = 0, m is
said to be normalized (assumed in this lecture).

In DS theory, a mass function is used to represent evidence about an uncertain
variable X taking values in Ω.
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Basic notions Mass functions

Example: road scene analysis

Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments
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Basic notions Mass functions

Example: road scene analysis (continued)

Let X be the type of object in some region of the image, and
Ω = {G,R,T ,O,S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky.
Assume that a lidar sensor (laser telemeter) returns the information
X ∈ {T ,O}, but we there is a probability p = 0.1 that the information is
not reliable (because, e.g., the sensor is out of order).
How to represent this information by a mass function?
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Basic notions Mass functions

Formalization

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	
T	
O	

G	
R	

S	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

I If the state is “working”, we know that X ∈ {T ,O}.
I If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by the following mass
function m on Ω:

m({T ,O}) = 0.9, m(Ω) = 0.1
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Basic notions Mass functions

Meaning of a mass function

In the previous example,
I m({T ,O}) = 0.9 is the probability of knowing only that X ∈ {T ,O}, and

nothing more
I m(Ω) = 0.1 is the probability of knowing nothing at all.

In general, what is the meaning (semantics) of a mass function in DS
theory?
A precise interpretation was proposed by Shafer (1981)3: random code
semantics.

3G. Shafer. Constructive probability. Synthese, 48(1):1–60, 1981.
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Basic notions Mass functions

Random code semantics

We consider a situation in which we receive a coded message containing
reliable information about variable X ∈ Ω.
The message was encoded using some code in the set S = {c1, . . . , cn}.
There is a multi-valued mapping Γ : S → 2Ω \ {∅} that defines the
meaning of the message: if code ci was used, then the meaning of the
message is “X ∈ Γ(ci )”.
We don’t know which code was used, but we know that each code ci had
a chance pi of being selected, with

∑n
i=1 pi = 1.

Then m(A) is the probability that the meaning of the message is “X ∈ A”:

m(A) = P({c ∈ S : Γ(c) = A}) =
∑

i:Γ(ci )=A

pi
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Basic notions Mass functions

Random code semantics (continued)

In practice, we do not receive randomly coded messages, but we can
construct a mass function by comparing our evidence about some
variable X , to a hypothetical situation in which we receive a randomly
coded message.
A mass function m can be elicited by finding the “coded-message”
canonical example that is the most similar to our evidence.
Remark: The tuple (S,2S,P,Ω,2Ω, Γ) is called a random set. This notion
plays an important role for defining belief functions in infinite spaces. I will
also introduce the more general notion of random fuzzy set in a later
lecture.
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Basic notions Mass functions

Special mass functions

Definition (Logical mass function)
If a mass function has only one focal set A ⊆ Ω., it is said to be logical; we
denote it as m[A]. It represents “infallible” evidence that tells us that X ∈ A for
sure and nothing more. (There is a one-to-one correspondence between
logical mass functions and nonempty sets).

Definition (Vacuous mass function)
The vacuous mass function m? is the logical mass function such that
m?(Ω) = 1. It represents total ignorance.

Definition (Bayesian mass function)
A mass function is Bayesian if its focal sets are singletons. It is equivalent to a
probability distribution.
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Basic notions Belief and plausibility functions
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Basic notions Belief and plausibility functions

Definitions

Definition (Belief, plausibility, contour functions)
Given a mass function m on Ω, the corresponding belief and plausibility
functions are mappings from 2Ω to [0,1] defined as follows:

Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A 6=∅

m(B) = 1− Bel(A).

The mapping pl :→ Ω such that pl(ω) = Pl({ω}) is called the contour function
associated to m.

Interpretation:
Bel(A) is a measure of the total support given to A
Pl(A) is a measure of the lack of support given to A
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Basic notions Belief and plausibility functions

Road scene analysis example

We had Ω = {G,R,T ,O,S} and

m({T ,O}) = 0.9, m(Ω) = 0.1

Degrees of belief and plausibility of some subsets of Ω:

A ∅ {T} {O} {T ,O} {T ,O,R} {T ,R} {R,S} Ω
Bel(A) 0 0 0 0.9 0.9 0 0 1
Pl(A) 0 1 1 1 1 1 0.1 1
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Basic notions Belief and plausibility functions

Elementary properties

Bel(∅) = Pl(∅) = 0
Bel(Ω) = Pl(Ω) = 1
Superadditivity of Bel :

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Subadditivity of Pl :

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)

When m is Bayesian, the two mappings Bel and Pl are equal and
additive:

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for all A ⊆ Ω.
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Basic notions Belief and plausibility functions

Characterization of belief functions

Function Bel : 2Ω → [0,1] is completely monotone: for any k ≥ 2 and for
any family A1, . . . ,Ak in 2Ω:

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)

Conversely, to any completely monotone set function Bel such Bel(∅) = 0
and Bel(Ω) = 1 corresponds a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Basic notions Belief and plausibility functions

Relations between m, Bel and Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions.
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel and Pl are thus three equivalent representations of a piece of
evidence.
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Basic notions Belief and plausibility functions

Relationship with Possibility Theory

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant.
The following relations then hold:

Pl(A ∪ B) = max (Pl(A),Pl(B)) , ∀A,B ⊆ Ω

and the plausibility function can be computed from the contour function as

Pl(A) = max
ω∈A

pl(ω), ∀A ⊆ Ω

Pl is then called a possibility measure, and Bel is the dual necessity
measure.
In a sense, the theory of belief functions can thus be considered as more
expressive than possibility theory (but the combination operations are
different, as we will see later).
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Basic notions Belief and plausibility functions

Relation with imprecise probabilities

A probability measure P on Ω is said to be compatible with m if

∀A ⊆ Ω, Bel(A) ≤ P(A) ≤ Pl(A)

The set P(m) of probability measures compatible with m is called the
credal set of m

P(m) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A)}

Bel is the lower envelope of P(m)

∀A ⊆ Ω, Bel(A) = min
P∈P(m)

P(A)

Not all lower envelopes of sets of probability measures are belief
functions.
The theory of belief functions is not a theory of imprecise probabilities
(the two theories have different conditioning operations).
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Basic notions Dempster’s rule
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Basic notions Dempster’s rule

Road scene example continued

Variable X was defined as the type of object in some region of the image,
and the frame was Ω = {G,R,T ,O,S}, corresponding to the possibilities
Grass, Road, Tree/Bush, Obstacle, Sky
A lidar sensor gave us the following mass function:

m1({T ,O}) = 0.9, m1(Ω) = 0.1

Now, assume that a camera returns the mass function:

m2({G,T}) = 0.8, m2(Ω) = 0.2

How to combine these two pieces of evidence?
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Basic notions Dempster’s rule

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
O	

G	

R	
S	

If the two sensors are in states s1 and s2, then X ∈ Γ1(s1) ∩ Γ2(s2).
If the two pieces of evidence are independent, then the probability that
the sensors are in states s1 and s2 is P1({s1})P2({s2}).
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Basic notions Dempster’s rule

Computation

m1\m2 {T ,G} Ω
(0.8) (0.2)

{O,T} (0.9) {T} (0.72) {O,T} (0.18)
Ω (0.1) {T ,G} (0.08) Ω (0.02)

We then get the following combined mass function:

m({T}) = 0.72
m({O,T}) = 0.18
m({T ,G}) = 0.08

m(Ω) = 0.02
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Basic notions Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that the pair of states (s1, s2) cannot have
occurred.
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs.
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Basic notions Dempster’s rule

Computation

m1\m2 {G,R} Ω
(0.8) (0.2)

{O,T} (0.9) ∅ (0.72) {O,T} (0.18)
Ω (0.1) {G,R} (0.08) Ω (0.02)

We then get the following combined mass function,

m(∅) = 0
m({O,T}) = 0.18/0.28 = 9/14
m({G,R}) = 0.08/0.28 = 4/14

m(Ω) = 0.02/0.28 = 1/14
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Basic notions Dempster’s rule

Dempster’s rule

Definition (Degree of conflict)
Let m1 and m2 be two mass functions. Their degree of conflict is

κ =
∑

B∩C=∅

m1(B)m2(C)

Definition (Orthogonal sum)
Let m1 and m2 be two mass functions such that κ < 1. Their orthogonal sum
is the mass function defined by

(m1 ⊕m2)(A) =

∑
B∩C=A m1(B)m2(C)

1− κ
for all A 6= ∅ and (m1 ⊕m2)(∅) := 0.
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Basic notions Dempster’s rule

Properties

Proposition
1 If several pieces of evidence are combined, the order does not matter:

m1 ⊕m2 = m2 ⊕m1

m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3

2 A mass function m is not changed if combined with the vacuous mass
function m?:

m ⊕m? = m

3 Let pl1, pl2 and pl12 be the contour functions associated with,
respectively, m1, m2 and m1 ⊕m2. We have

pl12 =
1

1− κpl1pl2
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Basic notions Dempster’s rule

Misconception about Dempster’s rule

Following a 1979 report by Zadeh, it is repeated that “Dempster’s rule
yields counterintuitive results” (which is usually used as a justification to
introduce new combination rules)
Zadeh’s example: Ω = {a,b, c}, two experts

m1({a}) = 0.99, m1({b}) = 0.01 m1({c}) = 0

m2({a}) = 0, m2({b}) = 0.01 m2({c}) = 0.99

We get (m1 ⊕m2)({b}) = 1, which is claimed to be “counterintuitive”
because both experts considered b as very unlikely.
But Expert 1 claims that c is absolutely impossible, and Expert 2 claims
that a is absolutely impossible, so b is the only remaining possibility!
Dempster’s rule does produce sound results when used and interpreted
correctly.
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Basic notions Dempster’s rule

Dempster’s conditioning

Conditioning is a special case of Dempster’s rule, where a mass function
m is combined with a logical mass function m[A]. Notation:

m ⊕m[A] = m(· | A)

It can be shown that
Pl(B | A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and m[A] is a logical mass function, then m ⊕m[A] is a Bayesian mass
function corresponding to the conditioning of m by A.
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Basic notions Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Basic notions Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q12 be the commonality function associated to m1 ⊕m2.
We have

Q12(A) =
1

1− κQ1(A)Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1
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Basic notions Dempster’s rule

Smets’ disjunctive rule

Let m1 and m2 be two mass functions induced by random messages/sets
(S1,2S1 ,P1,Ω,2Ω, Γ1) and (S2,2S2 ,P2,Ω,2Ω, Γ2).
Previously, we have assumed that both messages were reliable, i.e., if
the true codes are c1 ∈ S1 and c2 ∈ S2, we can conclude that
X ∈ Γ1(c1) ∩ Γ2(c2) for sure.
We can weaken this assumption by supposing only that at least one of
the two messages is reliable, i.e., if the true codes are c1 ∈ S1 and
c2 ∈ S2, we can only conclude that X ∈ Γ1(c1) ∪ Γ2(c2) for sure.
This leads to the Smets’ disjunctive rule:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω

Bel1 ∪©Bel2 = Bel1 · Bel2
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Selected advanced topics Informational orderings
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Selected advanced topics Informational orderings

Informational comparison of belief functions

Let m1 and m2 be two mass functions on Ω

In what sense can we say that m1 is more informative (committed) than
m2?
Special case:

I Let m[A] and m[B] be two logical mass functions
I m[A] is more committed than m[B] iff A ⊆ B

Extension to arbitrary mass functions?
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Selected advanced topics Informational orderings

Plausibility ordering

Definition
m1 is pl-more committed than m2 (noted m1 vpl m2) if

Pl1(A) ≤ Pl2(A), ∀A ⊆ Ω

or, equivalently,
Bel1(A) ≥ Bel2(A), ∀A ⊆ Ω.

Imprecise probability interpretation:

m1 vpl m2 ⇔ P(m1) ⊆ P(m2)

Properties:
I Extension of set inclusion:

m[A] vpl m[B] ⇔ A ⊆ B

I Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Commonality ordering

If m1 = m ⊕m2 for some m, and if there is no conflict between m and m2,
then Q1(A) = Q(A)Q2(A) ≤ Q2(A) for all A ⊆ Ω

This property suggests that smaller values of the commonality function
are associated with richer information content of the mass function

Definition
m1 is q-more committed than m2 (noted m1 vq m2) if

Q1(A) ≤ Q2(A), ∀A ⊆ Ω

Properties:
Extension of set inclusion:

m[A] vq m[B] ⇔ A ⊆ B

Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Strong (specialization) ordering

Definition
m1 is a specialization of m2 (noted m1 vs m2) if m1 can be obtained from m2
by distributing each mass m2(B) to subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B.

S is called a specialization matrix
Properties:

I Extension of set inclusion
I Greatest element: m?

I m1 vs m2 ⇒

{
m1 vpl m2

m1 vq m2
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Selected advanced topics Informational orderings

Least Commitment Principle

Definition (Least Commitment Principle)
When several belief functions are compatible with a set of constraints, the
least informative according to some informational ordering (if it exists) should
be selected.

A very powerful method for constructing belief functions!
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Selected advanced topics Cautious rule
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Selected advanced topics Cautious rule

Motivation

The basic rules ⊕ and ∪© assume the sources of information to be
independent, e.g.

I experts with nonoverlapping experience/knowledge
I nonoverlapping datasets

What to do in case of dependent/overlapping evidence?
I Describe the nature of the interaction between sources (difficult, requires a

lot of information)
I Use a combination rule that tolerates redundancy in the combined

information

Such rules can be derived from the LCP using suitable informational
orderings.
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Selected advanced topics Cautious rule

Principle

Two sources provide mass functions m1 and m2, and the sources are
both considered to be reliable.
After receiving these m1 and m2, the agent’s state of belief should be
represented by a mass function m12 more committed than m1, and more
committed than m2.
Let Sx (m) be the set of mass functions m′ such that m′ vx m, for some
x ∈ {pl ,q, s, · · · }. We thus impose that

m12 ∈ Sx (m1) ∩ Sx (m2).

According to the LCP, we should select the x-least committed element in
Sx (m1) ∩ Sx (m2), if it exists.
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Selected advanced topics Cautious rule

Need for a new ordering relation

The above approach works for special cases.
Example4: if m1 and m2 are consonant, then the q-least committed
element in Sq(m1) ∩ Sq(m2) exists and it is unique: it is the consonant
mass function with commonality function Q12 = min(Q1,Q2).
In general, neither existence nor uniqueness of a solution can be
guaranteed with any of the x-orderings, x ∈ {pl ,q, s}.
We need to define a new ordering relation.

4D. Dubois and H. Prade and Ph. Smets. New Semantics for Quantitative Possibility Theory.
Proc. of ECSQARU 2001, pp 410–421, Springer Verlag, 2001.
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Selected advanced topics Cautious rule

Simple mass functions

Definition: m is simple mass function if it has the following form

m(A) = 1− δ(A)

m(Ω) = δ(A)

for some A ⊂ Ω, A 6= ∅ and δ(A) ∈ (0,1].
The quantity w(A) = − ln δ(A) ≥ 0 is called the weight of evidence for A.
Mass function m is denoted by Aw(A).
Property:

Aw1(A) ⊕ Aw2(A) = Aw1(A)+w2(A)
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Selected advanced topics Cautious rule

Separable mass functions

Definition (Separable mass function)
A (normalized) mass function is separable if it can be written as the
orthogonal sum of simple mass functions:

m =
⊕
∅6=A⊂Ω

Aw(A)

with w(A) ≥ 0 for all A ⊂ Ω, A 6= ∅.
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Selected advanced topics Cautious rule

The w-ordering

Definition
Let m1 and m2 be two mass functions. We say that m1 is w-more committed
than m2 (denoted by m1 vw m2) if

m1 = m2 ⊕m.

for some separable mass function m.

How to check this condition?
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Selected advanced topics Cautious rule

Weight function

If m is separable, the corresponding weights of evidence can be
recovered as

w(A) =
∑
B⊇A

(−1)|B|−|A| ln Q(B) (1)

for all A ⊆ Ω.
For any nondogmatic mass function m, (i.e., such that m(Ω) > 0), we can
still define “weights” from (1), but we can have w(A) < 0.
Function w is called the weight function.
m can be computed from w by

m =
⊕
∅6=A⊂Ω

Aw(A),

although Aw(A) is not a proper mass function when w(A) < 0.
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Properties of the weight function

m is separable iff
w(A) ≥ 0, ∀A ⊂ Ω,A 6= ∅

Dempster’s rule can be computed using the w-function by

m1 ⊕m2 =
⊕
∅6=A⊂Ω

Aw1(A)+w2(A)

Equivalent definition of the w-ordering5

m1 vw m2 ⇔ w1(A) ≥ w2(A), ∀A ⊂ Ω,A 6= ∅ .

5T. Denoeux. Conjunctive and Disjunctive Combination of Belief Functions Induced by Non
Distinct Bodies of Evidence. Artificial Intelligence, 172:234–264, 2008.
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Cautious rule

Proposition
Let m1 and m2 be two nondogmatic mass functions with weight functions w1
and w2. The w-least committed element in Sw (m1) ∩ Sw (m2) exists and is
unique. It is defined by:

m1 ∧©m2 =
⊕
∅6=A⊂Ω

Amax(w1(A),w2(A))

Operator ∧© is called the (normalized) cautious rule.
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Computation

Cautious rule computation
m-space w-space

m1 −→ w1
m2 −→ w2

m1 ∧©m2 ←− max(w1,w2)

Remark: we often have simple mass functions in the first place, so that the w
function is readily available.
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Properties of the cautious rule

Commutative, associative
Idempotent :

∀m, m ∧©m = m

Distributivity of ⊕ with respect to ∧©

∀m1,m2,m3, (m1 ⊕m2) ∧©(m1 ⊕m3) = m1 ⊕ (m2 ∧©m3)

The common item of evidence m1 is not counted twice!
No neutral element, but m? ∧©m = m iff m is separable.

Thierry Denœux Introduction to belief functions BFTA 2023 54 / 77



Selected advanced topics Cautious rule

Basic rules

The four basic rules
Sources independent dependent
All reliable ⊕ ∧©
At least one reliable ∪© ∨©

∨© is the bold disjunctive rule

Thierry Denœux Introduction to belief functions BFTA 2023 55 / 77



Selected advanced topics Compatible frames

Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Compatible frames
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Refinement and coarsening
Example

Let us come back to the road scene analysis example, with
Ω = {G,R,T ,O,S}.
Assume that we have a vegetation detector, which can determine if a
region of the image contains vegetation or not. For this detector, the
frame of discernment is Θ = {V ,¬V}, where V means that there is
vegetation, and ¬V means that there is no vegetation.
We have the correspondence

V → {G,T}
¬V → {R,O,S}

The elements of Ω can be obtained by splitting some or all of the
elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening
of Ω
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Refinement and coarsening
General definition

Θ	
 Ω	

θ1	  

θ2	  
θ3	  

ρ	


Definition
A frame Ω is a refinement of a frame Θ iff there is a mapping ρ : 2Θ → 2Ω

(called a refining) such that:
{ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and
For all A ⊆ Ω, ρ(A) =

⋃
θ∈A ρ({θ}).
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Vacuous extension

In the road scene example, assume that the vegetation detector provides
the following mass function on Θ:

mΘ({V}) = 0.6, mΘ({¬V}) = 0.3, mΘ(Θ) = 0.1

How to express mΘ in Ω?
Solution: for all A ⊆ Θ, we transfer the mass mΘ(A) to ρ(A). Here,

mΘ({V}) = 0.6 → ρ({V}) = {G,T}
mΘ({¬V}) = 0.3 → ρ({¬V}) = {R,O,S}

mΘ(Θ) = 0.1 → ρ(Θ) = Ω

We finally get the following mass function on Ω,

mΘ↑Ω({G,T}) = 0.6, mΘ↑Ω({R,O,S}) = 0.3, mΘ↑Ω(Ω) = 0.1.

mΘ↑Ω is called the vacuous extension of mΘ in Ω.
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Expression of information in a coarser frame

Let us now assume that we have the following mass function on Ω,

mΩ({T}) = 0.4, mΩ({T ,O}) = 0.3, mΩ({R,S}) = 0.3.

How to express mΩ in Θ?
We cannot do it without loss of information, because, for instance, there is
no A ⊆ Θ such that ρ(A) = {T}: the mapping ρ does not have an inverse.
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Inner and outer reductions

Θ Ω
θ1	

θ2	
θ3	

ρ B

We can approximate any subset B of Ω by two subsets in Θ:
I The inner reduction of B:

ρ−1(B) = {θ ∈ Θ : ρ({θ}) ⊆ B}

I The outer reduction of B:

ρ−1(B) = {θ ∈ Θ : ρ({θ}) ∩ B 6= ∅}.

In the example:

ρ−1({T}) = ρ−1({T ,O}) = ρ−1({R,S}) = ∅

ρ−1({T}) = {V}, ρ−1({T ,O}) = {V ,¬V}, ρ−1({R,S}) = {¬V}
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Restriction

Definition
The restriction of mΩ in Θ is obtained by transferring each mass mΩ(B) to the
outer reduction of B: for all subset A of Θ,

mΩ↓Θ(A) =
∑

ρ−1(B)=A

mΩ(B)

In the example, we thus have

mΩ↓Θ({V}) = 0.4, mΩ↓Θ(Θ) = 0.3, mΩ↓Θ({¬V}) = 0.3

Remark: the vacuous extension of mΩ↓Θ is

m(Ω↓Θ)↑Ω({G,T}) = 0.4, m(Ω↓Θ)↑Ω(Ω) = 0.3

m(Ω↓Θ)↑Ω({R,S,O}) = 0.3

It is less precise that mΩ: we have lost information when expressing mΩ

in a coarser frame.
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Compatible frames of discernment

Definition
Two frames are compatible if they have a common refinement.

Example:

Ω

T	

O	

G	

R	 S	

V	

not	V	

Gr	 Not	Gr	

Θ1	

Θ2	
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Combination of mass functions on compatible frames

Definition
Let mΘ1 and mΘ2 be two mass functions defined on compatible frames Θ1 and
Θ2 with common refinement Ω. Their orthogonal sum in Ω is

mΘ1 ⊕mΘ2 = mΘ1↑Ω ⊕mΘ2↑Ω
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Example

Ω

T	

O	

G	

R	 S	

V	

not	V	

Gr	 Not	Gr	

Θ1	

Θ2	

Let

mΘ1 ({V}) = 0.3,mΘ1 ({¬V}) = 0.5,

mΘ1 ({V ,¬V}) = 0.2

and

mΘ2 ({Gr}) = 0.4,mΘ2 ({¬Gr}) = 0.5,

mΘ2 ({Gr ,¬Gr}) = 0.1

Their extensions are

mΘ1↑Ω({G,T}) = 0.3,mΘ1↑Ω({R,O,S}) = 0.5,mΘ1↑Ω(Ω) = 0.2

and

mΘ2↑Ω({G,R}) = 0.4,mΘ2↑Ω({T ,O,S}) = 0.5,mΘ2↑Ω(Ω) = 0.1
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Example (continued)

Calculation of the orthogonal sum:

mΘ2↑Ω

{G,R},0.4 {T ,O,S},0.5 Ω,0.1
{G,T},0.3 {G},0.12 {T},0.15 {G,T},0.03

mΘ1↑Ω {R,O,S},0.5 {R},0.2 {O,S},0.25 {R,O,S},0.05
Ω,0.2 {G,R},0.08 {T ,O,S},0.1 Ω,0.02
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Example: object association

Let E = {e1, . . . ,en} and F = {f1, . . . , fp} be two sets of objects perceived
by two sensors, or by one sensor at two different times.
Problem: given information about each object (position, velocity, class,
etc.), find a matching between the two sets, in such a way that each
object in one set is matched with at most one object in the other set.
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Method of approach

1 For each pair of objects (ei , fj ) ∈ E × F , use sensor information to build a
pairwise mass function mΘij on the frame Θij = {hij ,hij}, where

I hij ≡ “ei and fj are the same object”, and
I hij ≡ “ei and fj are different objects”

2 Combine the np mass functions mΘij

3 Find the matching relation with the highest plausibility.
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Building the pairwise mass functions
Using position information

Assume that each sensor provides an estimated position for each object.
Let dij denote the distance between the estimated positions of ei and fj ,
computed using some distance measure.
A small value of dij supports hypothesis hij , while a large value of dij

supports hypothesis hij . Depending on sensor reliability, a fraction of the
unit mass should also be assigned to Θij = {hij ,hij}.
Model:

mΘij
p ({hij}) = αϕ(dij )

mΘij
p ({hij}) = α (1− ϕ(dij ))

mΘij
p (Θij ) = 1− α

where α ∈ [0,1] is a degree of confidence in the sensor information and ϕ
is a decreasing function taking values in [0,1].
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Building the pairwise mass functions
Using velocity information

Let us now assume that each sensor returns a velocity vector for each
object. Let d ′ij denote the distance between the velocities of objects ei
and fj .

Here, a large value of d ′ij supports the hypothesis hij , whereas a small
value of d ′ij does not support specifically hij or hij , as two distinct objects
may have similar velocities.
Model:

mΘij
v ({hij}) = α′ψ(d ′ij )

mΘij
v (Θij ) = 1− α′ψ(d ′ij ),

where α′ ∈ [0,1] is a degree of confidence in the sensor information and
ψ is an increasing function taking values in [0,1].
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Building the pairwise mass functions
Using class information

Let us assume that the objects belong to classes. Let Ω be the set of
possible classes, and let mi and mj denote mass functions representing
evidence about the class membership of objects ei and fj .
If ei and fj do not belong to the same class, they cannot be the same
object. However, if ei and fj do belong to the same class, they may or
may not be the same object.

We can show that the mass function mΘij
c on Θij derived from mi and mj

has the following expression:

mΘij
c ({hij}) = κij

mΘij
c (Θij ) = 1− κij ,

where κij is the degree of conflict between mi and mj
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Combination

For each object pair (ei , fj ), a pairwise mass function mΘij representing all
the available evidence about Θij can finally be obtained as:

mΘij = mΘij
p ⊕mΘij

v ⊕mΘij
c

How to combine the np mass functions mΘij ?
Does there exist a common refinement of the frames Θij for (i , j)?
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Common refinement

<latexit sha1_base64="j2eUXZaDanNdWElrpkkHATdD4Jw="></latexit>

⇥ij
<latexit sha1_base64="efTlF+fz9MOIzWE65v3i6Bn9F+Y="></latexit>

hij
<latexit sha1_base64="hrjm/YbKicwBIXfpMpzA9b79Kh4="></latexit>

hij

<latexit sha1_base64="7TiRd6+N0mCDDQcZsVI3rNVsCUg="></latexit>Rij

<latexit sha1_base64="sWyyMSPEhUTPglbnbDhTRsjqIYQ=">AAAC4XicjVHLSsNAFD3GV31XXeoiWARXJRVFl0U3LqvYVrClTMbRjs2LZCKU0I07d+LWH3CrPyP+gf6Fd8YUfCA6IcmZc+85M/deN/JkohznZcQaHRufmCxMTc/Mzs0vFBeXGkmYxlzUeeiF8YnLEuHJQNSVVJ44iWLBfNcTTbe3r+PNKxEnMgyOVT8SbZ9dBPJccqaI6hRXWyGFtTrLWj5TXc48+2gw6GTyctAplpyyY5b9E1RyUEK+amHxGS2cIQRHCh8CARRhDwwJPaeowEFEXBsZcTEhaeICA0yTNqUsQRmM2B59L2h3mrMB7bVnYtScTvHojUlpY500IeXFhPVptomnxlmzv3lnxlPfrU9/N/fyiVXoEvuXbpj5X52uReEcu6YGSTVFhtHV8dwlNV3RN7c/VaXIISJO4zOKx4S5UQ77bBtNYmrXvWUm/moyNav3PM9N8aZvSQOufB/nT9DYLFe2y87hVqm6l4+6gBWsYYPmuYMqDlBDnbyv8YBHPFncurFurbuPVGsk1yzjy7Lu3wHTvpvK</latexit>

Rij

<latexit sha1_base64="Gq1IUuK1K7p13kXRuqN4iu5kKF8="></latexit>R
<latexit sha1_base64="1hLdQJr5fAwAG/wg8dgyahaJmWM="></latexit>⇢ij

Let R be the set of all admissible matching relations, and let Rij ⊆ R be
the subset of relations R such that (ei , fj ) ∈ R.
We can define a refining ρij from 2Θij to 2R. The frames Θij are
compatible.
Vacuously extending mΘij in R yields the following mass function:

mΘij↑R(Rij ) = mΘij ({hij}) = αij

mΘij↑R(Rij ) = mΘij ({hij}) = βij

mΘij↑R(R) = mΘij (Θij ) = 1− αij − βij .
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Combination of contour functions

The frame R is very big and computing the orthogonal sum of the np
mass functions

mR =
⊕

i,j

mΘij↑R

has exponential complexity.
Instead, we will only compute the combined contour function pl
corresponding to mR. We recall that

pl ∝
∏
i,j

plij ,

where plij denote the contour function corresponding to mΘij↑R.
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Expression of contour functions

We have

mΘij↑R(Rij ) = αij , mΘij↑R(Rij ) = βij , mΘij↑R(R) = 1− αij − βij .

For all R ∈ R,

plij (R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,

= (1− βij )
Rij (1− αij )

1−Rij ,

where Rij = 1 if ei and fj are matched and Rij = 0 otherwise.
Consequently, the combined contour function is

pl(R) ∝
∏
i,j

(1− βij )
Rij (1− αij )

1−Rij .
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Finding the most plausible matching

We have

ln pl(R) =
∑
i,j

[Rij ln(1− βij ) + (1− Rij ) ln(1− αij )] + C

=
∑
i,j

Rij ln
1− βij

1− αij
+ C′

The most plausible relation R∗ can thus be found by solving the following
binary linear optimization problem:

max
∑
i,j

Rij ln
1− βij

1− αij

subject to Rij ∈ {0,1}, ∀(i , j),
∑p

j=1 Rij ≤ 1, ∀i and
∑n

i=1 Rij ≤ 1, ∀j .
This problem can be shown to be equivalent to a linear assignment
problem and can be solved in O(max(n,p)3) time.
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