Introduction to belief functions

Thierry Denœux

Université de technologie de Compiègne, France Institut Universitaire de France https://www.hds.utc.fr/~tdenoeux

6th School on Belief Functions and their Applications Ishikawa, Japan, October 28, 2023

= nan

Contents of this lecture

- Fundamental concepts: belief, plausibility, commonality, conditioning, basic combination rules.
- Some more advanced concepts: informational ordering, cautious rule, compatible frames.

Image: Image:

Theory of belief functions

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory.
- Originates from the work of Dempster (1967)¹ in the context of statistical inference.
- Formalized by Shafer (1976)² as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's as the "Transferable Belief Model".
- Starting from the 1990's, growing number of applications in information fusion, knowledge representation, machine learning (classification, clustering), reliability and risk analysis, etc.

¹A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping, *Annals of Mathematical Statistics*, 38:325–339, 1967.

²G. Shafer. *A mathematical theory of evidence*. Princeton University Press, Princeton, N.J., 1976.

Theory of belief functions

- The theory of belief functions extends both logical/set-based formalisms (such as Propositional Logic and Interval Analysis) and Probability Theory:
 - A belief function may be viewed both as a generalized set and as a nonadditive measure
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.).
- DS reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

イロト イポト イヨト イヨト ほ

Relationships with other theories

		~	
Interr	V L.	LEU	

■ ■ = つへへ BFTA 2023 5/77

イロン イヨン イヨン モ

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Outline

Mass functions

- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

イロト イヨト イヨト イヨト

Mass function

Definition (Frame of discernment, mass function, focal set)

Let Ω be the finite set called a frame of discernment. A mass function on Ω is a mapping $m : 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

Every subset A of Ω such that m(A) > 0 is a focal set of m. If $m(\emptyset) = 0$, m is said to be normalized (assumed in this lecture).

In DS theory, a mass function is used to represent evidence about an uncertain variable X taking values in Ω .

Ihierry	Denceux

< □ > < 同 > < 臣 > < 臣 > 王目曰 のQ @

Example: road scene analysis

Real world driving scene

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: road scene analysis (continued)

- Let X be the type of object in some region of the image, and $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information X ∈ {T, O}, but we there is a probability p = 0.1 that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

イロト イポト イヨト イヨト ほ

Formalization

- Here, the probability *p* is not about *X*, but about the state of a sensor.
- Let *S* = {working, broken} the set of possible sensor states.
 - If the state is "working", we know that $X \in \{T, O\}$.
 - If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by the following mass function m on Ω :

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

• B > < B</p>

Meaning of a mass function

- In the previous example,
 - *m*({*T*, *O*}) = 0.9 is the probability of knowing only that *X* ∈ {*T*, *O*}, and nothing more
 - $m(\Omega) = 0.1$ is the probability of knowing nothing at all.
- In general, what is the meaning (semantics) of a mass function in DS theory?
- A precise interpretation was proposed by Shafer (1981)³: random code semantics.

³G. Shafer. Constructive probability. *Synthese*, 48(1):1–60, 1981.

Random code semantics

- We consider a situation in which we receive a coded message containing reliable information about variable X ∈ Ω.
- The message was encoded using some code in the set $S = \{c_1, \ldots, c_n\}$.
- There is a multi-valued mapping Γ : S → 2^Ω \ {∅} that defines the meaning of the message: if code c_i was used, then the meaning of the message is "X ∈ Γ(c_i)".
- We don't know which code was used, but we know that each code c_i had a chance p_i of being selected, with $\sum_{i=1}^{n} p_i = 1$.
- Then m(A) is the probability that the meaning of the message is " $X \in A$ ":

$$m(A) = P(\{c \in S : \Gamma(c) = A\}) = \sum_{i: \Gamma(c_i) = A} p_i$$

Random code semantics (continued)

- In practice, we do not receive randomly coded messages, but we can construct a mass function by comparing our evidence about some variable *X*, to a hypothetical situation in which we receive a randomly coded message.
- A mass function m can be elicited by finding the "coded-message" canonical example that is the most similar to our evidence.
- Remark: The tuple (S, 2^S, P, Ω, 2^Ω, Γ) is called a random set. This notion plays an important role for defining belief functions in infinite spaces. I will also introduce the more general notion of random fuzzy set in a later lecture.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Special mass functions

Definition (Logical mass function)

If a mass function has only one focal set $A \subseteq \Omega$, it is said to be logical; we denote it as $m_{[A]}$. It represents "infallible" evidence that tells us that $X \in A$ for sure and nothing more. (There is a one-to-one correspondence between logical mass functions and nonempty sets).

Definition (Vacuous mass function)

The vacuous mass function $m_{?}$ is the logical mass function such that $m_{?}(\Omega) = 1$. It represents total ignorance.

Definition (Bayesian mass function)

A mass function is Bayesian if its focal sets are singletons. It is equivalent to a probability distribution.

(I) < (I)

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

(4) E > (4) E

Definitions

Definition (Belief, plausibility, contour functions)

Given a mass function *m* on Ω , the corresponding belief and plausibility functions are mappings from 2^{Ω} to [0,1] defined as follows:

$$Bel(A) = \sum_{B\subseteq A} m(B)$$

$$Pl(A) = \sum_{B \cap A \neq \emptyset} m(B) = 1 - Bel(\overline{A}).$$

The mapping $pl :\to \Omega$ such that $pl(\omega) = Pl(\{\omega\})$ is called the contour function associated to *m*.

Interpretation:

- Bel(A) is a measure of the total support given to A
- PI(A) is a measure of the lack of support given to \overline{A}

Image: Image:

Road scene analysis example

• We had $\Omega = \{G, R, T, O, S\}$ and

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

Degrees of belief and plausibility of some subsets of Ω:

Α	Ø	{ <i>T</i> }	<i>{O}</i>	{ <i>T</i> , <i>O</i> }	{ <i>T</i> , <i>O</i> , <i>R</i> }	{ <i>T</i> , <i>R</i> }	{ <i>R</i> , <i>S</i> }	Ω
Bel(A)	0	0	0	0.9	0.9	0	0	1
PI(A)	0	1	1	1	1	1	0.1	1

Image: A matrix

- E - - E

Elementary properties

- $Bel(\emptyset) = Pl(\emptyset) = 0$
- $Bel(\Omega) = Pl(\Omega) = 1$
- Superadditivity of Bel:

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

• Subadditivity of *PI*:

$$PI(A \cup B) \leq PI(A) + PI(B) - PI(A \cap B)$$

 When m is Bayesian, the two mappings Bel and Pl are equal and additive:

$$Bel(A) = Pl(A) = \sum_{\omega \in A} m(\{\omega\})$$

for all $A \subseteq \Omega$.

Characterization of belief functions

Function *Bel* : 2^Ω → [0, 1] is completely monotone: for any k ≥ 2 and for any family A₁,..., A_k in 2^Ω:

$$\boxed{Bel\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,...,k\}} (-1)^{|I|+1} Bel\left(\bigcap_{i \in I} A_{i}\right)}$$

 Conversely, to any completely monotone set function Bel such Bel(Ø) = 0 and Bel(Ω) = 1 corresponds a unique mass function m such that:

$$m(A) = \sum_{\emptyset
eq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \quad \forall A \subseteq \Omega.$$

Relations between *m*, *Bel* and *Pl*

- Let *m* be a mass function, *Bel* and *Pl* the corresponding belief and plausibility functions.
- For all $A \subseteq \Omega$,

$$Bel(A) = 1 - Pl(\overline{A})$$
$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B)$$
$$m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B| + 1} Pl(\overline{B})$$

m, *Bel* and *Pl* are thus three equivalent representations of a piece of evidence.

Image: Image:

= nan

- E - - E -

Relationship with Possibility Theory

- When the focal sets of *m* are nested: A₁ ⊂ A₂ ⊂ ... ⊂ A_r, *m* is said to be consonant.
- The following relations then hold:

$$PI(A \cup B) = \max(PI(A), PI(B)), \quad \forall A, B \subseteq \Omega$$

and the plausibility function can be computed from the contour function as

$$PI(A) = \max_{\omega \in A} pI(\omega), \quad \forall A \subseteq \Omega$$

- *Pl* is then called a possibility measure, and *Bel* is the dual necessity measure.
- In a sense, the theory of belief functions can thus be considered as more expressive than possibility theory (but the combination operations are different, as we will see later).

Relation with imprecise probabilities

• A probability measure *P* on Ω is said to be compatible with *m* if

$$\forall A \subseteq \Omega$$
, $Bel(A) \leq P(A) \leq Pl(A)$

• The set $\mathcal{P}(m)$ of probability measures compatible with *m* is called the credal set of *m*

$$\mathcal{P}(m) = \{ \boldsymbol{P} : \forall \boldsymbol{A} \subseteq \Omega, \boldsymbol{Bel}(\boldsymbol{A}) \leq \boldsymbol{P}(\boldsymbol{A}) \}$$

• Bel is the lower envelope of $\mathcal{P}(m)$

$$\forall A \subseteq \Omega$$
, $Bel(A) = \min_{P \in \mathcal{P}(m)} P(A)$

- Not all lower envelopes of sets of probability measures are belief functions.
- The theory of belief functions is not a theory of imprecise probabilities (the two theories have different conditioning operations).

Thierry Denœux

BFTA 2023 23 / 77

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへつ

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

(4) E > (4) E

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega = \{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$m_1(\{T, O\}) = 0.9, \quad m_1(\Omega) = 0.1$$

• Now, assume that a camera returns the mass function:

$$m_2(\{G, T\}) = 0.8, \quad m_2(\Omega) = 0.2$$

• How to combine these two pieces of evidence?

Analysis

- If the two sensors are in states s_1 and s_2 , then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$.
- If the two pieces of evidence are independent, then the probability that the sensors are in states s₁ and s₂ is P₁({s₁})P₂({s₂}).

→ E → < E →</p>

Image: Image:

Computation

$$\begin{array}{c|cccc} m_1 \backslash m_2 & \{T,G\} & \Omega \\ (0.8) & (0.2) \\ \hline \{O,T\} (0.9) & \{T\} (0.72) & \{O,T\} (0.18) \\ \Omega (0.1) & \{T,G\} (0.08) & \Omega (0.02) \end{array}$$

We then get the following combined mass function:

$$m({T}) = 0.72$$
$$m({O, T}) = 0.18$$
$$m({T, G}) = 0.08$$
$$m(\Omega) = 0.02$$

31= 990

イロト イヨト イヨト イヨト

Case of conflicting pieces of evidence

- If Γ₁(s₁) ∩ Γ₂(s₂) = Ø, we know that the pair of states (s₁, s₂) cannot have occurred.
- The joint probability distribution on $S_1 \times S_2$ must be conditioned to eliminate such pairs.

Thierry Denœux

BFTA 2023 28 / 77

ELE NOR

Computation

We then get the following combined mass function,

$$m(\emptyset) = 0$$

$$m(\{O, T\}) = 0.18/0.28 = 9/14$$

$$m(\{G, R\}) = 0.08/0.28 = 4/14$$

$$m(\Omega) = 0.02/0.28 = 1/14$$

Thierry Denœux

BFTA 2023 29 / 77

Dempster's rule

Definition (Degree of conflict)

Let m_1 and m_2 be two mass functions. Their degree of conflict is

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

Definition (Orthogonal sum)

Let m_1 and m_2 be two mass functions such that $\kappa < 1$. Their orthogonal sum is the mass function defined by

$$(m_1 \oplus m_2)(A) = rac{\sum_{B \cap C = A} m_1(B)m_2(C)}{1-\kappa}$$

for all $A \neq \emptyset$ and $(m_1 \oplus m_2)(\emptyset) := 0$.

A B K A B K

Properties

Proposition

If several pieces of evidence are combined, the order does not matter:

 $m_1 \oplus m_2 = m_2 \oplus m_1$

 $m_1\oplus(m_2\oplus m_3)=(m_1\oplus m_2)\oplus m_3$

A mass function m is not changed if combined with the vacuous mass function m_?:

 $m \oplus m_? = m$

Solution Let pl_1 , pl_2 and pl_{12} be the contour functions associated with, respectively, m_1 , m_2 and $m_1 \oplus m_2$. We have

$$pl_{12} = \frac{1}{1-\kappa} pl_1 pl_2$$

Image: Image:

ㅋ ㅋ ㅋ ㅋ

Misconception about Dempster's rule

- Following a 1979 report by Zadeh, it is repeated that "Dempster's rule yields counterintuitive results" (which is usually used as a justification to introduce new combination rules)
- Zadeh's example: $\Omega = \{a, b, c\}$, two experts

 $m_1(\{a\}) = 0.99, \quad m_1(\{b\}) = 0.01 \quad m_1(\{c\}) = 0$

$$m_2(\{a\}) = 0, \quad m_2(\{b\}) = 0.01 \quad m_2(\{c\}) = 0.99$$

We get $(m_1 \oplus m_2)(\{b\}) = 1$, which is claimed to be "counterintuitive" because both experts considered *b* as very unlikely.

- But Expert 1 claims that *c* is absolutely impossible, and Expert 2 claims that *a* is absolutely impossible, so *b* is the only remaining possibility!
- Dempster's rule does produce sound results when used and interpreted correctly.

Dempster's conditioning

 Conditioning is a special case of Dempster's rule, where a mass function m is combined with a logical mass function m_[A]. Notation:

$$m \oplus m_{[A]} = m(\cdot \mid A)$$

It can be shown that

$$PI(B \mid A) = rac{PI(A \cap B)}{PI(A)}.$$

• Generalization of Bayes' conditioning: if *m* is a Bayesian mass function and $m_{[A]}$ is a logical mass function, then $m \oplus m_{[A]}$ is a Bayesian mass function corresponding to the conditioning of *m* by *A*.

Commonality function

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

• *Q* is another equivalent representation of a belief function.

	ν.		

Commonality function and Dempster's rule

- Let Q_1 and Q_2 be the commonality functions associated to m_1 and m_2 .
- Let Q_{12} be the commonality function associated to $m_1 \oplus m_2$.
- We have

$$egin{aligned} Q_{12}(A) &= rac{1}{1-\kappa} Q_1(A) Q_2(A), \quad orall A \subseteq \Omega, A
eq \emptyset \ & (Q_1 \oplus Q_2)(\emptyset) = 1 \end{aligned}$$

Smets' disjunctive rule

- Let m₁ and m₂ be two mass functions induced by random messages/sets (S₁, 2^{S₁}, P₁, Ω, 2^Ω, Γ₁) and (S₂, 2^{S₂}, P₂, Ω, 2^Ω, Γ₂).
- Previously, we have assumed that both messages were reliable, i.e., if the true codes are c₁ ∈ S₁ and c₂ ∈ S₂, we can conclude that X ∈ Γ₁(c₁) ∩ Γ₂(c₂) for sure.
- We can weaken this assumption by supposing only that at least one of the two messages is reliable, i.e., if the true codes are $c_1 \in S_1$ and $c_2 \in S_2$, we can only conclude that $X \in \Gamma_1(c_1) \cup \Gamma_2(c_2)$ for sure.
- This leads to the Smets' disjunctive rule:

$$(m_1 \odot m_2)(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega$$

• $Bel_1 \bigcirc Bel_2 = Bel_1 \cdot Bel_2$

<ロ> <同> <目> <目> <目> <目> <日> <同> <日> <日</p>
Outline

2

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

- E - - E

Informational comparison of belief functions

- Let m₁ and m₂ be two mass functions on Ω
- In what sense can we say that m₁ is more informative (committed) than m₂?
- Special case:
 - Let m_[A] and m_[B] be two logical mass functions
 - $m_{[A]}$ is more committed than $m_{[B]}$ iff $A \subseteq B$
- Extension to arbitrary mass functions?

Plausibility ordering

Definition

 m_1 is pl-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if

 $Pl_1(A) \leq Pl_2(A), \quad \forall A \subseteq \Omega$

or, equivalently,

$$\textit{Bel}_1(\textit{A}) \geq \textit{Bel}_2(\textit{A}), \quad \forall \textit{A} \subseteq \Omega.$$

• Imprecise probability interpretation:

$$m_1 \sqsubseteq_{pl} m_2 \Leftrightarrow \mathcal{P}(m_1) \subseteq \mathcal{P}(m_2)$$

• Properties:

Extension of set inclusion:

$$m_{[A]} \sqsubseteq_{p_l} m_{[B]} \Leftrightarrow A \subseteq B$$

Image: A matrix

Greatest element: vacuous mass function m?

THEIN		пе	

★ E > < E >

Commonality ordering

- If $m_1 = m \oplus m_2$ for some *m*, and if there is no conflict between *m* and m_2 , then $Q_1(A) = Q(A)Q_2(A) \le Q_2(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function

Definition

 m_1 is q-more committed than m_2 (noted $m_1 \sqsubseteq_q m_2$) if

$$Q_1(A) \leq Q_2(A), \quad \forall A \subseteq \Omega$$

Properties:

• Extension of set inclusion:

$$m_{[A]} \sqsubseteq_q m_{[B]} \Leftrightarrow A \subseteq B$$

Greatest element: vacuous mass function m?

Thierry Denœux

Strong (specialization) ordering

Definition

 m_1 is a specialization of m_2 (noted $m_1 \sqsubseteq_s m_2$) if m_1 can be obtained from m_2 by distributing each mass $m_2(B)$ to subsets of B:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

where S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$.

- S is called a specialization matrix
- Properties:
 - Extension of set inclusion
 - Greatest element: m?

$$\blacktriangleright m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{p^1} m_2 \\ m_1 \sqsubseteq_q m_2 \end{cases}$$

★ 문 ► ★ 문 ►

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!

Outline

Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

Informational orderings

Cautious rule

Compatible frames

(4) (3) (4) (4) (4)

Cautious rule

Motivation

- The basic rules \oplus and \bigcirc assume the sources of information to be independent, e.g.
 - experts with nonoverlapping experience/knowledge
 - nonoverlapping datasets
- What to do in case of dependent/overlapping evidence?
 - Describe the nature of the interaction between sources (difficult, requires a lot of information)
 - Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Principle

- Two sources provide mass functions *m*₁ and *m*₂, and the sources are both considered to be reliable.
- After receiving these m_1 and m_2 , the agent's state of belief should be represented by a mass function m_{12} more committed than m_1 , and more committed than m_2 .
- Let $S_x(m)$ be the set of mass functions m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, \dots\}$. We thus impose that

$$m_{12} \in \mathcal{S}_x(m_1) \cap \mathcal{S}_x(m_2).$$

• According to the LCP, we should select the *x*-least committed element in $S_x(m_1) \cap S_x(m_2)$, if it exists.

< □ > < 同 > < 臣 > < 臣 > 王目曰 のQ @

Need for a new ordering relation

- The above approach works for special cases.
- Example⁴: if m_1 and m_2 are consonant, then the *q*-least committed element in $S_q(m_1) \cap S_q(m_2)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12} = \min(Q_1, Q_2)$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the *x*-orderings, *x* ∈ {*pl*, *q*, *s*}.
- We need to define a new ordering relation.

⁴D. Dubois and H. Prade and Ph. Smets. New Semantics for Quantitative Possibility Theory. Proc. of ECSQARU 2001, pp 410–421, Springer Verlag, 2001.

Simple mass functions

Definition: m is simple mass function if it has the following form

$$m(A) = 1 - \delta(A)$$

 $m(\Omega) = \delta(A)$

for some $A \subset \Omega$, $A \neq \emptyset$ and $\delta(A) \in (0, 1]$.

- The quantity w(A) = − ln δ(A) ≥ 0 is called the weight of evidence for A. Mass function m is denoted by A^{w(A)}.
- Property:

$$A^{w_1(A)} \oplus A^{w_2(A)} = A^{w_1(A)+w_2(A)}$$

Thierry Denœux

BFTA 2023 47 / 77

Separable mass functions

Definition (Separable mass function)

A (normalized) mass function is separable if it can be written as the orthogonal sum of simple mass functions:

$$m = igoplus_{\emptyset
eq A \subset \Omega} A^{w(A)}$$

with $w(A) \ge 0$ for all $A \subset \Omega$, $A \ne \emptyset$.

The w-ordering

Definition

Let m_1 and m_2 be two mass functions. We say that m_1 is *w*-more committed than m_2 (denoted by $m_1 \sqsubseteq_w m_2$) if

 $m_1 = m_2 \oplus m$.

for some separable mass function *m*.

How to check this condition?

B 1 4 B 1

Cautious rule

Weight function

 If m is separable, the corresponding weights of evidence can be recovered as

$$w(A) = \sum_{B \supseteq A} (-1)^{|B| - |A|} \ln Q(B)$$
(1)

for all $A \subseteq \Omega$.

- For any nondogmatic mass function *m*, (i.e., such that $m(\Omega) > 0$), we can still define "weights" from (1), but we can have w(A) < 0.
- Function w is called the weight function.
- m can be computed from w by

$$m=\bigoplus_{\emptyset\neq A\subset\Omega}A^{w(A)},$$

although $A^{w(A)}$ is not a proper mass function when w(A) < 0.

Thierry	Denœux

Properties of the weight function

m is separable iff

$$w(A) \ge 0, \quad \forall A \subset \Omega, A \neq \emptyset$$

Dempster's rule can be computed using the w-function by

$$m_1 \oplus m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w_1(A) + w_2(A)}$$

• Equivalent definition of the *w*-ordering⁵

$$m_1 \sqsubseteq_w m_2 \Leftrightarrow w_1(A) \ge w_2(A), \quad \forall A \subset \Omega, A \neq \emptyset$$

Thierry Denœux

Introduction to belief functions

BFTA 2023 51 / 77

Cautious rule

Proposition

Let m_1 and m_2 be two nondogmatic mass functions with weight functions w_1 and w_2 . The w-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by:

$$m_1 \bigotimes m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{\max(w_1(A), w_2(A))}$$

Operator \bigotimes is called the (normalized) cautious rule.

(E) < (E)</p>

Image: Image:

Computation

Cautious rule comp	utation			
	<i>m</i> -space		w-space	
	<i>m</i> ₁	\longrightarrow	<i>W</i> ₁	
	<i>m</i> ₂	\longrightarrow	<i>W</i> ₂	
	$m_1 \otimes m_2$	<i>~</i>	$\max(w_1, w_2)$	

Remark: we often have simple mass functions in the first place, so that the *w* function is readily available.

Image: A matrix

Properties of the cautious rule

- Commutative, associative
- Idempotent :

 $\forall m, m \otimes m = m$

Distributivity of ⊕ with respect to

 $\forall m_1, m_2, m_3, \quad (m_1 \oplus m_2) \oslash (m_1 \oplus m_3) = m_1 \oplus (m_2 \oslash m_3)$

The common item of evidence m_1 is not counted twice!

• No neutral element, but $m_? \bigotimes m = m$ iff *m* is separable.

4 B K 4 B K

Basic rules

The four basic rules

Sources	independent	dependent
All reliable	\oplus	\Diamond
At least one reliable	U	\bigotimes

 \odot is the bold disjunctive rule

= 200

(日)

Compatible frames

Outline

- ۲
- ۲

2 Selected advanced topics

- Compatible frames

(a) (b) (c) (b)

Refinement and coarsening Example

- Let us come back to the road scene analysis example, with $\Omega = \{G, R, T, O, S\}.$
- Assume that we have a vegetation detector, which can determine if a region of the image contains vegetation or not. For this detector, the frame of discernment is $\Theta = \{V, \neg V\}$, where V means that there is vegetation, and $\neg V$ means that there is no vegetation.
- We have the correspondence

```
\begin{array}{rrr} V & \rightarrow & \{G,T\} \\ \neg V & \rightarrow & \{R,O,S\} \end{array}
```

 The elements of Ω can be obtained by splitting some or all of the elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening of Ω

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Refinement and coarsening

General definition

Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping $\rho : 2^{\Theta} \to 2^{\Omega}$ (called a refining) such that:

• $\{\rho(\{\theta\}), \theta \in \Theta\} \subseteq 2^{\Omega}$ is a partition of Ω , and

• For all
$$A \subseteq \Omega$$
, $\rho(A) = \bigcup_{\theta \in A} \rho(\{\theta\})$.

3 1 4 3

Vacuous extension

 In the road scene example, assume that the vegetation detector provides the following mass function on ⊖:

$$m^{\Theta}(\{V\}) = 0.6, \quad m^{\Theta}(\{\neg V\}) = 0.3, \quad m^{\Theta}(\Theta) = 0.1$$

- How to express m^{Θ} in Ω ?
- Solution: for all $A \subseteq \Theta$, we transfer the mass $m^{\Theta}(A)$ to $\rho(A)$. Here,

$$\begin{array}{rcl} m^{\Theta}(\{V\}) = 0.6 & \rightarrow & \rho(\{V\}) = \{G, T\} \\ m^{\Theta}(\{\neg V\}) = 0.3 & \rightarrow & \rho(\{\neg V\}) = \{R, O, S\} \\ m^{\Theta}(\Theta) = 0.1 & \rightarrow & \rho(\Theta) = \Omega \end{array}$$

We finally get the following mass function on Ω,

$$m^{\Theta\uparrow\Omega}(\{G,T\})=0.6, \quad m^{\Theta\uparrow\Omega}(\{R,O,S\})=0.3, \quad m^{\Theta\uparrow\Omega}(\Omega)=0.1.$$

• $m^{\Theta \uparrow \Omega}$ is called the vacuous extension of m^{Θ} in Ω .

Expression of information in a coarser frame

Let us now assume that we have the following mass function on Ω,

$$m^{\Omega}(\{T\}) = 0.4, \quad m^{\Omega}(\{T, O\}) = 0.3, \quad m^{\Omega}(\{R, S\}) = 0.3.$$

- How to express m^{Ω} in Θ ?
- We cannot do it without loss of information, because, for instance, there is no A ⊆ Θ such that ρ(A) = {T}: the mapping ρ does not have an inverse.

Inner and outer reductions

• We can approximate any subset *B* of Ω by two subsets in Θ :

► The inner reduction of *B*:

$$\underline{\rho}^{-1}(B) = \{ \theta \in \Theta : \rho(\{\theta\}) \subseteq B \}$$

► The outer reduction of *B*:

$$\overline{\rho}^{-1}(B) = \{\theta \in \Theta : \rho(\{\theta\}) \cap B \neq \emptyset\}.$$

• In the example:

$$\underline{\rho}^{-1}(\{T\}) = \underline{\rho}^{-1}(\{T, O\}) = \underline{\rho}^{-1}(\{R, S\}) = \emptyset$$

$$\overline{\rho}^{-1}(\{T\}) = \{V\}, \quad \overline{\rho}^{-1}(\{T, O\}) = \{V, \neg V\}, \quad \overline{\rho}^{-1}(\{R, S\}) = \{\neg V\}$$

Restriction

Definition

The restriction of m^{Ω} in Θ is obtained by transferring each mass $m^{\Omega}(B)$ to the outer reduction of *B*: for all subset *A* of Θ ,

$$m^{\Omega \downarrow \Theta}(A) = \sum_{\overline{
ho}^{-1}(B) = A} m^{\Omega}(B)$$

In the example, we thus have

$$m^{\Omega\downarrow\Theta}(\{V\}) = 0.4, \quad m^{\Omega\downarrow\Theta}(\Theta) = 0.3, \quad m^{\Omega\downarrow\Theta}(\{\neg V\}) = 0.3$$

• Remark: the vacuous extension of $m^{\Omega \downarrow \Theta}$ is

$$m^{(\Omega\downarrow\Theta)\uparrow\Omega}(\{G,T\})=0.4, \quad m^{(\Omega\downarrow\Theta)\uparrow\Omega}(\Omega)=0.3$$

$$m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\{R, S, O\}) = 0.3$$

It is less precise that m^{Ω} : we have lost information when expressing m^{Ω} in a coarser frame.

Thierry Denœux

Compatible frames of discernment

Definition

Two frames are compatible if they have a common refinement.

Example:

Combination of mass functions on compatible frames

Definition

Let m^{Θ_1} and m^{Θ_2} be two mass functions defined on compatible frames Θ_1 and Θ_2 with common refinement Ω . Their orthogonal sum in Ω is

 $m^{\Theta_1} \oplus m^{\Theta_2} = m^{\Theta_1 \uparrow \Omega} \oplus m^{\Theta_2 \uparrow \Omega}$

Thierry Denœux

Example

Let

$$m^{\Theta_1}(\{V\}) = 0.3, m^{\Theta_1}(\{\neg V\}) = 0.5,$$

 $m^{\Theta_1}(\{V, \neg V\}) = 0.2$

and

$$m^{\Theta_2}(\{Gr\}) = 0.4, m^{\Theta_2}(\{\neg Gr\}) = 0.5,$$

 $m^{\Theta_2}(\{Gr, \neg Gr\}) = 0.1$

Their extensions are

$$m^{\Theta_1\uparrow\Omega}(\{G,T\})=0.3,m^{\Theta_1\uparrow\Omega}(\{R,O,S\})=0.5,m^{\Theta_1\uparrow\Omega}(\Omega)=0.2$$

and

$$m^{\Theta_2\uparrow\Omega}(\{G,R\}) = 0.4, m^{\Theta_2\uparrow\Omega}(\{T,O,S\}) = 0.5, m^{\Theta_2\uparrow\Omega}(\Omega) = 0.1$$

1 = 990

< 2 > < 2 >

Example (continued)

Calculation of the orthogonal sum:

		$m^{\Theta_2 \uparrow \Omega}$		
		$\{G, R\}, 0.4$	$\{T, O, S\}, 0.5$	Ω, 0 .1
	$\{G, T\}, 0.3$	{ <i>G</i> },0.12	{ <i>T</i> },0.15	$\{G, T\}, 0.03$
$m^{\Theta_1 \uparrow \Omega}$	{ <i>R</i> , <i>O</i> , <i>S</i> }, 0.5	{ <i>R</i> },0.2	{ <i>O</i> , <i>S</i> },0.25	{ <i>R</i> , <i>O</i> , <i>S</i> }, 0.05
	Ω, 0.2	$\{\hat{G}, \hat{R}\}, 0.08$	{ <i>T</i> , <i>O</i> , <i>S</i> }, 0.1	Ω, 0.02

BFTA 2023 66 / 77

= 990

イロト イポト イヨト イヨ

Example: object association

- Let E = {e₁,..., e_n} and F = {f₁,..., f_p} be two sets of objects perceived by two sensors, or by one sensor at two different times.
- Problem: given information about each object (position, velocity, class, etc.), find a matching between the two sets, in such a way that each object in one set is matched with at most one object in the other set.

<i>'</i> L	ωeι	

(D) (A) (A) (A)

Method of approach

- So For each pair of objects (*e_i*, *f_j*) ∈ *E* × *F*, use sensor information to build a pairwise mass function m^{Θ_{ij}} on the frame Θ_{ij} = {*h_{ij}*, *h_{ij}*}, where
 - $h_{ij} \equiv "e_i$ and f_j are the same object", and
 - $\overline{h}_{ij} \equiv e_i$ and f_j are different objects"
- 2 Combine the *np* mass functions $m^{\Theta_{ij}}$
- Find the matching relation with the highest plausibility.

Building the pairwise mass functions

Using position information

- Assume that each sensor provides an estimated position for each object. Let d_{ij} denote the distance between the estimated positions of e_i and f_j, computed using some distance measure.
- A small value of *d_{ij}* supports hypothesis *h_{ij}*, while a large value of *d_{ij}* supports hypothesis *h_{ij}*. Depending on sensor reliability, a fraction of the unit mass should also be assigned to Θ_{ij} = {*h_{ij}*, *h_{ij}*}.
- Model:

$$\begin{split} m_{\rho}^{\Theta_{ij}}(\{h_{ij}\}) &= \alpha \varphi(d_{ij}) \\ m_{\rho}^{\Theta_{ij}}(\{\overline{h}_{ij}\}) &= \alpha \left(1 - \varphi(d_{ij})\right) \\ m_{\rho}^{\Theta_{ij}}(\Theta_{ij}) &= 1 - \alpha \end{split}$$

where $\alpha \in [0, 1]$ is a degree of confidence in the sensor information and φ is a decreasing function taking values in [0, 1].

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Building the pairwise mass functions

Using velocity information

- Let us now assume that each sensor returns a velocity vector for each object. Let d'_{ij} denote the distance between the velocities of objects e_i and f_j.
- Here, a large value of d'_{ij} supports the hypothesis h
 {ij}, whereas a small value of d'{ij} does not support specifically h_{ij} or h
 _{ij}, as two distinct objects may have similar velocities.
- Model:

$$egin{aligned} m_{m{v}}^{\Theta_{ij}}(\{\overline{h}_{ij}\}) &= lpha'\psi(m{d}'_{ij}) \ m_{m{v}}^{\Theta_{ij}}(\Theta_{ij}) &= 1 - lpha'\psi(m{d}'_{ij}) \end{aligned}$$

where $\alpha' \in [0, 1]$ is a degree of confidence in the sensor information and ψ is an increasing function taking values in [0, 1].

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Building the pairwise mass functions

Using class information

- Let us assume that the objects belong to classes. Let Ω be the set of possible classes, and let m_i and m_j denote mass functions representing evidence about the class membership of objects e_i and f_j .
- If e_i and f_j do not belong to the same class, they cannot be the same object. However, if e_i and f_j do belong to the same class, they may or may not be the same object.
- We can show that the mass function m^{Θ_{ij}}_c on Θ_{ij} derived from m_i and m_j has the following expression:

$$egin{aligned} m_c^{\Theta_{ij}}(\{\overline{h}_{ij}\}) &= \kappa_{ij}\ m_c^{\Theta_{ij}}(\Theta_{ij}) &= \mathbf{1} - \kappa_{ij}, \end{aligned}$$

where κ_{ij} is the degree of conflict between m_i and m_j

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Combination

 For each object pair (e_i, f_j), a pairwise mass function m^{Θ_{ij}} representing all the available evidence about Θ_{ij} can finally be obtained as:

$$m^{\Theta_{ij}}=m_{
ho}^{\Theta_{ij}}\oplus m_{
m v}^{\Theta_{ij}}\oplus m_{
m c}^{\Theta_{ij}}$$

- How to combine the *np* mass functions m^{Θ_{ij}}?
- Does there exist a common refinement of the frames Θ_{ij} for (i, j)?
Common refinement

- Let *R* be the set of all admissible matching relations, and let *R_{ij}* ⊆ *R* be the subset of relations *R* such that (*e_i*, *f_j*) ∈ *R*.
- We can define a refining ρ_{ij} from 2^{Θ_{ij}} to 2^R. The frames Θ_{ij} are compatible.
- Vacuously extending $m^{\Theta_{ij}}$ in \mathcal{R} yields the following mass function:

$$\begin{split} m^{\Theta_{ij}\uparrow\mathcal{R}}(\mathcal{R}_{ij}) &= m^{\Theta_{ij}}(\{h_{ij}\}) = \alpha_{ij} \\ m^{\Theta_{ij}\uparrow\mathcal{R}}(\overline{\mathcal{R}_{ij}}) &= m^{\Theta_{ij}}(\{\overline{h}_{ij}\}) = \beta_{ij} \\ m^{\Theta_{ij}\uparrow\mathcal{R}}(\mathcal{R}) &= m^{\Theta_{ij}}(\Theta_{ij}) = 1 - \alpha_{ij} - \beta_{ij}. \end{split}$$

Combination of contour functions

• The frame \mathcal{R} is very big and computing the orthogonal sum of the *np* mass functions

$$m^{\mathcal{R}} = \bigoplus_{i,j} m^{\Theta_{ij} \uparrow \mathcal{R}}$$

has exponential complexity.

• Instead, we will only compute the combined contour function pl corresponding to $m^{\mathcal{R}}$. We recall that

$$pI \propto \prod_{i,j} pI_{ij},$$

where pl_{ij} denote the contour function corresponding to $m^{\Theta_{ij}\uparrow\mathcal{R}}$.

Expression of contour functions

We have

$$m^{\Theta_{ij}\uparrow\mathcal{R}}(\mathcal{R}_{ij}) = \alpha_{ij}, \quad m^{\Theta_{ij}\uparrow\mathcal{R}}(\overline{\mathcal{R}_{ij}}) = \beta_{ij}, \quad m^{\Theta_{ij}\uparrow\mathcal{R}}(\mathcal{R}) = 1 - \alpha_{ij} - \beta_{ij}.$$

• For all $R \in \mathcal{R}$,

$$\mathcal{P}l_{ij}(\mathcal{R}) = egin{cases} 1 - eta_{ij} & ext{if } \mathcal{R} \in \mathcal{R}_{ij}, \ 1 - lpha_{ij} & ext{otherwise}, \ = (1 - eta_{ij})^{\mathcal{R}_{ij}} (1 - lpha_{ij})^{1 - \mathcal{R}_{ij}}, \end{cases}$$

where $R_{ij} = 1$ if e_i and f_j are matched and $R_{ij} = 0$ otherwise.

• Consequently, the combined contour function is

$$\mathcal{pl}(\mathcal{R}) \propto \prod_{i,j} (1-eta_{ij})^{\mathcal{R}_{ij}} (1-lpha_{ij})^{1-\mathcal{R}_{ij}}.$$

<□> <同> <同> < 目> < 目> < 目> のQ()

Finding the most plausible matching

We have

$$egin{aligned} &\ln
ho l(R) = \sum_{i,j} \left[R_{ij} \ln(1-eta_{ij}) + (1-R_{ij}) \ln(1-lpha_{ij})
ight] + C \ &= \sum_{i,j} R_{ij} \ln rac{1-eta_{ij}}{1-lpha_{ij}} + C' \end{aligned}$$

• The most plausible relation *R*^{*} can thus be found by solving the following binary linear optimization problem:

$$\max \sum_{i,j} R_{ij} \ln \frac{1 - \beta_{ij}}{1 - \alpha_{ij}}$$

subject to $R_{ij} \in \{0, 1\}, \forall (i, j), \sum_{j=1}^{p} R_{ij} \leq 1, \forall i \text{ and } \sum_{i=1}^{n} R_{ij} \leq 1, \forall j.$

• This problem can be shown to be equivalent to a linear assignment problem and can be solved in $O(\max(n, p)^3)$ time.

Thierry Denœux

References

cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux, D. Dubois and H. Prade.

Representations of Uncertainty in Artificial Intelligence: Beyond Probability and Possibility. In P. Marquis et al. (Eds), "A Guided Tour of Artificial Intelligence Research", Volume 1, Chapter 4, Springer Verlag, pages 119-150, 2020.

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. *Artificial Intelligence*, Vol. 172, pages 234-264, 2008.

T. Denœux, N. El Zoghby, V. Cherfaoui and A. Jouglet.

Optimal object association in the Dempster-Shafer framework. *IEEE Transactions* on *Cybernetics*, Vol. 44, Issue 22, pages 2521-2531, 2014.

.