Introduction to belief functions

Thierry Denœux

Université de technologie de Compiègne, France
Institut Universitaire de France
https://www.hds.utc.fr/~tdenoeux
6th School on Belief Functions and their Applications Ishikawa, Japan, October 28, 2023

Contents of this lecture

(1) Fundamental concepts: belief, plausibility, commonality, conditioning, basic combination rules.
(2) Some more advanced concepts: informational ordering, cautious rule, compatible frames.

Theory of belief functions

History

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory.
- Originates from the work of Dempster $(1967)^{1}$ in the context of statistical inference.
- Formalized by Shafer $(1976)^{2}$ as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's as the "Transferable Belief Model".
- Starting from the 1990's, growing number of applications in information fusion, knowledge representation, machine learning (classification, clustering), reliability and risk analysis, etc.

[^0]
Theory of belief functions

- The theory of belief functions extends both logical/set-based formalisms (such as Propositional Logic and Interval Analysis) and Probability Theory:
- A belief function may be viewed both as a generalized set and as a nonadditive measure
- The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.).
- DS reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

Relationships with other theories

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Mass function

Definition

Definition (Frame of discernment, mass function, focal set)

Let Ω be the finite set called a frame of discernment. A mass function on Ω is a mapping $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

Every subset A of Ω such that $m(A)>0$ is a focal set of m. If $m(\emptyset)=0, m$ is said to be normalized (assumed in this lecture).

In DS theory, a mass function is used to represent evidence about an uncertain variable X taking values in Ω.

Example: road scene analysis

Example: road scene analysis (continued)

- Let X be the type of object in some region of the image, and $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky.
- Assume that a lidar sensor (laser telemeter) returns the information $X \in\{T, O\}$, but we there is a probability $p=0.1$ that the information is not reliable (because, e.g., the sensor is out of order).
- How to represent this information by a mass function?

Formalization

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in\{T, O\}$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by the following mass function m on Ω :

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

Meaning of a mass function

- In the previous example,
- $m(\{T, O\})=0.9$ is the probability of knowing only that $X \in\{T, O\}$, and nothing more
- $m(\Omega)=0.1$ is the probability of knowing nothing at all.
- In general, what is the meaning (semantics) of a mass function in DS theory?
- A precise interpretation was proposed by Shafer (1981) ${ }^{3}$: random code semantics.
${ }^{3}$ G. Shafer. Constructive probability. Synthese, 48(1):1-60, 1981.

Random code semantics

- We consider a situation in which we receive a coded message containing reliable information about variable $X \in \Omega$.
- The message was encoded using some code in the set $S=\left\{c_{1}, \ldots, c_{n}\right\}$.
- There is a multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega} \backslash\{\emptyset\}$ that defines the meaning of the message: if code c_{i} was used, then the meaning of the message is " $X \in \Gamma\left(c_{i}\right)$ ".
- We don't know which code was used, but we know that each code c_{i} had a chance p_{i} of being selected, with $\sum_{i=1}^{n} p_{i}=1$.
- Then $m(A)$ is the probability that the meaning of the message is " $X \in A$ ":

$$
m(A)=P(\{c \in S: \Gamma(c)=A\})=\sum_{i: \Gamma\left(c_{i}\right)=A} p_{i}
$$

Random code semantics (continued)

- In practice, we do not receive randomly coded messages, but we can construct a mass function by comparing our evidence about some variable X, to a hypothetical situation in which we receive a randomly coded message.
- A mass function m can be elicited by finding the "coded-message" canonical example that is the most similar to our evidence.
- Remark: The tuple $\left(S, 2^{S}, P, \Omega, 2^{\Omega}, \Gamma\right)$ is called a random set. This notion plays an important role for defining belief functions in infinite spaces. I will also introduce the more general notion of random fuzzy set in a later lecture.

Special mass functions

Definition (Logical mass function)

If a mass function has only one focal set $A \subseteq \Omega$., it is said to be logical; we denote it as $m_{[A]}$. It represents "infallible" evidence that tells us that $X \in A$ for sure and nothing more. (There is a one-to-one correspondence between logical mass functions and nonempty sets).

Definition (Vacuous mass function)

The vacuous mass function $m_{?}$ is the logical mass function such that $m_{?}(\Omega)=1$. It represents total ignorance.

Definition (Bayesian mass function)

A mass function is Bayesian if its focal sets are singletons. It is equivalent to a probability distribution.

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Compatible frames

Definitions

Definition (Belief, plausibility, contour functions)

Given a mass function m on Ω, the corresponding belief and plausibility functions are mappings from 2^{Ω} to $[0,1]$ defined as follows:

$$
\begin{gathered}
B e l(A)=\sum_{B \subseteq A} m(B) \\
P I(A)=\sum_{B \cap A \neq \emptyset} m(B)=1-\operatorname{Be}(\bar{A}) .
\end{gathered}
$$

The mapping $p l: \rightarrow \Omega$ such that $p l(\omega)=P I(\{\omega\})$ is called the contour function associated to m.

Interpretation:

- $\operatorname{Bel}(A)$ is a measure of the total support given to A
- $P I(A)$ is a measure of the lack of support given to \bar{A}

Road scene analysis example

- We had $\Omega=\{G, R, T, O, S\}$ and

$$
m(\{T, O\})=0.9, \quad m(\Omega)=0.1
$$

- Degrees of belief and plausibility of some subsets of Ω :

A	\emptyset	$\{T\}$	$\{O\}$	$\{T, O\}$	$\{T, O, R\}$	$\{T, R\}$	$\{R, S\}$	Ω
$\operatorname{Bel}(A)$	0	0	0	0.9	0.9	0	0	1
$P l(A)$	0	1	1	1	1	1	0.1	1

Elementary properties

- $\operatorname{Bel}(\emptyset)=P l(\emptyset)=0$
- $\operatorname{Bel}(\Omega)=P l(\Omega)=1$
- Superadditivity of Bel:

$$
\operatorname{Bel}(A \cup B) \geq \operatorname{Be}((A)+\operatorname{Be}(B)-\operatorname{Be}((A \cap B)
$$

- Subadditivity of $P I$:

$$
P l(A \cup B) \leq P l(A)+P l(B)-P l(A \cap B)
$$

- When m is Bayesian, the two mappings Bel and $P /$ are equal and additive:

$$
\operatorname{Be} I(A)=P I(A)=\sum_{\omega \in A} m(\{\omega\})
$$

for all $A \subseteq \Omega$.

Characterization of belief functions

- Function $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is completely monotone: for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω} :

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} B e l\left(\bigcap_{i \in I} A_{i}\right)
$$

- Conversely, to any completely monotone set function Bel such $\operatorname{Bel}(\emptyset)=0$ and $\operatorname{Bel}(\Omega)=1$ corresponds a unique mass function m such that:

$$
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} B e l(B), \quad \forall A \subseteq \Omega .
$$

Relations between $m, B e l$ and $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions.
- For all $A \subseteq \Omega$,

$$
\begin{gathered}
B e l(A)=1-P l(\bar{A}) \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|+1} P l(\bar{B})
\end{gathered}
$$

- $m, B e l$ and $P l$ are thus three equivalent representations of a piece of evidence.

Relationship with Possibility Theory

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant.
- The following relations then hold:

$$
P l(A \cup B)=\max (P l(A), P l(B)), \quad \forall A, B \subseteq \Omega
$$

and the plausibility function can be computed from the contour function as

$$
P l(A)=\max _{\omega \in A} p l(\omega), \quad \forall A \subseteq \Omega
$$

- $P /$ is then called a possibility measure, and $B e l$ is the dual necessity measure.
- In a sense, the theory of belief functions can thus be considered as more expressive than possibility theory (but the combination operations are different, as we will see later).

Relation with imprecise probabilities

- A probability measure P on Ω is said to be compatible with m if

$$
\forall A \subseteq \Omega, \quad B e l(A) \leq P(A) \leq P I(A)
$$

- The set $\mathcal{P}(m)$ of probability measures compatible with m is called the credal set of m

$$
\mathcal{P}(m)=\{P: \forall A \subseteq \Omega, B e l(A) \leq P(A)\}
$$

- Bel is the lower envelope of $\mathcal{P}(m)$

$$
\forall A \subseteq \Omega, \quad \operatorname{Bel}(A)=\min _{P \in \mathcal{P}(m)} P(A)
$$

- Not all lower envelopes of sets of probability measures are belief functions.
- The theory of belief functions is not a theory of imprecise probabilities (the two theories have different conditioning operations).

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Road scene example continued

- Variable X was defined as the type of object in some region of the image, and the frame was $\Omega=\{G, R, T, O, S\}$, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- A lidar sensor gave us the following mass function:

$$
m_{1}(\{T, O\})=0.9, \quad m_{1}(\Omega)=0.1
$$

- Now, assume that a camera returns the mass function:

$$
m_{2}(\{G, T\})=0.8, \quad m_{2}(\Omega)=0.2
$$

- How to combine these two pieces of evidence?

Analysis

- If the two sensors are in states s_{1} and s_{2}, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$.
- If the two pieces of evidence are independent, then the probability that the sensors are in states s_{1} and s_{2} is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$.

Computation

$m_{1} \backslash m_{2}$	$\{T, G\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\{T\}(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{T, G\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function:

$$
\begin{aligned}
m(\{T\}) & =0.72 \\
m(\{O, T\}) & =0.18 \\
m(\{T, G\}) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that the pair of states $\left(s_{1}, s_{2}\right)$ cannot have occurred.
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate such pairs.

Computation

$m_{1} \backslash m_{2}$	$\{G, R\}$	Ω
	(0.8)	(0.2)
$\{O, T\}(0.9)$	$\emptyset(0.72)$	$\{O, T\}(0.18)$
$\Omega(0.1)$	$\{G, R\}(0.08)$	$\Omega(0.02)$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(\{O, T\}) & =0.18 / 0.28=9 / 14 \\
m(\{G, R\}) & =0.08 / 0.28=4 / 14 \\
m(\Omega) & =0.02 / 0.28=1 / 14
\end{aligned}
$$

Dempster's rule

Definition (Degree of conflict)

Let m_{1} and m_{2} be two mass functions. Their degree of conflict is

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

Definition (Orthogonal sum)

Let m_{1} and m_{2} be two mass functions such that $\kappa<1$. Their orthogonal sum is the mass function defined by

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{\sum_{B \cap C=A} m_{1}(B) m_{2}(C)}{1-\kappa}
$$

for all $A \neq \emptyset$ and $\left(m_{1} \oplus m_{2}\right)(\emptyset):=0$.

Properties

Proposition

(1) If several pieces of evidence are combined, the order does not matter:

$$
\begin{aligned}
m_{1} \oplus m_{2} & =m_{2} \oplus m_{1} \\
m_{1} \oplus\left(m_{2} \oplus m_{3}\right) & =\left(m_{1} \oplus m_{2}\right) \oplus m_{3}
\end{aligned}
$$

(2) A mass function m is not changed if combined with the vacuous mass function $m_{?}$:

$$
m \oplus m_{?}=m
$$

(3) Let $p l_{1}, p l_{2}$ and $p l_{12}$ be the contour functions associated with, respectively, m_{1}, m_{2} and $m_{1} \oplus m_{2}$. We have

$$
p l_{12}=\frac{1}{1-\kappa} p l_{1} p l_{2}
$$

Misconception about Dempster's rule

- Following a 1979 report by Zadeh, it is repeated that "Dempster's rule yields counterintuitive results" (which is usually used as a justification to introduce new combination rules)
- Zadeh's example: $\Omega=\{a, b, c\}$, two experts

$$
\begin{aligned}
& m_{1}(\{a\})=0.99, \quad m_{1}(\{b\})=0.01 \quad m_{1}(\{c\})=0 \\
& m_{2}(\{a\})=0, \quad m_{2}(\{b\})=0.01 \quad m_{2}(\{c\})=0.99
\end{aligned}
$$

We get $\left(m_{1} \oplus m_{2}\right)(\{b\})=1$, which is claimed to be "counterintuitive" because both experts considered b as very unlikely.

- But Expert 1 claims that c is absolutely impossible, and Expert 2 claims that a is absolutely impossible, so b is the only remaining possibility!
- Dempster's rule does produce sound results when used and interpreted correctly.

Dempster's conditioning

- Conditioning is a special case of Dempster's rule, where a mass function m is combined with a logical mass function $m_{[A]}$. Notation:

$$
m \oplus m_{[A]}=m(\cdot \mid A)
$$

- It can be shown that

$$
P I(B \mid A)=\frac{P I(A \cap B)}{P I(A)} .
$$

- Generalization of Bayes' conditioning: if m is a Bayesian mass function and $m_{[A]}$ is a logical mass function, then $m \oplus m_{[A]}$ is a Bayesian mass function corresponding to the conditioning of m by A.

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Q is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let Q_{12} be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have

$$
\begin{gathered}
Q_{12}(A)=\frac{1}{1-\kappa} Q_{1}(A) Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

Smets' disjunctive rule

- Let m_{1} and m_{2} be two mass functions induced by random messages/sets $\left(S_{1}, 2^{S_{1}}, P_{1}, \Omega, 2^{\Omega}, \Gamma_{1}\right)$ and ($\left.S_{2}, 2^{S_{2}}, P_{2}, \Omega, 2^{\Omega}, \Gamma_{2}\right)$.
- Previously, we have assumed that both messages were reliable, i.e., if the true codes are $c_{1} \in S_{1}$ and $c_{2} \in S_{2}$, we can conclude that $X \in \Gamma_{1}\left(c_{1}\right) \cap \Gamma_{2}\left(c_{2}\right)$ for sure.
- We can weaken this assumption by supposing only that at least one of the two messages is reliable, i.e., if the true codes are $c_{1} \in S_{1}$ and $c_{2} \in S_{2}$, we can only conclude that $X \in \Gamma_{1}\left(c_{1}\right) \cup \Gamma_{2}\left(c_{2}\right)$ for sure.
- This leads to the Smets' disjunctive rule:

$$
\left(m_{1}(\odot) m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega
$$

- $B e l_{1}(1) B e l_{2}=B e l_{1} \cdot B e l_{2}$

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Informational comparison of belief functions

- Let m_{1} and m_{2} be two mass functions on Ω
- In what sense can we say that m_{1} is more informative (committed) than m_{2} ?
- Special case:
- Let $m_{[A]}$ and $m_{[B]}$ be two logical mass functions
- $m_{[A]}$ is more committed than $m_{[B]}$ iff $A \subseteq B$
- Extension to arbitrary mass functions?

Plausibility ordering

Definition

m_{1} is pl-more committed than m_{2} (noted $m_{1} \sqsubseteq_{p l} m_{2}$) if

$$
P l_{1}(A) \leq P I_{2}(A), \quad \forall A \subseteq \Omega
$$

or, equivalently,

$$
B e l_{1}(A) \geq B e l_{2}(A), \quad \forall A \subseteq \Omega .
$$

- Imprecise probability interpretation:

$$
m_{1} \sqsubseteq_{p l} m_{2} \Leftrightarrow \mathcal{P}\left(m_{1}\right) \subseteq \mathcal{P}\left(m_{2}\right)
$$

- Properties:
- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{p l} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Commonality ordering

- If $m_{1}=m \oplus m_{2}$ for some m, and if there is no conflict between m and m_{2}, then $Q_{1}(A)=Q(A) Q_{2}(A) \leq Q_{2}(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function

Definition

m_{1} is q-more committed than m_{2} (noted $m_{1} \sqsubseteq_{q} m_{2}$) if

$$
Q_{1}(A) \leq Q_{2}(A), \quad \forall A \subseteq \Omega
$$

Properties:

- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{q} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Strong (specialization) ordering

Definition

m_{1} is a specialization of m_{2} (noted $m_{1} \sqsubseteq_{s} m_{2}$) if m_{1} can be obtained from m_{2} by distributing each mass $m_{2}(B)$ to subsets of B :

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega,
$$

where $S(A, B)=$ proportion of $m_{2}(B)$ transferred to $A \subseteq B$.

- S is called a specialization matrix
- Properties:
- Extension of set inclusion
- Greatest element: $m_{\text {? }}$
- $m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2}\end{array}\right.$

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Motivation

- The basic rules \oplus and $(\mathbb{)}$ assume the sources of information to be independent, e.g.
- experts with nonoverlapping experience/knowledge
- nonoverlapping datasets
- What to do in case of dependent/overlapping evidence?
- Describe the nature of the interaction between sources (difficult, requires a lot of information)
- Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings.

Principle

- Two sources provide mass functions m_{1} and m_{2}, and the sources are both considered to be reliable.
- After receiving these m_{1} and m_{2}, the agent's state of belief should be represented by a mass function m_{12} more committed than m_{1}, and more committed than m_{2}.
- Let $\mathcal{S}_{x}(m)$ be the set of mass functions m^{\prime} such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, \cdots\}$. We thus impose that

$$
m_{12} \in \mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)
$$

- According to the LCP, we should select the x-least committed element in $\mathcal{S}_{X}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists.

Need for a new ordering relation

- The above approach works for special cases.
- Example ${ }^{4}$: if m_{1} and m_{2} are consonant, then the q-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12}=\min \left(Q_{1}, Q_{2}\right)$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in\{p l, q, s\}$.
- We need to define a new ordering relation.

[^1]
Simple mass functions

- Definition: m is simple mass function if it has the following form

$$
\begin{aligned}
& m(A)=1-\delta(A) \\
& m(\Omega)=\delta(A)
\end{aligned}
$$

for some $A \subset \Omega, A \neq \emptyset$ and $\delta(A) \in(0,1]$.

- The quantity $w(A)=-\ln \delta(A) \geq 0$ is called the weight of evidence for A. Mass function m is denoted by $A^{w(A)}$.
- Property:

$$
A^{w_{1}(A)} \oplus A^{w_{2}(A)}=A^{w_{1}(A)+w_{2}(A)}
$$

Separable mass functions

Definition (Separable mass function)

A (normalized) mass function is separable if it can be written as the orthogonal sum of simple mass functions:

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

with $w(A) \geq 0$ for all $A \subset \Omega, A \neq \emptyset$.

The w-ordering

Definition

Let m_{1} and m_{2} be two mass functions. We say that m_{1} is w-more committed than m_{2} (denoted by $m_{1} \sqsubseteq_{w} m_{2}$) if

$$
m_{1}=m_{2} \oplus m
$$

for some separable mass function m.
How to check this condition?

Weight function

- If m is separable, the corresponding weights of evidence can be recovered as

$$
\begin{equation*}
w(A)=\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln Q(B) \tag{1}
\end{equation*}
$$

for all $A \subseteq \Omega$.

- For any nondogmatic mass function m, (i.e., such that $m(\Omega)>0$), we can still define "weights" from (1), but we can have $w(A)<0$.
- Function w is called the weight function.
- m can be computed from w by

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

although $A^{w(A)}$ is not a proper mass function when $w(A)<0$.

Properties of the weight function

- m is separable iff

$$
w(A) \geq 0, \quad \forall A \subset \Omega, A \neq \emptyset
$$

- Dempster's rule can be computed using the w-function by

$$
m_{1} \oplus m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w_{1}(A)+w_{2}(A)}
$$

- Equivalent definition of the w-ordering ${ }^{5}$

$$
m_{1} \sqsubseteq_{w} m_{2} \Leftrightarrow w_{1}(A) \geq w_{2}(A), \quad \forall A \subset \Omega, A \neq \emptyset .
$$

${ }^{5}$ T. Denoeux. Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. Artificial Intelligence, 172:234-264, 2008.

Cautious rule

Proposition

Let m_{1} and m_{2} be two nondogmatic mass functions with weight functions w_{1} and w_{2}. The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by:

$$
m_{1} ® m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{\max \left(w_{1}(A), w_{2}(A)\right)}
$$

Operator $®$ is called the (normalized) cautious rule.

Computation

Cautious rule computation

m-space		w-space
m_{1}	\longrightarrow	w_{1}
m_{2}	\longrightarrow	w_{2}
$m_{1} \bowtie m_{2}$	\longleftarrow	$\max \left(w_{1}, w_{2}\right)$

Remark: we often have simple mass functions in the first place, so that the w function is readily available.

Properties of the cautious rule

- Commutative, associative
- Idempotent :

$$
\forall m, \quad m ® m=m
$$

- Distributivity of \oplus with respect to $®$

$$
\forall m_{1}, m_{2}, m_{3}, \quad\left(m_{1} \oplus m_{2}\right) ®\left(m_{1} \oplus m_{3}\right)=m_{1} \oplus\left(m_{2} \oplus m_{3}\right)
$$

The common item of evidence m_{1} is not counted twice!

- No neutral element, but $m_{?} ® m=m$ iff m is separable.

Basic rules

The four basic rules

Sources	independent	dependent
All reliable	\oplus	\oplus
At least one reliable	\oplus	\oplus

(v) is the bold disjunctive rule

Outline

(9) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Compatible frames

Refinement and coarsening

Example

- Let us come back to the road scene analysis example, with $\Omega=\{G, R, T, O, S\}$.
- Assume that we have a vegetation detector, which can determine if a region of the image contains vegetation or not. For this detector, the frame of discernment is $\Theta=\{V, \neg V\}$, where V means that there is vegetation, and $\neg V$ means that there is no vegetation.
- We have the correspondence

$$
\begin{aligned}
V & \rightarrow\{G, T\} \\
\neg V & \rightarrow\{R, O, S\}
\end{aligned}
$$

- The elements of Ω can be obtained by splitting some or all of the elements of Θ. We say that Ω is a refinement of Θ, and Θ is a coarsening of Ω

Refinement and coarsening

General definition

Definition

A frame Ω is a refinement of a frame Θ iff there is a mapping $\rho: 2^{\Theta} \rightarrow 2^{\Omega}$ (called a refining) such that:

- $\{\rho(\{\theta\}), \theta \in \Theta\} \subseteq 2^{\Omega}$ is a partition of Ω, and
- For all $A \subseteq \Omega, \rho(A)=\bigcup_{\theta \in A} \rho(\{\theta\})$.

Vacuous extension

- In the road scene example, assume that the vegetation detector provides the following mass function on Θ :

$$
m^{\ominus}(\{V\})=0.6, \quad m^{\ominus}(\{\neg V\})=0.3, \quad m^{\ominus}(\Theta)=0.1
$$

- How to express m^{\ominus} in Ω ?
- Solution: for all $A \subseteq \Theta$, we transfer the mass $m^{\Theta}(A)$ to $\rho(A)$. Here,

$$
\begin{aligned}
m^{\ominus}(\{V\})=0.6 & \rightarrow \rho(\{V\})=\{G, T\} \\
m^{\ominus}(\{\neg V\})=0.3 & \rightarrow \rho(\{\neg V\})=\{R, O, S\} \\
m^{\ominus}(\Theta)=0.1 & \rightarrow \rho(\Theta)=\Omega
\end{aligned}
$$

- We finally get the following mass function on Ω,

$$
m^{\Theta \uparrow \Omega}(\{G, T\})=0.6, \quad m^{\Theta \uparrow \Omega}(\{R, O, S\})=0.3, \quad m^{\Theta \uparrow \Omega}(\Omega)=0.1 .
$$

- $m^{\ominus \uparrow \Omega}$ is called the vacuous extension of m^{\ominus} in Ω.

Expression of information in a coarser frame

- Let us now assume that we have the following mass function on Ω,

$$
m^{\Omega}(\{T\})=0.4, \quad m^{\Omega}(\{T, O\})=0.3, \quad m^{\Omega}(\{R, S\})=0.3
$$

- How to express m^{Ω} in Θ ?
- We cannot do it without loss of information, because, for instance, there is no $A \subseteq \Theta$ such that $\rho(A)=\{T\}$: the mapping ρ does not have an inverse.

Inner and outer reductions

- We can approximate any subset B of Ω by two subsets in Θ :
- The inner reduction of B :

$$
\underline{\rho}^{-1}(B)=\{\theta \in \Theta: \rho(\{\theta\}) \subseteq B\}
$$

- The outer reduction of B :

$$
\bar{\rho}^{-1}(B)=\{\theta \in \Theta: \rho(\{\theta\}) \cap B \neq \emptyset\} .
$$

- In the example:

$$
\begin{gathered}
\underline{\rho}^{-1}(\{T\})=\underline{\rho}^{-1}(\{T, O\})=\underline{\rho}^{-1}(\{R, S\})=\emptyset \\
\bar{\rho}^{-1}(\{T\})=\{V\}, \quad \bar{\rho}^{-1}(\{T, O\})=\{V, \neg V\}, \quad \bar{\rho}^{-1}(\{R, S\})=\{\neg V\}
\end{gathered}
$$

Restriction

Definition

The restriction of m^{Ω} in Θ is obtained by transferring each mass $m^{\Omega}(B)$ to the outer reduction of B : for all subset A of Θ,

$$
m^{\Omega \downarrow \Theta}(A)=\sum_{\bar{\rho}^{-1}(B)=A} m^{\Omega}(B)
$$

- In the example, we thus have

$$
m^{\Omega \downarrow \theta}(\{V\})=0.4, \quad m^{\Omega \downarrow \Theta}(\Theta)=0.3, \quad m^{\Omega \downarrow \Theta}(\{\neg V\})=0.3
$$

- Remark: the vacuous extension of $m^{\Omega \downarrow \ominus}$ is

$$
\begin{gathered}
m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\{G, T\})=0.4, \quad m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\Omega)=0.3 \\
m^{(\Omega \downarrow \Theta) \uparrow \Omega}(\{R, S, O\})=0.3
\end{gathered}
$$

It is less precise that m^{Ω} : we have lost information when expressing m^{Ω} in a coarser frame.

Compatible frames of discernment

Definition

Two frames are compatible if they have a common refinement.
Example:

Combination of mass functions on compatible frames

Definition

Let $m^{\Theta_{1}}$ and $m^{\Theta_{2}}$ be two mass functions defined on compatible frames Θ_{1} and Θ_{2} with common refinement Ω. Their orthogonal sum in Ω is

$$
m^{\Theta_{1}} \oplus m^{\Theta_{2}}=m^{\Theta_{1} \uparrow \Omega} \oplus m^{\Theta_{2} \uparrow \Omega}
$$

Example

Let

$$
\begin{gathered}
m^{\Theta_{1}}(\{V\})=0.3, m^{\Theta_{1}}(\{\neg V\})=0.5, \\
m^{\Theta_{1}}(\{V, \neg V\})=0.2
\end{gathered}
$$

and

$$
\begin{gathered}
m^{\Theta_{2}}(\{G r\})=0.4, m^{\Theta_{2}}(\{\neg G r\})=0.5, \\
m^{\Theta_{2}}(\{G r, \neg G r\})=0.1
\end{gathered}
$$

Their extensions are

$$
m^{\Theta_{1} \uparrow \Omega}(\{G, T\})=0.3, m^{\Theta_{1} \uparrow \Omega}(\{R, O, S\})=0.5, m^{\Theta_{1} \uparrow \Omega}(\Omega)=0.2
$$

and

$$
m^{\Theta_{2} \uparrow \Omega}(\{G, R\})=0.4, m^{\Theta_{2} \uparrow \Omega}(\{T, O, S\})=0.5, m^{\Theta_{2} \uparrow \Omega}(\Omega)=0.1
$$

Example (continued)

Calculation of the orthogonal sum:

		$m^{\Theta_{2} \uparrow \Omega}$		
	$\{G, T\}, 0.3$	$\{G, R\}, 0.4$	$\{T, O, S\}, 0.5$	$\Omega, 0.1$
$m^{\Theta_{1} \uparrow \Omega}$	$\{R, O, S\}, 0.5$	$\{R\}, 0.2$	$\{T\}, 0.15$	$\{G, T\}, 0.03$
	$\Omega, 0.2$	$\{G, R\}, 0.08$	$\{T, O, S\}, 0.0$	$\{R, O, S\}, 0.05$
			$\Omega, 0.02$	

Example: object association

- Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $F=\left\{f_{1}, \ldots, f_{p}\right\}$ be two sets of objects perceived by two sensors, or by one sensor at two different times.
- Problem: given information about each object (position, velocity, class, etc.), find a matching between the two sets, in such a way that each object in one set is matched with at most one object in the other set.

Method of approach

(1) For each pair of objects $\left(e_{i}, f_{j}\right) \in E \times F$, use sensor information to build a pairwise mass function $m^{\Theta_{i j}}$ on the frame $\Theta_{i j}=\left\{h_{i j}, \bar{h}_{i j}\right\}$, where

- $h_{i j} \equiv$ " e_{i} and f_{j} are the same object", and
- $\bar{h}_{i j} \equiv$ " e_{i} and f_{j} are different objects"
(2) Combine the $n p$ mass functions $m^{\Theta_{i j}}$
(3) Find the matching relation with the highest plausibility.

Building the pairwise mass functions

Using position information

- Assume that each sensor provides an estimated position for each object. Let $d_{i j}$ denote the distance between the estimated positions of e_{i} and f_{j}, computed using some distance measure.
- A small value of $d_{i j}$ supports hypothesis $h_{i j}$, while a large value of $d_{i j}$ supports hypothesis $\bar{h}_{i j}$. Depending on sensor reliability, a fraction of the unit mass should also be assigned to $\Theta_{i j}=\left\{h_{i j}, \bar{h}_{i j}\right\}$.
- Model:

$$
\begin{aligned}
m_{p}^{\Theta_{i j}}\left(\left\{h_{i j}\right\}\right) & =\alpha \varphi\left(d_{i j}\right) \\
m_{p}^{\Theta_{i j}}\left(\left\{\bar{h}_{i j}\right\}\right) & =\alpha\left(1-\varphi\left(d_{i j}\right)\right) \\
m_{p}^{\Theta_{i j}}\left(\Theta_{i j}\right) & =1-\alpha
\end{aligned}
$$

where $\alpha \in[0,1]$ is a degree of confidence in the sensor information and φ is a decreasing function taking values in $[0,1]$.

Building the pairwise mass functions

Using velocity information

- Let us now assume that each sensor returns a velocity vector for each object. Let $d_{i j}^{\prime}$ denote the distance between the velocities of objects e_{i} and f_{j}.
- Here, a large value of $d_{i j}^{\prime}$ supports the hypothesis $\bar{h}_{i j}$, whereas a small value of $d_{i j}^{\prime \prime}$ does not support specifically $h_{i j}$ or $\bar{h}_{i j}$, as two distinct objects may have similar velocities.
- Model:

$$
\begin{aligned}
m_{v}^{\Theta_{i j}}\left(\left\{\bar{h}_{i j}\right\}\right) & =\alpha^{\prime} \psi\left(d_{i j}^{\prime}\right) \\
m_{v}^{\Theta_{i j}}\left(\Theta_{i j}\right) & =1-\alpha^{\prime} \psi\left(d_{i j}^{\prime}\right)
\end{aligned}
$$

where $\alpha^{\prime} \in[0,1]$ is a degree of confidence in the sensor information and ψ is an increasing function taking values in $[0,1]$.

Building the pairwise mass functions

Using class information

- Let us assume that the objects belong to classes. Let Ω be the set of possible classes, and let m_{i} and m_{j} denote mass functions representing evidence about the class membership of objects e_{i} and f_{j}.
- If e_{i} and f_{j} do not belong to the same class, they cannot be the same object. However, if e_{i} and f_{j} do belong to the same class, they may or may not be the same object.
- We can show that the mass function $m_{c}^{\Theta_{i j}}$ on $\Theta_{i j}$ derived from m_{i} and m_{j} has the following expression:

$$
\begin{aligned}
m_{c}^{\Theta_{i j}}\left(\left\{\bar{h}_{i j}\right\}\right) & =\kappa_{i j} \\
m_{c}^{\Theta_{i j}}\left(\Theta_{i j}\right) & =1-\kappa_{i j}
\end{aligned}
$$

where $\kappa_{i j}$ is the degree of conflict between m_{i} and m_{j}

Combination

- For each object pair $\left(e_{i}, f_{j}\right)$, a pairwise mass function $m^{\Theta_{i j}}$ representing all the available evidence about $\Theta_{i j}$ can finally be obtained as:

$$
m^{\Theta_{i j}}=m_{p}^{\Theta_{i j}} \oplus m_{v}^{\Theta_{i j}} \oplus m_{c}^{\Theta_{i j}}
$$

- How to combine the $n p$ mass functions $m^{\Theta_{i j}}$?
- Does there exist a common refinement of the frames $\Theta_{i j}$ for (i, j) ?

Common refinement

- Let \mathcal{R} be the set of all admissible matching relations, and let $\mathcal{R}_{i j} \subseteq \mathcal{R}$ be the subset of relations R such that $\left(e_{i}, f_{j}\right) \in R$.
- We can define a refining $\rho_{i j}$ from $2^{\Theta_{i j}}$ to $2^{\mathcal{R}}$. The frames $\Theta_{i j}$ are compatible.
- Vacuously extending $m^{\Theta_{i j}}$ in \mathcal{R} yields the following mass function:

$$
\begin{aligned}
m^{\Theta_{i j} \uparrow \mathcal{R}}\left(\mathcal{R}_{i j}\right) & =m^{\Theta_{i j}}\left(\left\{h_{i j}\right\}\right)=\alpha_{i j} \\
m^{\Theta_{i j} \uparrow \mathcal{R}}\left(\overline{\mathcal{R}_{i j}}\right) & =m^{\Theta_{i j}}\left(\left\{\bar{h}_{i j}\right\}\right)=\beta_{i j} \\
m^{\Theta_{i j} \uparrow \mathcal{R}}(\mathcal{R}) & =m^{\Theta_{i j}}\left(\Theta_{i j}\right)=1-\alpha_{i j}-\beta_{i j}
\end{aligned}
$$

Combination of contour functions

- The frame \mathcal{R} is very big and computing the orthogonal sum of the $n p$ mass functions

$$
m^{\mathcal{R}}=\bigoplus_{i, j} m^{\Theta_{i j \uparrow \mathcal{R}}}
$$

has exponential complexity.

- Instead, we will only compute the combined contour function pl corresponding to $m^{\mathcal{R}}$. We recall that

$$
p l \propto \prod_{i, j} p l_{i j}
$$

where $p l_{i j}$ denote the contour function corresponding to $m^{\Theta_{i j} \uparrow \mathcal{R}}$.

Expression of contour functions

- We have

$$
m^{\Theta_{i j} \uparrow \mathcal{R}}\left(\mathcal{R}_{i j}\right)=\alpha_{i j}, \quad m^{\Theta_{i j} \uparrow \mathcal{R}}\left(\overline{\mathcal{R}_{i j}}\right)=\beta_{i j}, \quad m^{\Theta_{i j} \uparrow \mathcal{R}}(\mathcal{R})=1-\alpha_{i j}-\beta_{i j} .
$$

- For all $R \in \mathcal{R}$,

$$
\begin{aligned}
\rho_{i j}(R) & = \begin{cases}1-\beta_{i j} & \text { if } R \in \mathcal{R}_{i j}, \\
1-\alpha_{i j} & \text { otherwise },\end{cases} \\
& =\left(1-\beta_{i j}\right)^{R_{i j}}\left(1-\alpha_{i j}\right)^{1-R_{i j}},
\end{aligned}
$$

where $R_{i j}=1$ if e_{i} and f_{j} are matched and $R_{i j}=0$ otherwise.

- Consequently, the combined contour function is

$$
p l(R) \propto \prod_{i, j}\left(1-\beta_{i j}\right)^{R_{i j}}\left(1-\alpha_{i j}\right)^{1-R_{i j}} .
$$

Finding the most plausible matching

- We have

$$
\begin{aligned}
\ln p l(R) & =\sum_{i, j}\left[R_{i j} \ln \left(1-\beta_{i j}\right)+\left(1-R_{i j}\right) \ln \left(1-\alpha_{i j}\right)\right]+C \\
& =\sum_{i, j} R_{i j} \ln \frac{1-\beta_{i j}}{1-\alpha_{i j}}+C^{\prime}
\end{aligned}
$$

- The most plausible relation R^{*} can thus be found by solving the following binary linear optimization problem:

$$
\max \sum_{i, j} R_{i j} \ln \frac{1-\beta_{i j}}{1-\alpha_{i j}}
$$

subject to $R_{i j} \in\{0,1\}, \forall(i, j), \sum_{j=1}^{p} R_{i j} \leq 1, \forall i$ and $\sum_{i=1}^{n} R_{i j} \leq 1, \forall j$.

- This problem can be shown to be equivalent to a linear assignment problem and can be solved in $O\left(\max (n, p)^{3}\right)$ time.

References

```
cf. http://www.hds.utc.fr/~tdenoeux
```

:
T. Denœux, D. Dubois and H. Prade.

Representations of Uncertainty in Artificial Intelligence: Beyond Probability and Possibility. In P. Marquis et al. (Eds), "A Guided Tour of Artificial Intelligence Research", Volume 1, Chapter 4, Springer Verlag, pages 119-150, 2020.
T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. Artificial Intelligence, Vol. 172, pages 234-264, 2008.
(R. T. Denœux, N. El Zoghby, V. Cherfaoui and A. Jouglet.

Optimal object association in the Dempster-Shafer framework. IEEE Transactions on Cybernetics, Vol. 44, Issue 22, pages 2521-2531, 2014.

[^0]: ${ }^{1}$ A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38:325-339, 1967.
 ${ }^{2}$ G. Shafer. A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

[^1]: ${ }^{4}$ D. Dubois and H. Prade and Ph. Smets. New Semantics for Quantitative Possibility Theory. Proc. of ECSQARU 2001, pp 410-421, Springer Verlag, 2001.

