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.
Frame of discernment

@ Assumption: each object belongs to one and only one cluster.

@ Consequentluy, we search for a partition of the set O of objects, i.e., a
family Py, ..., P, of pairwise disjoint subsets of O such that | J;_, Px = O.

@ The frame of discernment is, thus, one of these sets:

» The set Pyq of all partitions of O into exactly ¢ clusters (if ¢ is fixed)
» The set P. = |J;_, Py of all partitions of O into at most ¢ clusters
» The set P = (J,_, P« of all partitions of O.

@ Problem: these sets are huge!
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-
Number partitions of n objects into ¢ clusters

The number of partitions of n objects into ¢ clusters is the Stirling number of
the second kind S(n, ¢) given by

S(n,c) = i ()il
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-
Number of partitions of n objects

The total number of partitions of n objects is the Bell number B;, given by

B,= zn: S(n, c)
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-
Defining belief functions in sets of partitions

@ Contrary for misleading statements still found in some papers, the theory
of belief functions can be implemented in such extremely large spaces,
provided the focal sets and the objective of the analysis are carefully
defined.

o Different objectives:

» Compute the degree of belief and/or plausibility for any subset of partitions
(can be very difficult)
» Compute the plausibility of any partition

» Compute the plausibility of any partition, up to some constant
» Find the most plausible partition

@ In the following, | will describe two ways to define belief functions on sets
of partitions.
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Belief functions in

Outline

0 Belief functions in a space of partitions
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Orthogonal sums of pairwise belief functions

Outline

0 Belief functions in a space of partitions
@ Orthogonal sums of pairwise belief functions
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Belief functions in a space of partitions Orthogonal sums of pairwise belief functions

Pairwise mass functions

@ The first approach focuses on pairs of objects.

@ Forany i</, let ©; = {sj, —s;}, where s; means “objects / and j belong
to the same group” and —~s; means “objects i and j do not belong to the
same group”.

@ A pairwise mass function is a mass function on ©; with general form:

mj({sj}) = o
m;({=s;j}) = Bj
m;i(©j) =1 — ajj — B

@ These mass functions can be vacuously extended to the set P.
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Orthogonal sums of pairwise belief functions

Vacuous extension of pairwise mass functions

@ Let P; denote the set of partitions of the n objects such that objects o;
and o; are in the same group.

@ Each mass function mj; can be vacuously extended to the set P of all
partitions:
mj({sj}) — Py
mi({=s;}) — Pj
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Belief functions in a space of partitions Orthogonal sums of pairwise belief functions

Combination of pairwise partitions

@ The extended mass functions can then be combined by Dempster’s rule
to form a mass function m” on P:

"~ ]
i<j

@ We will only combine the contour functions. The contour function of mZ-’ is

mp (Py) + mf(P) it P e P;
mf (Py) + mf’(P) otherwise

pli(P) = {

[1-p Pemy
~ |1 —a; otherwise
= (1= B)P(1 —ay)'P

where p; = I(P € Pj), and I(-) is the indicator function.
@ The contour function of m” is

pI(P) o< [T(1 = By)Pi(1 — o)’ P forany P e P

i<j
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Orthogonal sums of pairwise belief functions

Finding the most plausible partitions

@ The most plausible partition can be found by maximizing

Inpl(P) =" pyIn(1 = ;) + (1 = py) In(1 = ) + C

i<j
subject to p; € {0, 1} and transitivity constraints
Vi<j<k, pj+pk—1=< pi,

which is a binary linear programming problem.

@ In practice, this problem can be solved exactly only for small n. A
heuristic algorithm (EK-NNclus) will be described later.
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Belief functions in ¢ tions Credal partitions

Outline

e Belief functions in a space of partitions

@ Credal partitions
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Belief functions in a space of partitions Credal partitions

Credal partition

Definition (Credal partition)
Let O ={o04,...,0,} be a set of nobjects and Q = {w+,...,w:} be asetof c

groups (clusters). A credal (evidential) partition (CP) of O is an n-tuple
M= (my,..., m,), where each element m; is a mass function on Q describing

the uncertain membership of o; to one of the ¢ clusters.

Remarks:

@ The mass functions may be unnormalized, i.e., we may have m;(#) > 0.
The quantity m;(0) is then interpreted as our degree of belief that o; does
not belong to any of the c clusters (i.e., it is an outlier).

@ If all mass functions are certain, i.e., for all i, there exists k such that
mi({wk}) = 1, then the CP specifies a (hard) partition.
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Belief functions in a space of partitions Credal partitions

Example
Butterfly data
2 12
1 Credal partition
7 0 {wi} {wz} {wi,wo}
K. ma 0 1 0 0
- . ms 0 05 0 0.5
“eT2 ‘\,\’ 10 s ms O 0 0 1
411 3 5617 911 ! me 09 0 0f 0
\ 7/ 7
“\'\’? 4 % 8 .7 ‘
-5 0 5 10
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Belief functions in a space of partitions Credal partitions

Relationship with fuzzy clustering

@ In fuzzy clustering, each object 0; has a degree of membership
uik € [0, 1] to each cluster wg, with the constraint >"F_, ui = 1.

@ Let M = (my,...,my) be a CP. If all mass functions m; are Bayesian, then
M defines a fuzzy partition with membership degrees ujy = m;({wk}).

@ An arbitrary CP M = (m4, ..., m,) can be summarized as a fuzzy
partition by transforming each mass function m; into a probability
distribution using, e.g., the plausibility transformation

U = pli(wk)

> g Pliwr)

Thierry Denceux Evidential clustering BFTA 2023 16 /100




Belief functions in a space of partitions Credal partitions

Relationship with rough clustering

@ In rough clustering, each cluster wy is characterized by two subsets of
objects: a lower approximation w, and an upper approximation wg, with
wy € wk. The membership of object i to cluster k is described by a pair
(Ui Ti) € {0, 1}2, with by < Ui, Dof_q Uy < 1and Y5 Uy > 1.

@ Let M = (my,...,my) be a CP. If all mass functions m; are logical, with
m;(A;) = 1 for some A; C Q, then M defines a hard partition with lower
and upper approximations defined as

we={0€0:A ={w}}, wk=1{0€0:wcA}.

The membership values to the lower and upper approximations of cluster
wk are Uy = Beli({wk}) and Uik = Pli({wk}).
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Credal partitions

Relationship with rough clustering (continued)

@ An arbitrary CP M = (my, ..., m,) can be summarized as a rough
partition by approximating each mass function m; by a logical mass
function m; whose focal set is the focal set of m; with the largest mass,
i.e., m(A;) =1 with

A; = arg max mj(A)
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Belief functions in a space of partitions Credal partitions

Associated mass function on P,

@ Let M = (my,...,my) be a CP, and let F be the set of mappings from O
to Q (called labeling functions). Each mass function m; can be extended
to F as follows:

mi(A) — {f € F: f(0;) € A}

Let us denote by m/ the vacuous extension of m; in F.

@ Assuming the mass function m{, ..., m’ to be independent, they can be
combined by Dempster’s rule. Let m” = @ , m7 . The focal sets of m”
are of the form

rn]{f e F:f(o)e A}t ={feF:flor) € A, f(02) € Az,...,f(0n) € An}
i=1

where A, ..., A, are focal sets of my, ..., my,, and the corresponding
mass is [[7_; mi(A).

Thierry Denceux Evidential clustering BFTA 2023 19/100



Belief functions i partitions Credal partitions

Associated mass function on P, (continued)

@ Now, let ¢ : 7 — P, be the many-to-one mapping from F to P, that maps
each labeling function f to the corresponding partition ®(f) € P,. We note
that P, is a coarsening of F.

@ Let m”e be the restriction of m” in P,. It is obtained by transferring each
mass m” (F) to the set of all partitions represented by a labeling function
fin F:

m”*(F) — &(F) = | o(f
feF

@ We have shown thata CP M = (mq, ..., m,) is a compact representation
of a mass function m”s in the set P, of partitions of O with at most ¢
clusters.
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Credal partitions

Example

@ Let O ={01,00,03}, 2 = {wq,w2}, and
mi({w1}) = 0.6, my(Q)=0.4
me({w1}) =05, mx(2)=0.5
ms({wz2}) = 0.7, ms(Q)=0.3
@ m’ has 8 focal sets:
m”7(1,1,2)=0.21, m’”(1,1,{1,2}) = 0.09
m”(1,{1,2},2) =0.21, m”(1,{1,2},{1,2}) = 0.09
m”({1,2},1,2) =0.14, m”({1,2},1,{12}) =0.06
m”({1,2},{1,2},2) = 0.14, m”({1,2},{1,2},{1,2}) = 0.06
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Belief functions in a space of partitions Credal partitions

Example (continued)

@ There are 4 partitions of O in at most two groups:
Po={0}, Py ={{o1},{02,03}}

P> = {{o1,03},{02}}, Ps={{o1,0:},{03}}

@ We have
®(1,1,2) = P3, &(1,1,{1,2}) = {Po, Ps}

®(1,{1,2},2) = {Py,Ps}, o(1,{1,2},{1,2})="P>
o({1,2},1,2) = {P>, P}, ({1,2},1,{1,2}) =P>
®({1,2},{1,2},2) = P2, ®({1,2},{1,2},{1,2}) = P2
@ Consequently, m*= is

mP2({Ps}) = 0.21, m™({P,, Ps}) =0.09, m"2({Py,Ps})=0.21
mP2({Ps, P;}) = 0.14, m™(P,) = 0.35
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Credal partitions

Pairwise mass functions derived from a CP

® LetM=(my,...,m,) beaCP.

@ For a pair of objects {0;, 0;}, we consider the question “Do o; and o;
belong to the same group?” defined on the frame ©; = {sj, —s;}.

o Let Sj = {(wi,wit),- .., (we,we)}. The mapping p : 297 — 2%° such that
p({si}) = Sy, p({—s;}) = Sj and p(©;) = Q2 is a refining. Consequently,

©j is a coarsening of Q2.

Q
fz\ ©1| My | O3 | 4
(OF] //
®, ?/

3

(O]

Given m; and m; on §, a mass function m; on
©j; can be computed as follows:

@ Extend m; and m; to Q2

@ Combine the extensions of m; and m; by
the unnormalized Dempster’s rule

© Compute the restriction of the combined
mass function to ©;
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Credal partitions

Expression of the pairwise mass function

@ We have:

mi(0) = mi(0) + my(0) — mi(0)m;(P)
mj({sj}) Zm: {wi)mi({wi})

k=1
mj({=sj}) = rj — m;(0)

mj(©5) =1 —rj— ) _ mi{weH)m;({wi})-

k=1

where xj; is the degree of conflict between m; and m;.
@ In particular,

\P/:‘/(Sfj) =1—xj
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Credal partitions

Example

e CP:

A 0 {w} {we} {wi,wa}
mi(A) 03 06 0.1 0.0
my(A) 0.0 07 0.1 0.2
mg(A) 00 01 06 03

@ Pairwise mass functions:
A 0 {sj} {=sj} {sj,—sj}
mi2(A) 0.30 0.43 0.13 0.14

mis(A) 030 012 037 0.1
ms(A) 0.00 013 043  0.44
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Outline

e Evidential clustering algorithms
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Evidential clustering algorithms

Evidential clustering algorithm

@ In the following, we will see:

» An algorithm for finding the most plausible partition, given a belief function
on the set of partitions obtained as the orthogonal sum of pairwise mass
functions (EK-NNclus).

» Four methods for constructing CPs: ECM, EVCLUS, NN-EVCLUS and
Bootclus.

@ These algorithms are implemented in the R package evclust!.

Thttps://CRAN.R-project.org/package=evclust
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Evidential clustering algorithms EK-NNclus

Decision-directed clustering

@ Decision-directed approach to clustering:
» A randomly-initialized classifier is used to label the samples
» The classifier is then updated using the labeled samples, and the process is
repeated until no changes occur in the labels
@ For instance, the c-means algorithm is based on this principle: here, the
nearest-prototype classifier is used to label the samples, and it is updated
by taking as prototypes the centers of each cluster.

@ Idea: apply this principle using the evidential K-NN rule? as the base
classifier.

@ The corresponding clustering algorithm is called EK-NNclus®.

2T. Denceux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE
Transactions on Systems, Man and Cybernetics, 25(05):804-813, 1995.

3T. Denceux, O. Kanjanatarakul and S. Sriboonchitta. EK-NNclus: a clustering procedure
based on the evidential K-nearest neighbor rule. Knowledge-Based Systems, Vol. 88, pages
57-69, 2015.
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Evidential clustering algorithms EK-NNclus

EK-NNclus algorithm

Step 1: preparation

@ Let D = (dj) be a symmetric n x n matrix of distances or dissimilarities
between the n objects.

@ Given K, we compute the set Nk(i) of indices of the K nearest neighbors
of object i.

@ We then transform the distances as

o o(dj) if j € Nk(i)
v 0 otherwise,

forall (i,j) € {1,...,n}?, where ¢ is a decreasing mapping from R, to
[0, 1].

@ If computing time is not an issue, K can be chosen very large, even equal
ton—1.
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Evidential clustering algorithms EK-NNclus

EK-NNclus algorithm

Step 2: initialization

To initialize the algorithm, the objects are labeled randomly (or using
some prior knowledge if available).

As the number of clusters is usually unknown, it can be settoc=n, i.e.,
we initially assume that there are as many clusters as objects and each
cluster contains exactly one object.

If nis very large, we can give c a large value, but smaller than n, and
initialize the object labels randomly.

We define cluster-membership by binary variables yi as yix = 1 is object
o; belongs to cluster k, and yj = 0 otherwise.
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Evidential clustering algorithms EK-NNclus

EK-NNclus algorithm

Step 3: iteration

@ An iteration of the algorithm consists in updating the object labels in
some random order, using the EKNN rule.
@ For each object o;:
@ The evidence from its neighbor o; € Nk (i) is represented by the mass
function

mi({wk}) = iy, k=1,...,¢
mj(Q) =1—aj

©@ The K mass functions are combined:

=D m

JENK (i)

@ Object o; is assigned to the cluster with the highest plausibility, i.e., we
update variables yj as

Vi = 1 if pl,-(wk) = MaXg’ pl,-(wk/)
! 0 otherwise

Evidential clustering BFTA 2023
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Evidential clustering algorithms EK-NNclus

EK-NNclus algorithm

Stopping criterion

@ If the label of at least one object has been changed during the last
iteration, then the objects are randomly re-ordered and a new iteration is
started.

@ Otherwise, the algorithm is stopped.
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tering algorithms EK-NNclus
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The graph on the left shows an obtained hard partition. In the graph on the
right, the size of the symbols is proportional to m;(Q2). We can see that
outliers are clearly identified.
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Evidential clustering algorithms EK-NNclus

Convergence

Theorem (Convergence of EK-NNCclus)

If K = n—1, each update of a class label during an iteration of EK-NNclus
strictly decreases the following energy function

:—fZZZInU aj)YikYik
k=1 i=1 j#i

Consequently, EK-NNclus converges to a stable partition in a finite number of
iterations.

v

Remarks: In practice, convergence is still observed when K < n— 1.
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vidential clustering algorithms EK-NNclus

Interpretation

@ The following equality holds
pl(P)=—-E(Y)+C

where pl(P) is the plausibility of the partition P encoded by Y, in the
orthogonal sum of pairwise mass functions model, with 5; = 0.

@ EK-NNclus can thus be seen as a greedy search algorithm that finds a
local maximum of the plausibility contour function, in the space of all
partitions of the dataset.
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Evidential clustering algorithms EK-NNclus

Experiments

@ Settings:
> o(dy) = exp(—'yd-jz-), where dj is the Euclidean distance between objects i
and .
» Parameter v can be fixed to the inverse of the g-quantile of the set
A= {d,-f-,ie {1,...,n},j € Nk(i)}.
@ A-sets: Two-dimensional datasets with 20, 35 and 50 clusters
» Parameter g of the EK-NNclus algorithm was fixed to g = 0.9.
» The number of neighbors was fixed to K = 150 for dataset A1, and K = 200
for datasets A2 and A3 (rule of thumb: K should be of the order of two to
three times v/n).
» Two initialization methods: ¢y = n initial clusters, and ¢; = 1000 random
initial clusters.
» The EK-NNclus algorithm was run 10 times.
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rithm: EK-NNclus
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EK-NNclus

Results
Dataset Result  EK-NNclus EK-NNclus pdfCluster model-based model-based
(co = n) (co = 1000) (constrained)
Al c 20 (0) 20 (0) 17 24 24
n = 3000 time 32.9 (3.14) 9.8 (0.2) 84.5 31.8 7.88
A2 c 35 (0) 34 (1) 26 39 39
n = 5250 time 193 (9.81) 23.8 (0.6) 298 138 36.2
A3 c 49 (1) 49 (2.5) 34 50 51
n = 7500 time 358 (8.23) 35.1 (1.09) 629 412 99.4
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Evidential clustering algorithms Evidential c-means

Principle

@ Problem: generate a credal partition M = (my, ..., my) from attribute data
X = (X1,...,Xp), Xj € RP,
@ The ECM algorithm* generalizes the hard and fuzzy c-means algorithms:
» Each cluster is represented by a prototype.

» Cyclic coordinate descent algorithm: optimization of a cost function
alternatively with respect to the prototypes and to the credal partition.

4M.-H. Masson and T. Denceux. ECM: An evidential version of the fuzzy c-means algorithm.
Pattern Recognition, 41(4):1384—-1397, 2008.

Evidential clustering BFTA 2023 41/100
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Evidential clustering algorithms Evidential c-means

Fuzzy c-means (FCM)

@ Minimize
Jrou(U, V) = ZZ Uy d5
i=1 k=1
with di = ||X; — V|| subject to the constraints Zi:1 Uy = 1forall i.
@ Alternate optimization algorithm:

no B
i—q Uy Xi
v = 2t UK
E:/1Um
—2/(8—1)
LI”( = (1 \fl(, i

[/
—2/(B—1)’
Zﬁ:1¢€/( )
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ECM algorithm

Principle
o o
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Evidential c-means

@ Each cluster wy represented by a prototype v.

@ Each nonempty set of clusters A; represented
by a prototype v; defined as the center of mass
of the vy for all wy € A;.

@ Basic ideas:

» For each nonempty A; C Q, m; = m;(A;))
should be high if x; is close to v;.

» The distance to the empty set is defined as a
fixed value 6.
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Evidential clustering algorithms Evidential c-means

ECM algorithm: cost function

@ Define the nonempty focal sets F = {Ay, ..., As} C 29\ {0}.
@ Minimize
n
Jeeu(M, V) ZZ Al*mjaf + ) 62my
i=1 j=1 i=1
subject to the constraints 2;21 mj + mjg = 1 for all /.

@ Parameters:

» « controls the specificity of mass functions (default: 1)
» (3 controls the hardness of the credal partition (default: 2)
» § controls the proportion of data considered as outliers

@ J:cu(M, V) can be iteratively minimized with respect to M and to V.

Evidential clustering BFTA 2023
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vidential clustering algorithms Evidential c-means

ECM algorithm: update equations

Update of M:
ija/(ﬁfﬂdilfz‘/(ﬁfﬂ

Zk .C *a/ )(#;2/(5*1)_’_5—2/(5—1)

fori=1,...,nandj=1,... f and

f
m,-@:1f§ my, i=1,...,n
J=1

Update of V: solve a linear system of the form

my =

HV =B

)

where B is a matrix of size ¢ x p and H a matrix of size ¢ x c.
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Evidential c-means

Butterfly dataset
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Evidential c-means

4-class data set
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Evidential clustering algorithms Evidential c-means

Constrained Evidential c-means

@ In some cases, we may have some prior knowledge about the group
membership of some objects.
@ Such knowledge may take the form of instance-level constraints of two
kinds:
@ Must-link (ML) constraints, which specify that two objects certainly belong to
the same cluster
@ Cannot-link (CL) constraints, which specify that two objects certainly belong
to different clusters
@ The CECM algorithm?® is a variant of ECM that can exploit such
constraints.

5V. Antoine, B. Quost, M.-H. Masson and T. Denceux. CECM: Constrained Evidential C-Means
algorithm. Computat/onal Statistics and Data Analysis, 56(4):894—-914, 2012.
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Evidential clustering algorithms Evidential c-means

Cost function of CECM

@ To take into account ML and CL constraints, we can modify the cost
function of ECM as

JCECM(Ma V) = (1 - g)JECM(Ma V) + §JCONST(M)
with
1
Joonst (M) = ————+ Z pli(—sj) + Z pli(si)
|M| + |C‘ (x;, %) eM (x;,x;)eC

where

» M and C are, respectively, the sets of ML and CL constraints.
» pli(sy) and pli(—s;) are computed from the pairwise mass function mj

@ Minimizing Joeew(M, V) w.r.t. M is a quadratic programming problem.

Thierry X Evidential clustering BFTA 2023
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Evidential clustering algorithms Evidential c-means

Active learning

@ ML and CL constraints are sometimes given in advance, but they can
sometimes be elicited from the user using an active learning strategy.
@ For instance, we may select pairs of object such that
» The first object is classified with high uncertainty (e.g., an object such that
m; has high nonspecificity);
» The second object is classified with low uncertainty (e.g., an object that is
close to a cluster center).

@ The user is then provided with this pair of objects, and enters either a ML
or a CL constraint.
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Evidential c-means

Results

1
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Other variants of ECM

Relational Evidential c-Means (RECM) for (metric) proximity data®

Spatial Evidential C-Means (SECM) for image segmentation’

Spatial Evidential C-Means with adaptive distance metric for image
segmentation®

Credal c-means (CCM), a variant of ECM with a different definition of the
distance between a vector and a meta-cluster®

6M.-H. Masson and T. Denceux. RECM: Relational Evidential c-means algorithm. Pattern
Recognition Letters 30:1015-1026, 2009.

7B. Lelandais et al. Fusion of multi-tracer PET images for Dose Painting. Medical Image
Analysis, 18(7):1247-1259, 2014

8C. Lian et al. Spatial Evidential Clustering with Adaptive Distance Metric for Tumor
Segmentation in FDG-PET Images. IEEE Trans. on Biomedical Engineering, 65(1):21-30, 2018.

97-G Liu et al., Credal c-means clustering method based on belief functions,
Knowledge-Based Systems, 74:119-132, 2015.
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Learning a Credal Partition from proximity data

@ Problem: given the dissimilarity matrix D = (dj), how to build a
“reasonable” credal partition ?

@ We need a model that relates cluster membership to dissimilarities.

@ The EVCLUS algorithm is based on the following idea: “The more
similar two objects, the more plausible it is that they belong to the same
group”.

@ How to formalize this idea?

10T, Denceux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data. IEEE
Transactions on Systems Man and Cybernetics B, 34(1):95-109, 2004.
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Formalization

@ Let m; and m; be mass functions regarding the group membership of
objects o; and o;.

@ We have seen that the plausibility that objects o; and o; belong to the
same group is

Pli(sy) = > m(A)my(B) =1
ANB#()
where x = degree of conflict between m; and m;.

@ Problem: find a CP M = (my, ..., my) such that larger degrees of conflict
rjj correspond to larger dissimilarities dj.
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Cost function

@ Approach: minimize the discrepancy between the dissimilarities dj and
the degrees of conflict x;.

@ Example of a cost (stress) function:

J(M) = (w5 — (dy))?
i<j
where ¢ is an increasing function from [0, +c0) to [0, 1], for instance
p(d) =1 — exp(—~d?).

@ v can be determined by fixing « € (0, 1) and dy such that, for any two
objects (05, 0j) with djj > dy, the plausibility that they belong to the same
clusteris atleat 1 — a.
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Butterfly example

Data and dissimilarities

Determination of v in ¢(d) = 1 — exp(—~d?): fix a € (0,1) and d, such that,
for any two objects (0;, 0;) with dj > db, the plausibility that they belong to the
same cluster is at least 1 — a.

Butterfly data
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Butterfly example

Credal partition

Butterfly data
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Butterfly example
Shepard diagram
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Proteins dataset
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Advantages

@ Conceptually simple, clear interpretation.

@ EVCLUS can handle nonmetric dissimilarity data (even expressed on an
ordinal scale).

@ It was also shown to outperform some of the state-of-the-art relational
clustering techniques on a number of datasets.
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Limitations

@ Requires to store the whole dissimilarity matrix; the space complexity is
thus O(n?), where n is the number of objects. Restricts application to
datasets with n ~ 102 — 103.

@ Each computation of the gradient requires O(7°n?) operations, where f is
the number of focal sets of the mass functions. In the worst case, f = 2°.

@ Two improvements'!:

@ Sample dissimilarities
@ Carefully select the focal sets

"T. Denceux, S. Sriboonchitta and O. Kanjanatarakul. Evidential clustering of large dissimilarity
data. Knowledge-Based Systems, 106:179—195, 2016.

Thierry Evidential clustering BFTA 2023 63/100




Evidential clustering algorithms EVCLUS

Sampling dissimilarities

@ EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable
to large proximity data.

@ However, there is usually some redundancy in a dissimilarity matrix.

@ In particular, if two objects 0, and 0. are very similar, then any object 03
that is dissimilar from o4 is usually also dissimilar from o..
@ Because of such redundancies, it might be possible to compute the

differences between degrees of conflict and dissimilarities, for only a
subset of randomly sampled dissimilarities.
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New stress function

@ Letji(),...,jk(/) be k integers sampled at random from the set
{1,...,i—=1,i+1,...,n},fori=1,...)n

@ Let Ji the following stress criterion,

n kK

=3 > (i) — (i)

i=1 r=1

@ The calculation of J,(M) requires only O(nk) operations.

@ If k can be kept constant as n increases, then time and space
complexities are reduced from quadratic to linear.
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Example with simulated data (n = 10, 000)
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Zongker Digit dissimilarity data

@ Similarities between 2000 handwritten digits in 10 classes, based on
deformable template matching.

@ k-EVCLUS was run with ¢ = 10 and differents following values of k.
@ Parameter d, was fixed to the 0.3-quantile of the dissimilarities.
@ k-EVCLUS was run 10 times with random initializations.
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Zongker Digit dissimilarity data

Results
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Selecting the focal sets

@ If no restriction is imposed on the focal sets, the number of parameters to
be estimated in evidential clustering grows exponentially with the number
c of clusters, which makes it intractable unless c is small.

@ If we allow masses to be assigned to all pairs of clusters, the number of
focal sets becomes proportional to ¢?, which is manageable for moderate
values of ¢ (say, until 10), but still impractical for larger n.

@ Idea: assign masses only to pairs of contiguous clusters.

@ If each cluster has at most g neighbors, then the number of focal sets is
proportional to c.
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Example
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Method

Step1: Run a clustering algorithm (e.g., ECM or EVCLUS) with focal
sets of cardinalities 0, 1 and (optionally) c. A credal partition M
is obtained.

Step 2: Compute the similarity between each pair of clusters (wj,w¢) as
n
83, €)= _ plipl,
i=1

where pl; and pl;, are the normalized plausibilities that object /
belongs, respectively, to clusters j and ¢. Determine the set Py
of pairs {wj,w,} that are mutual g nearest neighbors.

Step 3: Run the clustering algorithm again, starting from the previous
credal partition My, and adding as focal sets the pairs in Px.
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Pairs of mutual neighbors with g = 1
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Pairs of mutual neighbors with g = 2
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Initial credal partition My
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Final credal partition (g = 1)
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Motivation

@ As opposed to ECM, the EVCLUS algorithm does not build a compact
representation of clusters as a collection of prototypes, but it learns an
evidential partition of the n objects directly.

@ If each mass function is constrained to have f focal sets, the number of
free parameters is n(f — 1): it grows linearly with the number of objects.
This characteristic makes EVCLUS impractical for clustering very large
datasets.

@ Also, the algorithm learns an evidential partition of a given dataset, but it
does not allow us to extrapolate beyond the learning set and make
predictions for new objects.

@ NN-EVCLUS' is a neural network version of EVCLUS that addresses
these issues.

2T, Denceux. NN-EVCLUS: Neural Network-based Evidential Clustering. Information
Sciences, 572:297-330, 2021.
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Data

@ We assume the learning data to consist in
» An n x ndissimilarity matrix D = (d;)
» A collection of n attribute vectors X = (X1,...,Xn)
@ Most of the time, we get the n attribute vectors first and compute D as, for
instance, the matrix of Euclidean distances between vectors Xx;:

0 = [1%i — Xj]|-

Sometimes, the dissimilarities can be computed using not only the
attribute vectors, but also side information such as must-link and
cannot-link constraints (more on this later).

@ If the data consists only in the dissimilarity matrix D, we can compute
attribute vectors (x4, ..., X,) by applying, e.g., Principal Component
Analysis to the dissimilarity matrix.
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Model of mass functions

@ We compute a vector representation m of a mass function m as the
output of a multi-layer neural network with a softmax output layer:

m = g(x,0)

where 6 is the vector of weights.
@ To account for outliers, we also use a one-class SVM with output f(x).
@ The complete mass function is

m* =ym+ (1 —-y)m,

where my is the mass vector corresponding to the mass function my such
that my(@) = 1, and y € [0, 1] is a coefficient defined as

=T with 7 = In[1 + exp(Bo + B1f(X))]
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Model of mass functions

One-class SVM

Feed-forward NN
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Learning
NN-EVCLUS .
L (1-SVM+NN) |
. NN-EVCUS | — p*
J (1-SVM+NN) J

@ Loss function:
£;(8) = (x5(6) - 55)°
where 4; is the transformed dissimilarity between objects o; and o;.
@ The network is trained by minimizing the regularized average loss

1 1 2
B G0 @ 1) 22V T T 1) 22

l1jEJ

where J(i) is a random subset of {1, ..., n} of cardinality p, and X is a
regularization hyperparameter.
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Example: one-class SVM output

SVM output m(0d)
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Example: output mass functions

m({wp})

m({os})

m({ws})

m({wr})

m({ooy,05})

m({on,wa})

m({e,ws})

m({ox,0u})
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Exploiting pairwise constraints

@ Like CEVCLUS, NN-EVCLUS can exploit pairwise (must-link and
cannot-link) constraints by adding penalty terms to the loss function.

@ Better results are obtained by using the pairwise constraints for adapting
the metric, using feature extraction methods such as (Kernelized)
Pairwise Constrained Component Analysis.
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Example: mass functions

m(Q) m({w1})
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Basic idea

@ Model-based clustering allows us to estimate probabilities of cluster
membership. The result is a fuzzy partition that describes first-order
uncertainty.

@ To represent second-order uncertainty (uncertainty about the probability
estimates), we need a more general model.

@ The BootClus algorithm'® exploits the expressiveness of DS theory and
generates a CP by bootstrapping mixture models.

@ As it is built to approximate some confidence intervals, the resulting CP is
frequency-calibrated.

13T. Denceux. Calibrated model-based evidential clustering using bootstrapping. Information
Sciences, 528:17-45, 2020.
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Model

@ We assume that the attribute vectors x4, ..., X, are an iid random sample
from a mixture distribution with pdf

p(x; 6) = Z TkPk(X; Ok)
k=1

where each component in the mixture corresponds to a cluster and 0 is
the parameter vector.

@ The probability that object i belongs to cluster k is

Pr(Xi; Ok )k
X;; 0) =
TG 0) = S5 by 00)m

@ The probability that two objects i and j belong to the same cluster is

Py(0) = Y mk(xi; 0) mk(x;; 6)
k=1
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Estimation

@ Given a dataset x1,..., Xp, we can compute the MLE 0 of 6 and the
corresponding MLEs 7x(x;; @) and Pj(8).
@ To describe the uncertainty of these estimates, we can use the bootstrap.

@ Confidence intervals on the pairwise probabilities Pj(#) can easily be
obtained by the bootstrap percentile method.
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Bootstrap Cls on pairwise probabilities

Require: Dataset x4, ..., X,, model p(-; @), number of bootstrap samples B,
confidence level 1 — «

forb=1to Bdo

Draw Xp1, ..., Xpn from x4, ..., X, with replacement
Compute the MLE 6, from X1, .

.., Xpn
foralli<jdo _
Compute P;(65)
end for
end for
foralli <jdo
~ B
P} := Quantile ({P,-,(@b)}b_1 ;g)
_\B
PY := Quantile ({P,,(Bb)}b_1 - g)

end for
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Constructing a credal partition

@ Given a normalized CP M = (my, ..., mp), the belief and plausibility that
any two objects i and j belong to the same cluster are given by

Belj = " mj({wk})mi({w})

k=1

P/,/ =1- Kij = Z m,(A)m,(B)
ANB#()

@ Idea: search for a credal partition M such that the belief-plausibility
intervals [Belj, Plj] approximate the confidence intervals [P,’j, Pjl.
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Optimization problem and frequentist property

@ An approximating CP can be found as the solution of the optimization
problem

. 2 2
min Z (Bely — P})” + (Pl — P})~,
i<j
which can be solved using a grouped coordinate descent procedure
(solving a QP problem at each iteration).
@ The solution verifies

P(Belj < P;j(0) < Plj) =1 — a.

@ This corresponds to the definition of a predictive belief function'™ at level
1 — a, a special kind of frequency-calibrated belief function'®.

14T. Denceux. Constructing Belief Functions from Sample Data Using Multinomial Confidence
Regions. IJAR, 42(3):228-252, 2006.

5T. Denceux and S. Li. Frequency-Calibrated Belief Functions: Review and New Insights.
IJAR, 92:232-254, 2018.
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Example

Bootstrap confidence intervals
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Example

Bootstrap confidence intervals

26,30
)
- 18 b
1 ]
A 24 o [
15 Cl !
o | 8 2 19 |
2 4 !
g 1780 £ - |
¢ g 22 gsEﬁ & g s !
9 [} [
R 7 2 . |
S 11 38 o g !
u_ [
a3 12 10 [
89 !
6 g -
o | !
°© [
0 i
16 o M
85 T T T T T —
! f f f f ! 00 02 04 06 038 10
-05 0.0 05 1.0 1.5 2.0

boostrap estimates of pairwise probabilities

x1

Evidential clustering BFTA 2023 95/100



BootClus

Example

Bootstrap confidence intervals
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Example

Approximation of confidence intervals by pairwise belief functions
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Example

Lower/upper approximations of the credal partition
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Summary

Summary

@ Quantifying clustering uncertainty using DS theory implies defining belief
functions on the space of all partitions (or on the space of partitions with
at most c clusters).

@ Two useful workable models are (1) orthogonal sums of pairwise mass
functions, and (2) CPs.

@ In particular, CPs generalize not only hard partitions, but also other “soft”
clustering structures (hard, fuzzy, possibilistic, rough partitions).

@ Several evidential clustering algorithms have been proposed, most of
them generating CPs.
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Summary (continued)

@ Some algorithms (ECM, BootClus) handle attribute data only, while
others (EK-NNclus, EVCLUS) can also handle (nonmetric) proximity data.

@ Datasets with a large number of clusters can be handled by carefully
selecting the focal sets.

@ The evaluation and comparison of soft clustering algorithms in the belief
function framework is a current research topic'¢1718,

6T, Denceux, S. Li and S. Sriboonchitta. Evaluating and Comparing Soft Partitions: an
Approach Based on Dempster-Shafer Theory. IEEE Transactions on Fuzzy Systems,
26(3):1231-1244, 2018.

7. Campagner, D. Ciucci and T. Denceux. A General Framework for Evaluating and
Comparing Soft Clusterings. Information Sciences, 623:70-93, 2023.

8A. Campagner, D. Ciucci and T. Denceux. A Distributional Framework for Evaluation,
Comparison and Uncertalnty Quantification in Soft Clustering. IJAR, 162:109008, 2023.
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