Epistemic random fuzzy sets

Theory and Application to Machine Learning

Thierry Denœux

Université de technologie de Compiègne, Compiègne, France Institut Universitaire de France, Paris, France

https://www.hds.utc.fr/~tdenoeux

6th School on Belief Functions and their Applications Ishikawa, Japan, October 31, 2023

A general model of uncertainty

- Modeling uncertainty: a fundamental problem in Artificial/Computational Intelligence
 - Representation of uncertain/imperfect knowledge
 - Reasoning and decision-making with uncertainty
 - Quantification of prediction uncertainty in machine learning, etc.
- As probability theory proved to be too limited, two alternative models were introduced in the late 1970's:
 - ► Dempster-Shafer (DS) theory = belief functions + Dempster's rule (based on random sets, generalizes Bayesian probability theory)
 - Possibility theory = possibility measures + triangular norms (based on fuzzy sets)
- Each of these two models can be more suitable/practical than the other, depending on the available information (unreliable/uncertain vs. vague/fuzzy).
- The purpose of this lecture is to introduce a more general theoretical framework: Epistemic Random Fuzzy Sets, which unifies the two previous approaches and gives more flexibility in applications.

General picture

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Random set

Definition (Random Set)

Let $(\Omega, \Sigma_{\Omega}, P)$ be a probability space, $(\Theta, \Sigma_{\Theta})$ a measurable space, and $\overline{X}: \Omega \to 2^{\Theta}$. The 6-tuple $(\Omega, \Sigma_{\Omega}, P, \Theta, \Sigma_{\Theta}, \overline{X})$ is a random set (RS) iff \overline{X} verifies the following measurability condition:

$$\forall B \in \Sigma_{\Theta}, \quad \{\omega \in \Omega : \overline{X}(\omega) \cap B \neq \emptyset\} \in \Sigma_{\Omega}.$$

The images $\overline{X}(\omega)$ are called the focal sets of \overline{X} .

4□→ 4周→ 4∃→ 4∃→ ∃ ♥9QC

Interpretation and example

- In DS theory, a RS represents a piece of evidence about a variable X taking values in set Θ (called the frame of discernment):
 - lacksquare Ω is a set of interpretations of the evidence
 - ▶ If interpretation $\omega \in \Omega$ holds, we know that $X \in \overline{X}(\omega)$, and nothing more
 - ▶ For any $A \in \Sigma_{\Omega}$, P(A) is the (subjective) probability that the true interpretation is in A
- Example: unreliable sensor

Belief and plausibility functions

- For any $B \in \Sigma_{\Theta}$, we can compute
 - ▶ The probability that proposition " $X \in B$ " is supported by the evidence:

$$Bel_{\overline{X}}(B) = P(\{\omega \in \Omega : \emptyset \neq \overline{X}(\omega) \subseteq B\})$$

▶ The probability that proposition " $X \in B$ " is consistent with the evidence:

$$Pl_{\overline{X}}(B) = P(\{\omega \in \Omega : \overline{X}(\omega) \cap B \neq \emptyset\})$$

= $1 - Bel_{\overline{X}}(B^c)$

• Mappings $Bel_{\overline{X}}: \Sigma_{\Theta} \to [0,1]$ and $Pl_{\overline{X}}: \Sigma_{\Theta} \to [0,1]$ are called respectively, belief and plausibility functions.

9 / 81

Interpretation

- In DS theory, $Bel_{\overline{X}}(B)$ and $Pl_{\overline{X}}(B)$ are interpreted, respectively, as a degree of support for B, and a degree of lack of support for B^c , based on some evidence. This model is more flexible than probability theory.
- Examples:

	Bel(B)	$Bel(B^c)$	PI(B)	$PI(B^c)$
evidence for B	0.9	0	1	0.1
mixed evidence for B and B^c	0.6	0.2	8.0	0.4
complete ignorance	0	0	1	1
probabilistic evidence	0.4	0.6	0.4	0.6

Special cases

- Precise but uncertain information: if for all $\omega \in \Omega$, $|\overline{X}(\omega)| = 1$, RS \overline{X} is said to be Bayesian. $Bel_{\overline{X}}$ is then a probability measure, and $Pl_{\overline{X}} = Bel_{\overline{X}}$
- Certain but imprecise information: let $B \subseteq \Theta$; the constant RS \overline{X}_B such that for all $\omega \in \Omega$, $\overline{X}(\omega) = B$ corresponds to set-valued information (we know for sure that $X \in B$, and nothing more).
- In particular, if \overline{X}_0 is a RS such that for all $\omega \in \Omega$, $\overline{X}_0(\omega) = \Theta$, \overline{X}_0 is said to be vacuous: it represents complete ignorance.

Combination of independent pieces of evidence

Case 1: no conflict

Combination of independent pieces of evidence

Case 2: conflict

Dempster's rule of combination

Definition (Dempster's rule)

Let $(\Omega_i, \Sigma_i, P_i, \Theta, \Sigma_{\Theta}, \overline{X}_i)$, i = 1, 2 be two RSs representing independent pieces of evidence. Their orthogonal sum is the RS

$$(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, P_{12}, \Theta, \Sigma_{\Theta}, \overline{X}_1 \oplus \overline{X}_2)$$

where $(\overline{X}_1 \oplus \overline{X}_2)(\omega_1, \omega_2) = \overline{X}_1(\omega_1) \cap \overline{X}_2(\omega_2)$ and P_{12} is the product measure $P_1 \times P_2$ conditioned on the set $\Theta^* = \{(\omega_1, \omega_2) \in \Omega_1 \times \Omega_2 : \overline{X}_1(\omega_1) \cap \overline{X}_2(\omega_2) \neq \emptyset\}$

Properties

Commutativity:

$$\overline{X}_1 \oplus \overline{X}_2 = \overline{X}_2 \oplus \overline{X}_1$$

Associativity:

$$(\overline{X}_1 \oplus \overline{X}_2) \oplus \overline{X}_3 = \overline{X}_1 \oplus (\overline{X}_2 \oplus \overline{X}_3)$$

• Neutral element: if \overline{X}_0 is vacuous,

$$\overline{X}_0 \oplus \overline{X} = \overline{X}$$

• Let $pl_{\overline{X}}: \Theta \to [0,1]$ be the contour function defined by $pl_{\overline{X}}(\theta) = Pl_{\overline{X}}(\{\theta\})$ for all $\theta \in \Theta$. We have

$$pl_{\overline{X}_1 \oplus \overline{X}_2} \propto pl_{\overline{X}_1} pl_{\overline{X}_2}$$

• Generalization of Bayesian conditioning: if \overline{X} is a Bayesian RS and \overline{X}_B is a constant RS with focal set B, then $\overline{X} \oplus \overline{X}_B$ is a Bayesian RS, and

$$Bel_{\overline{X} \oplus \overline{X}_B} = Bel_{\overline{X}}(\cdot \mid B)$$

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Fuzzy set

- ullet A fuzzy subset of a set Θ is a mapping $\widetilde{F}:\Theta\mapsto [0,1].$
- It represents a generalized subset of Θ with unsharp boundaries: $\widetilde{F}(\theta)$ is the degree of membership of θ to the fuzzy set \widetilde{F} .
- Example: if $\Theta = [-60, 60]$ is the range of outside air temperatures, the notion of "hot temperature" can be represented by the fuzzy subset

Additional definitions

ullet The height of \widetilde{F} is

$$\mathsf{hgt}(\widetilde{F}) = \sup_{\theta \in \Theta} \widetilde{F}(\theta)$$

- \widetilde{F} is normal if $hgt(\widetilde{F}) = 1$
- For any $\alpha \in [0,1]$, the α -cut of \widetilde{F} is the set

$${}^{\alpha}\widetilde{F} = \{\theta \in \Theta : \widetilde{F}(\theta) \ge \alpha\}$$

Possibility and necessity

- Let X be a variable taking values in Θ . Assume that we receive a piece of evidence telling us that "X is \widetilde{F} ", where \widetilde{F} is a normal fuzzy subset of Θ .
- Such evidence can be seen as a flexible constraint on the true value of X. We define
 - ▶ The possibility distribution of X as $\pi_{\widetilde{F}} = \widetilde{F}$
 - ▶ The degree of possibility that $X \in B$ for $B \subseteq \Theta$ as

$$\Pi_{\widetilde{F}}(B) = \sup_{\theta \in B} \pi_{\widetilde{F}}(\theta)$$

▶ The degree of necessity that $X \in B$ as

$$N_{\widetilde{F}}(B) = 1 - \Pi_{\widetilde{F}}(B^c)$$

Example:

Possibility and necessity measures

- The mapping $\Pi_{\widetilde{F}}: 2^{\Theta} \mapsto [0,1]$ is called a possibility measure, and $N_{\widetilde{F}}: 2^{\Theta} \mapsto [0,1]$ is the dual necessity measure.
- Properties: for any $A, B \subseteq \Theta$,

$$\Pi_{\widetilde{F}}(A \cup B) = \max(\Pi_{\widetilde{F}}(A), \Pi_{\widetilde{F}}(B))$$

$$N_{\widetilde{F}}(A \cap B) = \min(N_{\widetilde{F}}(A), N_{\widetilde{F}}(B))$$

• $N_{\widetilde{F}}$ is a belief function, and $\Pi_{\widetilde{F}}$ is the dual plausibility function. For this reason, it has been claimed that possibility theory is a special case of DS theory. However, the two theories have different mechanisms for combining information.

Combination of possibility distributions

- Assume that we receive two independent pieces of information telling us that "X is \widetilde{F} " and "X is \widetilde{G} ", where \widetilde{F} and \widetilde{G} are two fuzzy subsets of Θ .
- We can deduce that "X is $\widetilde{F} \cap_{\top} \widetilde{G}$ ", where \cap_{\top} is a fuzzy set intersection operator based on a t-norm \top . The most common choices for \top are the minimum and product t-norms.
- ullet The intersection of two normal fuzzy sets is generally not normal. We define the normalized \top -intersection as

$$(\widetilde{F} \cap_{\top}^* \widetilde{G})(\theta) = \frac{\widetilde{F}(\theta) \top \widetilde{G}(\theta)}{\mathsf{hgt}(\widetilde{F} \cap_{\top} \widetilde{G})}$$

• The normalized intersection is associative iff $\top =$ product; the normalized product intersection is denoted by \odot .

←□→ ←□→ ← □→ ← □ → ○○○

21 / 81

Example

$$\widetilde{\mathit{F}} = \mathsf{hot}, \ \widetilde{\mathit{G}} = \mathsf{around} \ \mathsf{30}$$

Thierry Denœux (UTC/IUF)

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- 2 Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- 2 Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Random fuzzy set

Definition (Random Fuzzy Set)

Let $(\Omega, \Sigma_{\Omega}, P)$ be a probability space, $(\Theta, \Sigma_{\Theta})$ a measurable space, and \widetilde{X} a mapping from Ω to the set $[0,1]^{\Theta}$ of fuzzy subsets of Θ . The 6-tuple $(\Omega, \Sigma_{\Omega}, P, \Theta, \Sigma_{\Theta}, \widetilde{X})$ is a random fuzzy set (RFS) iff for any $\alpha \in [0,1]$, the mapping

$${}^{\alpha}\widetilde{X}:\Omega\to 2^{\Theta}$$
$$\omega\mapsto{}^{\alpha}[\widetilde{X}(\omega)]=\{\theta\in\Theta:\widetilde{X}(\omega)(\theta)\geq\alpha\}$$

is a random set.

Interpretation

- We use RFSs as a model of unreliable and fuzzy evidence¹:
 - $ightharpoonup \Theta$ is the domain of an uncertain variable/quantity X
 - lacksquare Ω is a set of interpretations of a piece of evidence about X
 - ▶ $\forall A \in \Sigma_{\Omega}$, P(A) is the probability that the true interpretation lies in A
 - ▶ If $\omega \in \Omega$ holds, we know that "X is $\widetilde{X}(\omega)$ ", i.e., X is constrained by the possibility distribution $\widetilde{X}(\omega)$.
- Such RFSs are called "epistemic" to stress that they represent a state of knowledge.
- Example: a witness tells us that "the temperature was hot on Monday", and this witness is 50% reliable
 - $\Omega = \{ \text{rel}, \neg \text{rel} \}, p(\text{rel}) = 0.5$
 - X = temperature on Monday in Celsius, $\Theta = [-60, 60]$
 - $\widetilde{X}(\text{rel}) = \text{hot (a fuzzy subset of } \Theta), \ \widetilde{X}(\neg \text{rel}) = \Theta$

¹This interpretation is different from previous interpretations of RFSs as a model of random mechanism for generating fuzzy data (Puri & Ralescu, Gil), or as imperfect knowledge of a random variable (Kruse & Meyer, Couso & Sánchez)

Belief and plausibility functions

• If interpretation $\omega \in \Omega$ holds, the degrees of possibility and necessity that X belongs to $B \in \Sigma_{\Theta}$ are

$$\Pi_{\widetilde{X}(\omega)}(B) = \sup_{\theta \in B} \widetilde{X}(\omega)(\theta), \quad N_{\widetilde{X}(\omega)}(B) = 1 - \Pi_{\widetilde{X}(\omega)}(B^c)$$

The expected necessity and possibility degrees (Zadeh, 1979) are

$$Bel_{\widetilde{X}}(B) = \int_{\Omega} N_{\widetilde{X}(\omega)}(B) dP(\omega), \quad Pl_{\widetilde{X}}(B) = \int_{\Omega} \Pi_{\widetilde{X}(\omega)}(B) dP(\omega).$$

Proposition (Zadeh, 1979; Couso & Sánchez, 2011)

Function $Bel_{\widetilde{X}}$ is a completely monotone capacity (a belief function), and $Pl_{\widetilde{X}}$ is the dual plausibility function .

A RFS is thus (like a random set) a way of specifying a belief function. The RFS model is more flexible.

27 / 81

Example

- Continuing the previous example, what are the degrees of belief and plausibility that $X \in B = [25, 35]$?
- We have

$$\Pi_{\widetilde{X}(\mathsf{rel})}(B) = 0.75, \quad \Pi_{\widetilde{X}(\neg \mathsf{rel})}(B) = 1$$

so

$$Pl_{\widetilde{X}}(B) = 0.5 \times 0.75 + 0.5 \times 1 = 0.875$$

Now,

$$N_{\widetilde{X}(\mathsf{rel})}(B) = 0, \quad N_{\widetilde{X}(\neg \mathsf{rel})}(B) = 0$$

SO

$$Bel_{\widetilde{X}}(B) = 0$$

Combination of independent RFSs

- We consider two RFSs $\widetilde{X}_1:\Omega_1\to [0,1]^\Theta$ and $\widetilde{X}_2:\Omega_2\to [0,1]^\Theta$ representing independent pieces of evidence.
- if $\omega_1 \in \Omega_1$ and $\omega_2 \in \Omega_2$ both hold, we can deduce "X is $\widetilde{X}_1(\omega_1) \cap \widetilde{X}_2(\omega_2)$ ", where \cap denotes fuzzy intersection.
- We need (1) a definition of fuzzy intersection and (2) a way to handle possible conflict (inconsistency) between the two sources.

29 / 81

Definition of intersection and conflict

- Fuzzy intersection: as mentioned before, the normalized product intersection is suitable for combining fuzzy information from independent sources, and it is associative.
- With fuzzy sets, conflict is a matter of degree. We define the fuzzy set of consistent pairs of interpretations as

$$\widetilde{\Theta}^*(\omega_1,\omega_2) = \sup_{\Theta} \left(\widetilde{X}_1(\omega_1) \cdot \widetilde{X}_2(\omega_2) \right)$$

• The product measure $P_1 \times P_2$ is conditioned on fuzzy event $\widetilde{\Theta}^*$:

$$\widetilde{P}_{12}(B) = \frac{(P_1 \times P_2)(B \cap \widetilde{\Theta}^*)}{(P_1 \times P_2)(\widetilde{\Theta}^*)} = \frac{\int_{\Omega_1} \int_{\Omega_2} B(\omega_1, \omega_2) \widetilde{\Theta}^*(\omega_1, \omega_2) dP_2(\omega_2) dP_1(\omega_1)}{\int_{\Omega_1} \int_{\Omega_2} \widetilde{\Theta}^*(\omega_1, \omega_2) dP_2(\omega_2) dP_1(\omega_1)}$$

where $B(\cdot, \cdot)$ denotes the indicator function of B. This process is called soft normalization.

◆□▶ ◆圖▶ ◆園▶ ◆園▶ ■園

Product-intersection rule²

Definition (Product-intersection rule)

The orthogonal sum of \widetilde{X}_1 and \widetilde{X}_2 is the RFS

$$\big(\Omega_1\times\Omega_2,\Sigma_1\otimes\Sigma_2,\widetilde{P}_{12},\Theta,\Sigma_{\Theta},\widetilde{X}_1\oplus\widetilde{X}_2\big)$$

where

$$(\widetilde{X}_1 \oplus \widetilde{X}_2)(\omega_1, \omega_2) = \widetilde{X}_1(\omega_1) \odot \widetilde{X}_2(\omega_2)$$

and \widetilde{P}_{12} is the product measure $P_1 \times P_2$ conditioned on the fuzzy set $\widetilde{\Theta}^*(\omega_1, \omega_2)$. This operation is called the product intersection of \widetilde{X}_1 and \widetilde{X}_2 (with soft normalization).

ry Denœux (UTC/IUF) Random fuzzy sets BFTA 2023

31 / 81

²T. Denœux. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. *Fuzzy Sets and Systems* 453:1–36, 2023

Example

- As before, let $\Theta = [-60, +60]$, $\widetilde{F} = \text{hot}$, $\widetilde{G} = \text{around } 30$.
- Evidence 1: $\Omega_1 = \{\text{rel}, \neg \text{rel}\}, \ p_1(\text{rel}) = 0.5, \ \widetilde{X}_1(\text{rel}) = \widetilde{F}, \ \widetilde{X}_1(\neg \text{rel}) = \Theta.$
- Evidence 2: $\Omega_2 = \{\text{rel}, \neg \text{rel}\}, \ p_2(\text{rel}) = 0.7, \ \widetilde{X}_2(\text{rel}) = \widetilde{G}, \ \widetilde{X}_2(\neg \text{rel}) = \Theta.$
- $\bullet \ \ \widetilde{\Theta}^*(\mathsf{rel},\mathsf{rel}) = \mathsf{0.5}, \ \widetilde{\Theta}^*(\mathsf{rel},\neg\mathsf{rel}) = \widetilde{\Theta}^*(\neg\mathsf{rel},\mathsf{rel}) = \widetilde{\Theta}^*(\neg\mathsf{rel},\neg\mathsf{rel}) = 1$
- $(P_1 \times P_2)(\widetilde{\Theta}^*) = 0.35 \times 0.5 + 0.15 \times 1 + 0.35 \times 1 + 0.15 \times 1 = 0.825$
- $\widetilde{p}_{12}(\text{rel}, \text{rel}) = 0.35 \times 0.5/0.825$, $\widetilde{p}_{12}(\neg \text{rel}, \text{rel}) = 0.35/0.825$, $\widetilde{p}_{12}(\text{rel}, \neg \text{rel}) = 0.15/0.825$, $\widetilde{p}_{12}(\neg \text{rel}, \neg \text{rel}) = 0.15/0.825$
- $\begin{array}{l} \bullet \ \ (\widetilde{X}_1 \oplus \widetilde{X}_2)(\mathsf{rel},\mathsf{rel}) = \widetilde{F} \odot \widetilde{G}, \ (\widetilde{X}_1 \oplus \widetilde{X}_2)(\mathsf{rel},\neg\mathsf{rel}) = \widetilde{F}, \\ (\widetilde{X}_1 \oplus \widetilde{X}_2)(\mathsf{rel},\neg\mathsf{rel}) = \widetilde{G}, \ (\widetilde{X}_1 \oplus \widetilde{X}_2)(\neg\mathsf{rel},\neg\mathsf{rel}) = \Theta. \end{array}$

Properties

- Commutativity, associativity
- @ Generalization of Dempster's rule and the normalized product intersection of possibility distributions
- Multiplication of contour functions

$$pl_{\widetilde{X}_1 \oplus \widetilde{X}_2} \propto pl_{\widetilde{X}_1} pl_{\widetilde{X}_2}$$

 $\begin{tabular}{ll} \hline \bullet & Generalization of conditioning of a probability measure by a fuzzy event: if \overline{X} is a Bayesian RS and $\widetilde{X}_{\widetilde{B}}$ is a constant RF with fuzzy focal set \widetilde{B}, then $\overline{X} \oplus \widetilde{X}_{\widetilde{B}}$ is a Bayesian RS, and } \end{tabular}$

$$Bel_{\overline{X} \oplus \widetilde{X}_{\widetilde{B}}} = Bel_{\overline{X}}(\cdot | \widetilde{B})$$

i.e.

$$orall A \in \Sigma_{\Theta}, \quad \mathit{Bel}_{\overline{X} \oplus \widetilde{X}_{\widetilde{B}}}(A) = rac{\int_{A} \widetilde{B}(\theta) d\mathit{Bel}_{\overline{X}}(\theta)}{\int_{\Theta} \widetilde{B}(\theta) d\mathit{Bel}_{\overline{X}}(\theta)}$$

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- 2 Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- 3 Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Motivation

- In probability theory and statistics, the Gaussian probability distribution is widely used because it allows for simple calculations and easy manipulation (conditioning, marginalization, etc.)
- Until recently, a similar workable model had been missing in DS theory to represent uncertainty on continuous variables (possibility distributions or p-boxes are not closed under Dempster's rule)
- Gaussian random fuzzy numbers (GRFNs) and extensions are simple models of RFSs making it possible to define families of belief functions on \mathbb{R} , \mathbb{R}^p , [a,b], etc., which can be easily combined by the product-intersection operator \oplus .

35 / 81

Gaussian fuzzy numbers

Definition (Gaussian fuzzy number)

A Gaussian fuzzy number (GFN) with mode $m \in \mathbb{R}$ and precision $h \ge 0$ is a fuzzy subset of \mathbb{R} with membership function $\varphi(x; m, h) = \exp\left(-\frac{h}{2}(x-m)^2\right)$. It is denoted by $\mathsf{GFN}(m, h)$.

Proposition

$$GFN(m_1, h_1) \odot GFN(m_2, h_2) = GFN(m_{12}, h_1 + h_2)$$
 with $m_{12} = \frac{h_1 m_1 + h_2 m_2}{h_1 + h_2}$

hierry Denœux (UTC/IUF) Random fuzzy sets BFTA 2023 36 / 81

Gaussian random fuzzy numbers

Definition (Gaussian random fuzzy number)

A Gaussian random fuzzy number (GRFN) $\widetilde{X} \sim \widetilde{N}(\mu, \sigma^2, h)$ with mean μ , variance σ^2 and precision $h \geq 0$ is a Gaussian fuzzy number GFN(M, h) whose mode is a Gaussian random variable: $M \sim N(\mu, \sigma^2)$. Formally, it is a mapping $\widetilde{X}: \Omega \mapsto [0, 1]^{\mathbb{R}}$ such that $\widetilde{X}(\omega) = \text{GFN}(M(\omega), h)$ with $M \sim N(\mu, \sigma^2)$.

4 D > 4 A > 4 B > 4 B >

Special cases

- If h = 0, $\widetilde{X}(\omega) = \mathbb{R}$ for all ω : \widetilde{X} induces the vacuous belief function on \mathbb{R} ; it represents complete ignorance
- If $h = +\infty$, \widetilde{X} is equivalent to a GRV with mean μ and variance σ^2 :

$$\widetilde{N}(\mu, \sigma^2, +\infty) = N(\mu, \sigma^2)$$

• If $\sigma^2=0$, \widetilde{X} is equivalent to a Gaussian possibility distribution:

$$\widetilde{N}(\mu, 0, h) = GFN(\mu, h)$$

Contour function

• The contour function of \widetilde{X} is

$$pl_{\widetilde{X}}(x) = \frac{1}{\sqrt{1+h\sigma^2}} \exp\left(-\frac{h(x-\mu)^2}{2(1+h\sigma^2)}\right)$$

• Remarks: (1) for all x, $pl_{\widetilde{X}}(x) \to 0$ when $\sigma^2 \neq 0$ and $h \to \infty$; (2) when $\sigma^2 = 0$, $pl_{\widetilde{X}}$ is the possibility distribution of $\widetilde{X} \sim GFN(\mu, h)$.

Belief and plausibility of intervals

$$Bel_{\widetilde{X}}([x,y]) = \Phi\left(\frac{y-\mu}{\sigma}\right) - \Phi\left(\frac{x-\mu}{\sigma}\right) - \\pl_{\widetilde{X}}(x) \left[\Phi\left(\frac{(x+y)/2-\mu}{\sigma\sqrt{h\sigma^2+1}}\right) - \Phi\left(\frac{x-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)\right] - \\pl_{\widetilde{X}}(y) \left[\Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2+1}}\right) - \Phi\left(\frac{(x+y)/2-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)\right]$$

$$Pl_{\widetilde{X}}([x,y]) = \Phi\left(\frac{y-\mu}{\sigma}\right) - \Phi\left(\frac{x-\mu}{\sigma}\right) + pl_{\widetilde{X}}(x)\Phi\left(\frac{x-\mu}{\sigma\sqrt{h\sigma^2+1}}\right) + pl_{\widetilde{X}}(y)\left[1 - \Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)\right]$$

where Φ is the normal cumulative distribution function (cdf).

Lower and upper distribution functions

In particular, the lower and upper cdfs of $\widetilde{X}\sim\widetilde{N}(\mu,\sigma^2,h)$ are

$$Bel_{\widetilde{X}}((-\infty, y]) = \Phi\left(\frac{y-\mu}{\sigma}\right) - pl_{\widetilde{X}}(y)\Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)$$

and

$$Pl_{\widetilde{X}}((-\infty,y]) = \Phi\left(\frac{y-\mu}{\sigma}\right) + pl_{\widetilde{X}}(y)\left[1 - \Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)\right]$$

Combination of GRFNs

Theorem (Product-intersection of GRFNs)

Given two GRFNs $\widetilde{X}_1 \sim \widetilde{N}(\mu_1, \sigma_1^2, h_1)$ and $\widetilde{X}_2 \sim \widetilde{N}(\mu_2, \sigma_2^2, h_2)$, we have

$$\left[\widetilde{X}_1 \oplus \widetilde{X}_2 \sim \widetilde{N}(\widetilde{\mu}_{12}, \widetilde{\sigma}_{12}^2, h_1 + h_2)\right]$$

(Expressions of $\widetilde{\mu}_{12}$ and $\widetilde{\sigma}_{12}^2$ on next slide)

40.40.45.45.5

42 / 81

Combination of GRFNs

Expressions of $\widetilde{\mu}_{12}$ and $\widetilde{\sigma}_{12}^2$

$$\widetilde{\mu}_{12} = \frac{h_1\widetilde{\mu}_1 + h_2\widetilde{\mu}_2}{h_1 + h_2}, \quad \widetilde{\sigma}_{12}^2 = \frac{h_1^2\widetilde{\sigma}_1^2 + h_2^2\widetilde{\sigma}_2^2 + 2\rho h_1 h_2\widetilde{\sigma}_1\widetilde{\sigma}_2}{(h_1 + h_2)^2}$$

with

$$\begin{split} \widetilde{\mu}_1 &= \frac{\mu_1 (1 + \overline{h} \sigma_2^2) + \mu_2 \overline{h} \sigma_1^2}{1 + \overline{h} (\sigma_1^2 + \sigma_2^2)}, \quad \widetilde{\mu}_2 = \frac{\mu_2 (1 + \overline{h} \sigma_1^2) + \mu_1 \overline{h} \sigma_2^2}{1 + \overline{h} (\sigma_1^2 + \sigma_2^2)} \\ \widetilde{\sigma}_1^2 &= \frac{\sigma_1^2 (1 + \overline{h} \sigma_2^2)}{1 + \overline{h} (\sigma_1^2 + \sigma_2^2)}, \quad \widetilde{\sigma}_2^2 = \frac{\sigma_2^2 (1 + \overline{h} \sigma_1^2)}{1 + \overline{h} (\sigma_1^2 + \sigma_2^2)} \\ \rho &= \frac{\overline{h} \sigma_1 \sigma_2}{\sqrt{(1 + \overline{h} \sigma_1^2)(1 + \overline{h} \sigma_2^2)}} \quad \text{and} \quad \overline{h} = \frac{h_1 h_2}{h_1 + h_2} \end{split}$$

4□ > 4□ > 4 = > 4 = > = 90

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Gaussian fuzzy vectors

Definition (Gaussian fuzzy vector)

A *p*-dimensional Gaussian fuzzy vector (GFV) with mode $\mathbf{m} \in \mathbb{R}^p$ and symmetric and positive semidefinite precision matrix $\mathbf{H} \in \mathbb{R}^{p \times p}$, denoted by GFV(\mathbf{m}, \mathbf{H}), is a fuzzy subset of \mathbb{R}^p with membership function

$$\varphi(\mathbf{x}; \mathbf{m}, \mathbf{H}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{H}(\mathbf{x} - \mathbf{m})\right).$$

Product intersection of GFVs

Proposition

$$GFV(\mathbf{m}_1, \mathbf{H}_1) \odot GFV(\mathbf{m}_2, \mathbf{H}_2) = GFV(\mathbf{m}_{12}, \mathbf{H}_{12}),$$

with

$$m_{12} = (H_1 + H_2)^{-1}(H_1m_1 + H_2m_2)$$
 and $H_{12} = H_1 + H_2$.

Gaussian random fuzzy vectors

Definition (Gaussian random fuzzy vector)

A Gaussian random fuzzy vector (GRFV) $\widetilde{X} \sim \widetilde{N}(\mu, \Sigma, H)$ with covariance matrix Σ and precision matrix H is random fuzzy set $\widetilde{X}: \Omega \to [0,1]^{\mathbb{R}^p}$ such that

$$\widetilde{X}(\omega) = \mathsf{GFV}(\boldsymbol{M}(\omega), \boldsymbol{H})$$
 with $\boldsymbol{M} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Combination of GRFVs

Theorem (Product-intersection of GRFVs)

Let $\widetilde{X}_1 \sim \widetilde{N}(\mu_1, \mathbf{\Sigma}_1, \mathbf{H}_1)$ and $\widetilde{X}_2 \sim \widetilde{N}(\mu_2, \mathbf{\Sigma}_2, \mathbf{H}_2)$ be two independent GRFVs such that matrices $\mathbf{\Sigma}_1$, $\mathbf{\Sigma}_2$, \mathbf{H}_1 and \mathbf{H}_2 are all positive definite. We have

$$\widetilde{X}_1 \oplus \widetilde{X}_2 \sim \widetilde{\mathcal{N}}(\widetilde{\mu}_{12},\widetilde{oldsymbol{\Sigma}}_{12},oldsymbol{H}_1 + oldsymbol{H}_2)$$

(Expressions of $\widetilde{\mu}_{12}$ and $\widetilde{oldsymbol{\Sigma}}_{12}$ on next slide)

Combination of GRFVs

Expressions of $\widetilde{\boldsymbol{\mu}}_{12}$ and $\widetilde{\boldsymbol{\Sigma}}_{12}$

$$\widetilde{m{\mu}}_{12} = m{A}\widetilde{m{\mu}}$$
 and $\widetilde{m{\Sigma}}_{12} = m{A}\widetilde{m{\Sigma}}m{A}^T$

where **A** is the constant $p \times 2p$ matrix defined as

$$\mathbf{A} = \mathbf{H}_{12}^{-1} \begin{pmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{pmatrix}$$

$$\widetilde{\mathbf{\Sigma}} = \begin{pmatrix} \mathbf{\Sigma}_1^{-1} + \overline{\mathbf{H}} & -\overline{\mathbf{H}} \\ -\overline{\mathbf{H}} & \mathbf{\Sigma}_1^{-1} + \overline{\mathbf{H}} \end{pmatrix}^{-1}$$

$$\widetilde{\mu} = egin{pmatrix} \overline{m{H}}^{-1} m{\Sigma}_1^{-1} + m{I}_p & -m{I}_p \ -m{I}_p & \overline{m{H}}^{-1} m{\Sigma}_2^{-1} + m{I}_p \end{pmatrix}^{-1} egin{pmatrix} \overline{m{H}}^{-1} m{\Sigma}_1^{-1} & \mathbf{0} \ \mathbf{0} & \overline{m{H}}^{-1} m{\Sigma}_2^{-1} \end{pmatrix} egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix}$$

and

$$\overline{\mathbf{H}} = (\mathbf{H}_1^{-1} + \mathbf{H}_2^{-1})^{-1}.$$

◆ロ → ◆個 → ◆ 差 → ◆ 差 → り へ ②

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- 2 Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Limitations of the GRFN model

- The domain of a GRFN is the whole real line, making the model unsuitable for representing belief functions on a real interval such as $(0, +\infty)$ or [a, b].
- A GRFN is unimodal and symmetric about the mean μ ; these properties may not always reflect an agent's actual beliefs.
- We need more flexible parameterized families of random fuzzy numbers and vectors with different supports and different "shapes", while maintaining the closure property under the product-intersection rule.
- This can be achieved by composing a RFS $\widetilde{X}:\Omega\to[0,1]^\Theta$ with a one-to-one mapping³ from Θ to another space Λ , to obtain a a RFS $\widetilde{Y}:\Omega\to[0,1]^\Lambda$.

nierry Denœux (UTC/IUF) Random fuzzy sets BFTA 2023

51 / 81

Transformation of a RFS

- Let ψ be a one-to-one mapping from Θ to some set Λ .
- Zadeh's extension principle allows us to extend ψ to fuzzy subsets of Θ ; the extended mapping $\widetilde{\psi}: [0,1]^{\Theta} \to [0,1]^{\Lambda}$ is defined as

$$\forall \widetilde{F} \in [0,1]^{\Theta}, \quad \widetilde{\psi}(\widetilde{F})(\lambda) = \sup_{\lambda = \psi(\theta)} \widetilde{F}(\theta) = \widetilde{F}(\psi^{-1}(\lambda)).$$

Proposition

If $\widetilde{X}: \Omega \mapsto [0,1]^{\Theta}$ is a RFS, the composed mapping $\widetilde{\psi} \circ \widetilde{X}: \Omega \mapsto [0,1]^{\Lambda}$, such that $(\widetilde{\psi} \circ \widetilde{X})(\omega) = \widetilde{\psi}[\widetilde{X}(\omega)]$, is a RFS.

Main results

Proposition

Let Σ_{Λ} be the image of Σ_{Θ} by ψ . For any $C \in \Sigma_{\Lambda}$,

$$Bel_{\widetilde{\psi} \circ \widetilde{X}}(C) = Bel_{\widetilde{X}}(\psi^{-1}(C))$$

and

$$Pl_{\widetilde{\psi}\circ\widetilde{X}}(C) = Pl_{\widetilde{X}}(\psi^{-1}(C))$$

Theorem

Let $\widetilde{X}_1: \Omega_1 \to [0,1]^{\Theta}$ and $\widetilde{X}_2: \Omega_2 \to [0,1]^{\Theta}$ be two RFSs representing independent evidence. We have

$$\widetilde{\psi}\circ(\widetilde{X}_1\oplus\widetilde{X}_2)=(\widetilde{\psi}\circ\widetilde{X}_1)\oplus(\widetilde{\psi}\circ\widetilde{X}_2)$$

Lognormal RFNs

- Let $\widetilde{X} \sim \widetilde{N}(\mu, \sigma^2, h)$ and $\psi = \exp$.
- The RFN $\widetilde{Y} = \widetilde{\psi} \circ \widetilde{X}$ with support equal to $(0, +\infty)$ is called a lognormal RFN; we write $\widetilde{Y} \sim T\widetilde{N}(\mu, \sigma^2, h, \log)$.

Logit-normal RFNs

- Let $\widetilde{X} \sim \widetilde{N}(\mu, \sigma^2, h)$ and $\psi(x) = [1 + \exp(-x)]^{-1}$.
- The RFN $\widetilde{Y} = \widetilde{\psi} \circ \widetilde{X}$ with support equal to (0,1) is called a logit-normal RFN; we write $\widetilde{Y} \sim T\widetilde{N}(\mu, \sigma^2, h, \text{logit})$, where $\text{logit}(y) = \log \frac{y}{1-y}$.

Logistic-normal RFVs

• Let $X \sim \tilde{N}(\mu, \Sigma, H)$ be a p-1 dimensional GRFV and ψ_S the softmax transformation from \mathbb{R}^{p-1} to the simplex S_p of p-dimensional probability vectors:

$$\psi_{S}(\mathbf{x}) = \left[\frac{\exp(x_{1})}{1 + \sum_{j=1}^{p} \exp(x_{j})}, \dots, \frac{\exp(x_{p-1})}{1 + \sum_{j=1}^{p} \exp(x_{j})}, \frac{1}{1 + \sum_{j=1}^{p} \exp(x_{j})}\right]^{T}$$

• The random fuzzy vector $\widetilde{Y} = \widetilde{\psi}_S \circ \widetilde{X}$ is a logistic-normal RFV; we write $\widetilde{Y} \sim T\widetilde{N}(\mu, \Sigma, H, \psi_S^{-1})$. Its support is the simplex \mathcal{S}_p .

56 / 81

Logistic-normal RFVs: Example

Mixtures of (transformed) GRFNs

- Mixtures of GRFNs = a GFN whose mode is a mixture of GRVs.
- Can be transformed by a one-to-one mappings.
- Defines new families of RFNs closed under the product-intersection rule.
- Example: $\widetilde{Y}_1 \sim 0.5 T \widetilde{N}(2, 1, 2, \text{logit}) + 0.5 T \widetilde{N}(-2, 1, 2, \text{logit}),$ $\widetilde{Y}_2 \sim 0.3 T \widetilde{N}(-1, 0.1^2, 1, \text{logit}) + 0.7 T \widetilde{N}(1, 0.1^2, 1, \text{logit})$

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Evidential Machine Learning

- Evidential Machine Learning (ML): an approach to ML in which uncertainty is quantified by belief functions.
- Previous work has mainly focussed on clustering and classification because these learning tasks only require belief functions on finite frames.
- With models for defining and combining belief functions on continuous frames, it is now possible to tackle other learning tasks, such as regression.

The ENNreg model

- We consider a regression problem: the task is to predict a continuous random response variable Y from p input variables $\mathbf{X} = (X_1, \dots, X_p)$, based on a learning set $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
- We have proposed a neural network model⁴ (ENNreg), which quantifies uncertainty about the response Y given input vector $\mathbf{X} = \mathbf{x}$ by a GRFN $\widetilde{Y}(\mathbf{x})$ with associated belief function $Bel_{\widetilde{Y}(\mathbf{x})}$.
- ENNreg is based on prototypes. The distances to the prototypes are treated as independent pieces of evidence about the response and are combined by the product-intersection rule.

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Propagation equations (1/2)

- Let $\mathbf{w}_1, \dots, \mathbf{w}_K$ denote K vectors in the p-dimensional input space, called prototypes.
- ullet The similarity between input vector $oldsymbol{x}$ and prototype $oldsymbol{w}_k$ is measured by

$$s_k(\mathbf{x}) = \exp(-\gamma_k^2 ||\mathbf{x} - \mathbf{w}_k||^2)$$

where $\gamma_k > 0$ is a scale parameter.

ullet The evidence from prototype $oldsymbol{w}_k$ is represented by a GRFN

$$\widetilde{Y}_k(\mathbf{x}) \sim \widetilde{N}(\mu_k(\mathbf{x}), \sigma_k^2, s_k(\mathbf{x})h_k)$$

where σ_k^2 and h_k are variance and precision parameters, and

$$\mu_k(\mathbf{x}) = \boldsymbol{\beta}_k^T \mathbf{x} + \beta_{k0}$$

where β_k is a *p*-dimensional vector of coefficients, and β_{k0} is a scalar parameter.

63 / 81

Propagation equations (2/2)

• The output $\widetilde{Y}(x)$ for input x is computed as

$$\widetilde{Y}(x) = \widetilde{Y}_1(x) \boxplus \ldots \boxplus \widetilde{Y}_K(x)$$

where \boxplus denotes product intersection without soft normalization (to simplify calculations).

• We have $\widetilde{Y}(\mathbf{x}) \sim \widetilde{N}\left(\mu(\mathbf{x}), \sigma^2(\mathbf{x}), h(\mathbf{x})\right)$, with

$$\mu(\mathbf{x}) = \frac{\sum_{k=1}^{K} s_k(\mathbf{x}) h_k \mu_k(\mathbf{x})}{\sum_{k=1}^{K} s_k(\mathbf{x}) h_k}$$

$$\sigma^2(\mathbf{x}) = \frac{\sum_{k=1}^K s_k^2(\mathbf{x}) h_k^2 \sigma_k^2}{\left(\sum_{k=1}^K s_k(\mathbf{x}) h_k\right)^2} \quad \text{and} \quad h(\mathbf{x}) = \sum_{k=1}^K s_k(\mathbf{x}) h_k$$

Neural network architecture

Thierry Denœux (UTC/IUF)

65 / 81

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Negative log-likelihood loss (probabilistic forecasts)

• In the case of a probabilistic forecast with pdf \widehat{f} , we typically measure the prediction error (or loss) by the negative log-likelihood

$$\mathcal{L}(y,\widehat{f}) = -\ln\widehat{f}(y)$$

• We actually never observe a real number y with infinite precision, but an interval $[y]_{\epsilon} = [y - \epsilon, y + \epsilon]$ centered at y. The probability of that interval is

$$\widehat{P}([y]_{\epsilon}) = \widehat{F}(y+\epsilon) - \widehat{F}(y-\epsilon) \approx 2\widehat{f}(y)\epsilon,$$

So,
$$\mathcal{L}(y, \widehat{f}) = -\ln \widehat{P}([y]_{\epsilon}) + \text{cst.}$$

• Generalization in the case of prediction in the form of a belief function?

Extension

- $\mathcal{L}_{\epsilon}(y,\widetilde{Y}) = -\ln \textit{Bel}_{\widetilde{Y}}([y]_{\epsilon})$ does not work (does not reward imprecision).
- $\mathcal{L}_{\epsilon}(y, \widetilde{Y}) = -\ln Pl_{\widetilde{Y}}([y]_{\epsilon})$ also does not work (minimized when \widetilde{Y} is vacuous).
- Proposal:

$$\mathcal{L}_{\lambda,\epsilon}(y,\widetilde{Y}) = -\lambda \ln Bel_{\widetilde{Y}}([y]_{\epsilon}) - (1-\lambda) \ln Pl_{\widetilde{Y}}([y]_{\epsilon})$$

with $\lambda \in [0,1]$ and $\epsilon > 0$.

ullet Smaller values of λ correspond to more cautious predictions.

Training

• The network is trained by minimizing the regularized average loss

$$C_{\lambda,\epsilon,\xi,\rho}^{(R)}(\Psi) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\lambda,\epsilon}(y_{i}, \widetilde{Y}(\mathbf{x}_{i}; \Psi))}_{C_{\lambda,\epsilon}(\Psi)} + \underbrace{\frac{\xi}{K} \sum_{k=1}^{K} h_{k}}_{R_{1}(\Psi)} + \underbrace{\frac{\rho}{K} \sum_{k=1}^{K} \gamma_{k}^{2}}_{R_{2}(\Psi)},$$

where

- $All R_1(\Psi)$ has the effect of reducing the number of prototypes used for the prediction (setting $h_k = 0$ amounts to discarding prototype k)
- $R_2(\Psi)$ shrinks the solution towards a linear model (setting $\gamma_k = 0$ for all k yields a linear model).
- Heuristics: $\lambda=0.9,\,\epsilon=0.01\widehat{\sigma}_Y,\,\xi$ and ρ tuned using a validation set or cross-validation.

Calibration

- For any $\alpha \in (0,1]$, we define an α -level belief prediction interval (BPI) as an interval $\mathcal{B}_{\alpha}(\mathbf{x})$ centered at $\mu(\mathbf{x})$, such that $Bel_{\widetilde{Y}(\mathbf{x})}(\mathcal{B}_{\alpha}(\mathbf{x})) = \alpha$.
- The predictions are said to be calibrated if, for all $\alpha \in (0,1]$, α -level BPIs have a coverage probability at least equal to α , i.e,

$$\forall \alpha \in (0,1], \quad P_{\boldsymbol{X},Y}(Y \in \mathcal{B}_{\alpha}(\boldsymbol{X})) \ge \alpha$$
 (1)

- As in the probabilistic case, the calibration of evidential predictions can be checked graphically using a calibration plot (see infra).
- The precision output h(x) can be multiplied by a constant c > 0 to ensure (1) with predictions as precise as possible.

Example

We consider iid data with one-dimensional input $X \sim \text{Unif}(-2,2)$ and

$$Y = X + (\sin 3X)^3 + \frac{X+2}{4\sqrt{2}}U, \quad U \sim N(0,1)$$

- Learning and validation sets of size n = 300.
- Network with K = 30 prototypes initialized by the k-means algorithm.
- ξ and ρ determined by minimizing the validation MSE.
- Shown: true regression function (blue), expected values $\mu(x)$ (red) with BPIs at levels 0.5, 0.9 and 0.99

Calibration curves

Calibration curves for the probabilistic PIs $\mu(x) \pm u_{(1+\alpha)/2}\sigma(x)$ (in blue) and the BPIs (in red)

Outline

- Classical frameworks
 - Random sets and DS theory
 - Fuzzy sets and possibility theory
- Random fuzzy sets
 - Definitions
 - Gaussian random fuzzy numbers
 - Gaussian random fuzzy vectors
 - Extensions
- Application to Machine Learning
 - Neural network model
 - Learning
 - Experimental results

Data sets

	n	р	response
			'
Boston	506	13	medv
Energy	768	8	Y2
Concrete	1030	8	strength
Yacht	308	6	Y
Wine	1599	11	quality
kin8nm	8192	8	V9
Crime	1994	100	${\tt ViolentCrimesPerPop}$
Residential	372	103	V10
Airfoil	1503	5	Y
Bike	731	9	cnt

Comparison with classical methods (RMS)

	ENNreg	RBF	RVM	SVM	GP	RF	MLP
Boston	2.87 ± 0.14	3.31 ± 0.19	3.42 ± 0.17	3.17 ± 0.15	3.70 ± 0.22	3.11 ± 0.14	3.14 ± 0.14
Energy	1.06 ± 0.05	2.06 ± 0.08	1.79 ± 0.05	1.39 ± 0.06	2.58 ± 0.07	1.75 ± 0.06	$\textbf{0.95}\pm\textbf{0.16}$
Concr.	5.10 ± 0.12	6.30 ± 0.19	6.38 ± 0.16	5.62 ± 0.13	6.93 ± 0.13	$\textbf{4.64}\pm\textbf{0.12}$	$\textbf{4.82}\pm\textbf{0.16}$
Yacht	$\textbf{0.44}\pm\textbf{0.04}$	2.00 ± 0.20	1.88 ± 0.20	1.93 ± 0.11	6.12 ± 0.31	0.96 ± 0.08	0.50 ± 0.05
Wine	0.63 ± 0.01	0.63 ± 0.01	0.80 ± 0.02	0.61 ± 0.01	0.61 ± 0.01	$\textbf{0.56}\pm\textbf{0.01}$	0.77 ± 0.01
kin8nm	0.08 ± 0.00	0.11 ± 0.00	-	0.09 ± 0.00	0.08 ± 0.00	0.14 ± 0.00	0.07 ± 0.00
Crime	$\textbf{0.14}\pm\textbf{0.00}$	0.14 ± 0.00	$\textbf{0.14}\pm\textbf{0.00}$	0.14 ± 0.00	0.14 ± 0.00	$\textbf{0.14}\pm\textbf{0.00}$	0.14 ± 0.00
Resid.	$\textbf{0.11}\pm\textbf{0.01}$	0.16 ± 0.01	0.17 ± 0.01	0.15 ± 0.01	0.22 ± 0.01	0.16 ± 0.01	0.14 ± 0.01
Airfoil	$\textbf{1.46}\pm\textbf{0.03}$	1.70 ± 0.04	2.58 ± 0.04	2.37 ± 0.04	2.49 ± 0.04	$\textbf{1.44}\pm\textbf{0.04}$	1.53 ± 0.04
Bike	6.59 ± 0.19	6.49 ± 0.15	$\textbf{6.64}\pm\textbf{0.14}$	7.11 ± 0.16	7.55 ± 0.14	6.86 ± 0.17	9.68 ± 0.20

75 / 81

Comparison with SOTA methods (RMS & NLL)

	RMS					
	ENNreg	PBP	MC-dropout	Deep ens.	Deep ev. reg.	
Boston	2.87 ± 0.14	3.01 ± 0.18	$\textbf{2.97}\pm\textbf{0.19}$	$\textbf{3.28}\pm\textbf{1.00}$	$\textbf{3.06}\pm\textbf{0.16}$	
Energy	1.06 ± 0.05	1.80 ± 0.05	1.66 ± 0.04	2.09 ± 0.29	2.06 ± 0.10	
Concr.	$\textbf{5.10}\pm\textbf{0.12}$	5.67 ± 0.09	$\textbf{5.23}\pm\textbf{0.12}$	6.03 ± 0.58	5.85 ± 0.15	
Yacht	0.44 ± 0.04	1.02 ± 0.05	1.11 ± 0.09	1.58 ± 0.48	1.57 ± 0.56	
Wine	$\textbf{0.63}\pm\textbf{0.01}$	$\textbf{0.64}\pm\textbf{0.01}$	$\textbf{0.62}\pm\textbf{0.01}$	$\textbf{0.64}\pm\textbf{0.04}$	$\textbf{0.61}\pm\textbf{0.02}$	
kin8nm	$\textbf{0.08}\pm\textbf{0.00}$	0.10 ± 0.00	0.10 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	

	NLL				
	ENNreg	PBP	MC-dropout	Deep ens.	Deep ev. reg.
Boston	2.53 ± 0.07	2.57 ± 0.09	2.46 ± 0.06	$\textbf{2.41}\pm\textbf{0.25}$	$\textbf{2.35}\pm\textbf{0.06}$
Energy	1.14 ± 0.07	2.04 ± 0.02	1.99 ± 0.02	$\textbf{1.38}\pm\textbf{0.22}$	1.39 ± 0.06
Concr.	3.38 ± 0.13	3.16 ± 0.02	$\textbf{3.04}\pm\textbf{0.02}$	$\textbf{3.06}\pm\textbf{0.18}$	$\textbf{3.01}\pm\textbf{0.02}$
Yacht	0.13 ± 0.12	1.63 ± 0.02	1.55 ± 0.03	1.18 ± 0.21	1.03 ± 0.19
Wine	$\textbf{0.94}\pm\textbf{0.01}$	0.97 ± 0.01	$\textbf{0.93}\pm\textbf{0.01}$	$\textbf{0.94}\pm\textbf{0.12}$	$\textbf{0.89}\pm\textbf{0.05}$
kin8nm	-1.19 \pm 0.00	-0.90 ± 0.01	-0.95 ± 0.01	$\textbf{-1.20}\pm0.02$	-1.24 ± 0.01

Thierry Denœux (UTC/IUF)

Calibration plots

Probabilistic predictions (blue), raw evidential predictions (red) and adjusted evidential predictions (green).

Calibration plots

Probabilistic predictions (blue), raw evidential predictions (red) and adjusted evidential predictions (green).

Summary

- The theory of epistemic RFSs is a very general framework, generalizing both possibility theory and DS theory. It allows one to represent and reason with uncertain, imprecise and vague information.
- Practical models of RFNs and RFVs indexed by 3 parameters (mode, variance and precision) make it possible to define belief functions on continuous frames that can be easily manipulated and combined, overcoming a limitation of DS theory.
- As an example of application, we have described the ENNreg model, a regression neural network based on the combination of GRFNs. The network output for input vector **x** is a GRFN defined by three numbers:
 - \triangleright a point prediction $\mu(x)$
 - a variance $\sigma^2(x)$ measuring random uncertainty
 - \triangleright a precision h(x) representing epistemic uncertainty
- Other applications include knowledge elicitation and statistical inference⁵.

⁵T. Denœux. Parametric families of continuous belief functions based on generalized Gaussian random fuzzy numbers. Fuzzy Sets and Systems, 471:108679 2023

References on epistemic RFSs

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux

Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence.

Fuzzy Sets and Systems, 424:63-91, 2021

T. Denœux

Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models.

Fuzzy Sets and Systems, 453:1-36, 2023

T. Denœux

Parametric families of continuous belief functions based on generalized Gaussian random fuzzy numbers.

Fuzzy Sets and Systems, 471:108679, 2023.

References on the ENNreg model

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux

Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets: the ENNreg model.

IEEE Transactions on Fuzzy Systems, 31(10):3690-3699, 2023.

T. Denœux

evreg: Evidential Regression

R package version 1.0.2, 2023. Available:

https://CRAN.R-project.org/package=evreg