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A general model of uncertainty

@ Modeling uncertainty: a fundamental problem in Artificial/Computational
Intelligence
> Representation of uncertain/imperfect knowledge
» Reasoning and decision-making with uncertainty
» Quantification of prediction uncertainty in machine learning, etc.

@ As probability theory proved to be too limited, two alternative models were
introduced in the late 1970's:

» Dempster-Shafer (DS) theory = belief functions + Dempster's rule (based on
random sets, generalizes Bayesian probability theory)

> Possibility theory = possibility measures + triangular norms (based on fuzzy
sets)

@ Each of these two models can be more suitable/practical than the other,
depending on the available information (unreliable/uncertain vs.
vague/fuzzy).

@ The purpose of this lecture is to introduce a more general theoretical
framework: Epistemic Random Fuzzy Sets, which unifies the two previous
approaches and gives more flexibility in applications.
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Random sets and DS theory
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Random sets and DS theory

Random set

(@72@)

>~

X(w)

. O

Definition (Random Set)

Let (2, Xq, P) be a probability space, (©,%~¢) a measurable space, and
X :Q — 29, The 6-tuple (2, Xq, P,0, %o, X) is a random set (RS) iff X verifies

the following measurability condition:

VB € Yo, {WGQZY(W)QB#[Z)}EZQ.

The images X (w) are called the focal sets of X.
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Random sets and DS theory

Interpretation and example

@ In DS theory, a RS represents a piece of evidence about a variable X taking

values in set © (called the frame of discernment):

» Q is a set of interpretations of the evidence

» If interpretation w € Q holds, we know that X € X(w), and nothing more

» For any A € X, P(A) is the (subjective) probability that the true
interpretation is in A

@ Example: unreliable sensor

Q

reliable
(0.8)

not reliable
(0.2)
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Belief and plausibility functions

(Qa ZQ)‘P)
X

@ For any B € X g, we can compute
» The probability that proposition “X € B" is supported by the evidence:

Bele(B) = P({w € Q: 0 # X(w) C BY})
» The probability that proposition “X € B" is consistent with the evidence:
Ple(B) = P{w € Q: X(w) N B # 0})
=1 — Bely(B")

® Mappings Beky : Yo — [0,1] and Pk : Yo — [0, 1] are called respectively,
belief and plausibility functions.

ux (UTC/IUF) Random fuzzy sets BFTA 2023



Random sets and DS theory

Interpretation

o In DS theory, Bek(B) and Pk(B) are interpreted, respectively, as a degree
of support for B, and a degree of lack of support for B¢, based on some
evidence. This model is more flexible than probability theory.

@ Examples:

Bel(B) Bel(B°) PI(B) PI(B°)

evidence for B 0.9 0 1 0.1
mixed evidence for B and B¢ 0.6 0.2 0.8 0.4
complete ignorance 0 0 1 1

probabilistic evidence 0.4 0.6 0.4 0.6
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Random sets and DS theory

Special cases

e Precise but uncertain information: if for all w € Q, [X(w)| = 1, RS X is said
to be Bayesian. Bely is then a probability measure, and Pk = Bek,

e Certain but imprecise information: let B C ©: the constant RS X g such that
for all w € Q, X(w) = B corresponds to set-valued information (we know for
sure that X € B, and nothing more).

e In particular, if Xg is a RS such that for all w € Q, Xo(w) = ©, X is said to
be vacuous: it represents complete ignorance.
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Combination of independent pieces of evidence

Case 1: no conflict

QlXQz

(R,not R)
(0.08)
(RR)
(0.72)
(notR, R)
(0.18)

(not R, not R)
(0.02)
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Combination of independent pieces of evidence

Case 2: conflict

(R,not R)
(0.08/0.28)

(notR, R)
(0.18/0.28)

(not R, not R)
(0.02/0.28)
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Random sets and DS theory

Dempster's rule of combination

(Q1,%1, P1) (22,54, P)

Definition (Dempster’s rule)

Let (;,%;, P;,©,%0,X;), i = 1,2 be two RSs representing independent pieces of
evidence. Their orthogonal sum is the RS

(Ql X Qz, 21 ® Ly, P, e, ZQ,Y]_ @Yz)

where (X1 ® X2)(w1,w2) = X1(w1) N X2(w2) and Py, is the product measure
P; x P, conditioned on the set ©* = {(w1,w>) € U x Qs : X1 (w1) N Xa(wp) # 0}
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Random sets and DS theory

Properties

Commutativity: L .
X1 ) X2 = X2 &) Xl

Associativity: L . o .
(X1 @ X2) ® X3 = X1 ® (X2 © X3)

Neutral element: if Xg is vacuous,
Yo eX=X

Let pk : © — [0,1] be the contour function defined by pk(6) = Phk({0})
for all € ©. We have
Plyl@Yz x 'DIYVDIYz

Generalization of Bayesian conditioning: iiy is a Bayesian RS and X is a
constant RS with focal set B, then X & X is a Bayesian RS, and

Belax, = Belx(- | B)
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Fuzzy sets and possibility theory
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Fuzzy sets and possibility theory

Fuzzy set

@ A fuzzy subset of a set © is a mapping F:0— [0, 1].

@ |t represents a generalized subset of © with unsharp boundaries: F(G) is the

degree of membership of 6 to the fuzzy set F.

e Example: if © = [—60, 60] is the range of outside air temperatures, the
notion of “hot temperature” can be represented by the fuzzy subset

0.4 0.6 0.8
I I

membership

0.2

0.0

T T T T T T T
0 10 20 30 4({ 50 60
temperature (Celsius)
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Fuzzy sets and possibility theory

Additional definitions

@ The height of Fis ~ _
hgt(F) = sup F(0)
[2SIC]
e Fis normal if hgt(F) =1

e For any v € [0, 1], the a-cut of F is the set

*F={0ecO:F6)>a}
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Fuzzy sets and possibility theory

Possibility and necessity

@ Let X be a variable taking values in ©. Assume that we receive a piece of
evidence telling us that “X is F", where F is a normal fuzzy subset of ©.

@ Such evidence can be seen as a flexible constraint on the true value of X. We
define

» The possibility distribution of X as 7z = F
» The degree of possibility that X € B for B C © as

Mz(B) = sup mz(8)
0eB
» The degree of necessity that X € B as
N£(B) =1 - M(BY)

o Example:

possibility
06 08 1.0

00 02 04

T
60

T T
0 10

20 30 40 50
temperature (Celsius)
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Fuzzy sets and possibility theory

Possibility and necessity measures

@ The mapping Mz : 2° — [0, 1] is called a possibility measure, and
Nz : 29— [0,1] is the dual necessity measure.

@ Properties: for any A,B C ©,
Mz(AUB) = max(Mz(A),Nz(B))

N(AN B) = min(N;(A). Nx(B))

@ Nz is a belief function, and [z is the dual plausibility function. For this
reason, it has been claimed that possibility theory is a special case of DS
theory. However, the two theories have different mechanisms for combining
information.
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Fuzzy sets and possibility theory

Combination of possibility distributions

@ Assume that we receive two independent pieces of information telling us that
“Xis F" and “X is G”, where F and G are two fuzzy subsets of ©.

@ We can deduce that “X is :Eﬂ-r 5 where N is a fuzzy set intersection
operator based on a t-norm T. The most common choices for T are the
minimum and product t-norms.

@ The intersection of two normal fuzzy sets is generally not normal. We define
the normalized T-intersection as

(F i 6)0) = m

@ The normalized intersection is associative iff T = product; the normalized
product intersection is denoted by ©.
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Example

F = hot, G = around 30

<
-

«©
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possibility
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|
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Definitions

Random fuzzy set

(Q7ZQaP) (672@)

Definition (Random Fuzzy Set)

Let (€, Zq, P) be a probability space, (©, Lo) a measurable space, and X a
mapping from Q to the set [0,1]® of fuzzy subsets of ©. The 6-tuple
(Q,%q,P,0,%Xe,X) is a random fuzzy set (RFS) iff for any a € [0, 1], the
mapping
X . Q — 2°
w i “IX(wW)] = {0 € ©: X(w)(6) > a}

is a random set.
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Random fuz: Ml Definitions

Interpretation

@ We use RFSs as a model of unreliable and fuzzy evidence!:

© is the domain of an uncertain variable/quantity X

€ is a set of interpretations of a piece of evidence about X

VA € Xq, P(A) is the probability that the true interpretation lies in A
If w e Q holds, we know that “X is )~((w) i.e., X is constrained by the
possibility distribution X (w).

vV vy vy

@ Such RFSs are called “epistemic” to stress that they represent a state of
knowledge.

@ Example: a witness tells us that “the temperature was hot on Monday”, and
this witness is 50% reliable
» Q= {rel,—rel}, p(rel) = 0.5
» X = temperature on Monday in Celsius, © = [—60, 60]
» X(rel) = hot (a fuzzy subset of ©), X(-rel) = ©

IThis interpretation is different from previous interpretations of RFSs as a model of random
mechanism for generating fuzzy data (Puri & Ralescu, Gil), or as imperfect knowledge of a
random variable (Kruse & Meyer, Couso & Sanchez)
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Definitions

Belief and plausibility functions

o If interpretation w € € holds, the degrees of possibility and necessity that X
belongs to B € X g are

My (B) = sup X()(6), N (B) = 1= Mg, (E°)

@ The expected necessity and possibility degrees (Zadeh, 1979) are

Be/;((B):/QN;((w)(B)dP(w), PI)?(B):/QI'I;(W)(B)dP(w).

Proposition (Zadeh, 1979; Couso & Sénchez, 2011)

Function Belg is a completely monotone capacity (a belief function), and Pl is
the dual plausibility function .

A RFS is thus (like a random set) a way of specifying a belief function. The RFS
model is more flexible.
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Definitions

Example

@ Continuing the previous example, what are the degrees of belief and
plausibility that X € B = [25,35]?

o We have
N%gen(B) =075, Mg ,(B) =1
so
Plz(B) =0.5x0.75+ 0.5 x 1 = 0.875
@ Now,
N)?(re|)(B) =0, N)?(ﬂrel)(B) =0
o

Belz(B) = 0

Random fuzzy sets BFTA 2023
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Definitions

Combination of independent RFSs

(917217P1) (QQ>22,P2)

wi

X

o We consider two RFSs X : ©; — [0,1]® and X, : Q, — [0,1]° representing
independent pieces of evidence.

o if w; € Q1 and w» € £, both hold, we can deduce “X is ?1(w1) O)N(Q(wg)”,
where N denotes fuzzy intersection.

@ We need (1) a definition of fuzzy intersection and (2) a way to handle
possible conflict (inconsistency) between the two sources.
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Definitions

Definition of intersection and conflict

@ Fuzzy intersection: as mentioned before, the normalized product intersection
is suitable for combining fuzzy information from independent sources, and it
is associative.

o With fuzzy sets, conflict is a matter of degree. We define the fuzzy set of
consistent pairs of interpretations as

6" (w1, w2) = sup (Xl(wl) .)?z(w))

@ The product measure P; x P, is conditioned on fuzzy event o*:

Pia(B) = (P x P2)(BNE) = le sz B(wl’w2)é*(wlvw2)dP2(w2)dP1(w1)

(PLx P)(©7) Jo, sz (w1, w2)dPa(w2)dPy (wi1)

where B(+,-) denotes the indicator function of B. This process is called soft
normalization.
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Definitions

Product-intersection rule?

Definition (Product-intersection rule)

The orthogonal sum of )~(1 and )~<2 is the RFS
(X 0, T1 @ Ty, P12, 0, %0, X1 © X>)

where o _ ~
(X1 @ Xo) (w1, w2) = Xi(w1) © Xa(w2)

and P12 is the product measure P; x P, conditioned on the fuzzy set O (w1, wn).
This operation is called the product intersection of X1 and X2 (with soft
normalization).

2T. Denceux. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models. Fuzzy Sets and Systems-453:1-36, 2023
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Definitions

Example

° A~s before, let © = [—60, +60], F = hot,
G = around 30.
o Evidence 1: Q; = {rel, -rel}, py(rel) = 0.5,
Xi(rel) = F, Xy(—rel) = ©.
\ e Evidence 2: Q, = {rel, —rel}, pa(rel) = 0.7,
e ol ©  Xa(rel) = G, Xp(-rel) = ©.
o O*(rel, rel) = 0.5, ©*(rel, —rel) = ©*(-rel, rel) = ©*(-rel, —rel) = 1
o (P x P)(©%)=0.35x05+0.15 x 1+0.35 x 14 0.15 x 1 = 0.825
@ pio(rel,rel) = 0.35 x 0.5/0.825, p12(—rel,rel) = 0.35/0.825,
p12(rel, —rel) = 0.15/0.825, pya(—rel, —rel) = 0.15/0.825
o (X1 @ X)(rel,rel) = F © G, (X1 & Xp)(rel, rel) = F,
(X1 @ Xo)(rel, —rel) = G, (X1 & Xo)(—rel, —rel) = ©.

possibility
0.0 0.2 04 06 08 1.0

T
0
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Definitions

Properties

@ Commutativity, associativity

@ Generalization of Dempster’s rule and the normalized product intersection of
possibility distributions

© Multiplication of contour functions
pl)~<1@)~<2 x 'Dl)?lpl)?z

© Generalization of conditioning of a probability measure by a fuzzy event: if X
is a Bayesian RS and X5 is a constant RF with fuzzy focal set B, then

Y@)?g is a Bayesian RS, and

Bels.x. = Belx(:|B)
i.e. )
B(6)dBel (0
VA€ Yo, BEIY@XE( ) = M

Jo B(0)dBelx(6)
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Gaussian random fuzzy numbers

Outline

© Random fuzzy sets
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Gaussian random fuzzy numbers

Motivation

@ In probability theory and statistics, the Gaussian probability distribution is
widely used because it allows for simple calculations and easy manipulation
(conditioning, marginalization, etc.)

@ Until recently, a similar workable model had been missing in DS theory to
represent uncertainty on continuous variables (possibility distributions or
p-boxes are not closed under Dempster’s rule)

o Gaussian random fuzzy numbers (GRFNs) and extensions are simple models
of RFSs making it possible to define families of belief functions on R, RP,
[a, b], etc., which can be easily combined by the product-intersection
operator &.
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Gaussian random fuzzy numbers

Gaussian fuzzy numbers

GFN(-1,1)

9(x)

Definition (Gaussian fuzzy number)

A Gaussian fuzzy number (GFN) with mode m € R and precision h > 0 is a fuzzy
subset of R with membership function ¢(x; m, h) = exp (—4(x — m)?) . It is
denoted by GFN(m, h).

Proposition

GFN(ml, hl) ® GFN(m27 h2) = GFN(m]_z, hl -+ h2) with myo = %

v
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Definition (Gaussian random fuzzy number)

A Gaussian random fuzzy number (GRFN) X ~ N(u,az, h) with mean p, variance
o2 and precision h > 0 is a Gaussian fuzzy number GFN(M, h) whose mode is a
Gaussian random variable: M ~ N(u,o?). Formally, it is a mapping

X : Q5 [0,1]% such that X(w) = GFN(M(w), h) with M ~ N(u, o).
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Gaussian random fuzzy numbers

Special cases

e If h=0, )~<(w) — R for all w: X induces the vacuous belief function on R; it
represents complete ignorance

o If h=+o0, X is equivalent to a GRV with mean p and variance o?:

N(p, 02, 4+00) = N(u, 02)
e If o> =0, X is equivalent to a Gaussian possibility distribution:

N(w,0,h) = GFN(u, h)

ix (UTC/IUF) Random fuzzy sets BFTA 2023 38 /81



Gaussian random fuzzy numbers

Contour function

0.4 0.6 0.8 1.0
I I I

0.2
L

membership degree

0.0
L

o The contour function of X is

() 1 . < h(x — p)? )

Ax)= ——  exp [ T H)

Px Vitho? P\ 72017 ho?)

o Remarks: (1) for all x, plg(x) — 0 when ¢ # 0 and h — oo; (2) when
0% =0, pl is the possibility distribution of X ~ GFN(u, h).
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Gaussian random fuzzy numbers

Belief and plausibility of intervals

By (fxy) = (Y2 ) o (K1) -
) ()
w00 [0 () o (vt

Pl ([x,y]) = ® <T) . (X ; H) +plz(x)® < Xh;z,u 1) +
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Gaussian random fuzzy numbers

Lower and upper distribution functions

1.0

06 08
1 1

0.4

membership degree
0.2

0.0

In particular, the lower and upper cdfs of X ~ N(,u,az, h) are
y— K Y —p
Belg((—o0,y]) = | —— | — pls(y)® | ———x
(=00, ¥]) ( . ) plx(y) (a TZH)

and

Plg((=co,y]) =@ (T) PR [1 -° QJ#H
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Gaussian random fuzzy numbers

Combination of GRFNs

04 06 08 1.0
I I I

membership degree

02
I

0.0

Theorem (Product-intersection of GRFNs)
Given two GRFNs Xy ~ IV(,ul, o2, hy) and Xo ~ N(uz,ag, hy), we have

Xi @ Xo ~ N(fir2, 52, by + )

(Expressions of fi;y and 2, on next slide)
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Gaussian random fuzzy numbers

Combination of GRFNs

: ~ ~2
Expressions of ji1 and 77,

. hifin + hofia  —,  h3G3 + h365 + 2ph1 25102

= —_—, g =
H12 hy + ho 12 (/71 ¥ h2)2
with _ _ _ _
~ u1(1+h0%)+l£2h0% ~ ug(l—&—hof)—i-ulhog
T+hoi+o3) T 14kl od)
52 _ Uf&l + ho?) 52 _ O’%(J. + ho?)
' 14h(02+03) 7 1+h(o?+ad)
h — hih
p= 70102 — and h= P ! 2h
@+ ho?)(1+ o?) 1+ h
ux (UTC/IUF) Random fuzzy sets BFTA 2023
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Random fuz ts Gaussian random fuzzy vectors
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© Random fuzzy sets
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Gaussian random fuzzy vectors

Definition (Gaussian fuzzy vector)

A p-dimensional Gaussian fuzzy vector (GFV) with mode m € RP and symmetric
and positive semidefinite precision matrix H € RP*P, denoted by GFV(m, H), is a
fuzzy subset of RP with membership function

o(x;m, H) = exp (—;(x — m)TH(x — m)) .

ix (UTC/IUF) Random fuzzy sets BFTA 2023 45 /81




Gaussian random fuzzy vectors

Proposition
GFV(ml, Hl) O) GFV(MQ7 H2) = GFV(mlg, H12)7

with
my; = (Hl T Hz)il(Hlml T H2m2) and Hy = Hy + H>.
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Definition (Gaussian random fuzzy vector)

A Gaussian random fuzzy vector (GRFV) X ~ N(p, X, H) with covariance matrix
¥ and precision matrix H is random fuzzy set X : Q — [0, 1]¥" such that

X(w) = GFV(M(w), H) with M ~ N(u, X)
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Gaussian random fuzzy vectors

Theorem (Product-intersection of GRFVs)

Let )~<1 ~ N(ul,}:l, H;) and )N(g ~ N(uz,}:g, H) be two independent GRFVs
such that matrices X1, X, H1 and H, are all positive definite. We have

Xy & Xo ~ N(fiyp, 12, H1 + H>)

(Expressions of fi,, and ¥4, on next slide)

v
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Gaussian random fuzzy vectors

Combination of GRFVs

Expressions of fi;, and 1o

fi, = Al and X, = AXAT
where A is the constant p x 2p matrix defined as

A=Hy (H1 H»)

s _ '+H -H -
={"m L'+ H

ux (UTC/IUF) Random fuzzy sets
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Random fuz s Extensions
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Extensions

Limitations of the GRFN model

@ The domain of a GRFN is the whole real line, making the model unsuitable
for representing belief functions on a real interval such as (0, 400) or [a, b].

@ A GRFN is unimodal and symmetric about the mean u; these properties may
not always reflect an agent's actual beliefs.

@ We need more flexible parameterized families of random fuzzy numbers and
vectors with different supports and different “shapes”, while maintaining the
closure property under the product-intersection rule.

e This can be achieved by composing a RFS X : © — [0, 1]© with a one-to-one
mapping® from © to another space A, to obtain a a RFS Y : Q — [0, 1]

3T. Denceux. Parametric families of continuous belief functions based on generalized
Gaussian random fuzzy numbers. Fuzzy Sets and Systems, 471:108679;:2023.
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Extensions

Transformation of a RFS

(Q7EQ7P) (8726) (A7 EA)

YoX

@ Let 1) be a one-to-one mapping from © to some set A.
@ Zadeh's extension principle allows us to extend 1 to fuzzy subsets of ©; the
extended mapping ¢ : [0,1]® — [0, 1]" is defined as

VF €[0,1]°, @(F)(\) = sup F(0) = F(x~*())).
A=1(0)

Proposition

lf~)~( Qe [0, }V]G)Nis a RFS, the composed mapping o X :  — [0, 1], such that
(v o X)(w) = [X(w)], is a RFS.
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Extensions

Main results

Proposition
Let ¥\ be the image of g by 1. For any C € ¥,,
Bel;,3(C) = Belz(v~1(C))

and
Pl3.%(C) = Plg(¢~1(C))

Theorem

Let X : Q1 — [0,1]° and X : Q, — [0,1]® be two RFSs representing
independent evidence. We have

Yo (Xe®Xa)=(hoX1)D (¢hoXa)

ux (UTC/IUF) Random fuzzy sets BFTA 2023
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Random fuz s Extensions

Lognormal RFNs

o Let X ~ N(y,02, h) and ) = exp.

o The RFN Y = 1?[?0)? with support equal to (0, +00) is called a lognormal
RFN; we write Y ~ TN(u, 02, h,log).

e e e )
® @ «°
o o 7 o
2 2 2
S | = 2o |
gs 231 gs
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Extensions

Logit-normal RFNs

o Let X ~ /V(M, 02, h) and (x) = [1 + exp(—x)] L.
e The RFN Y =1 o X with support equal to (0,1) is called a logit-normal
RFN; we write Y ~ TN(u,o?, h,logit), where logit(y) = log lf—y
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Extensions

Logistic-normal RFVs

o Let X ~ N(p, X, H) be a p — 1 dimensional GRFV and v the softmax
transformation from RP~! to the simplex S, of p-dimensional probability
vectors:

exp(x1) exp(Xp—1) 1
1+3°7 jexp(x)’ 14+ 357  exp(x;) 1+ 227 exp(x;)

Ps(x) =

@ The random fuzzy vector Y = 1/15 oXisa logistic-normal RFV; we write
Y ~ TN(;L,): H, g 1). Its support is the simplex Sp.
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Logistic-normal RFVs: Example

0,0,1) (0,0,1) (0,0,1)

(0,1,0) (1,0,0) (0,1,0) (1,0,0) (0,1,0)
0,0,1) 0,0,1) 0.0,1)

(0,1,0)(1,0,0)
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M

Belief/plausibility

Extensions

ixtures of (transformed) GRFNs

@ Mixtures of GRFNs = a GFN whose mode is a mixture of GRVs,
@ Can be transformed by a one-to-one mappings.
@ Defines new families of RFNs closed under the product-intersection rule.
o Example: Yy ~ 0.5TN(2,1,2,logit) + 0.5TN(—2,1,2, logit),
Yy ~ 0.3TN(—1,0.12,1, logit) 4+ 0.7 T N(1,0.12, 1, logit)
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Application to Machine Learning

Outline

e Application to Machine Learning

Thierry Denceux (UTC/IUF) Random fuzzy sets BFTA 2023 59 / 81



Application to Machine Learning

Evidential Machine Learning

Input Evidential Output‘mass
a function
data x classifier
on 2={aw,,.., o}
lief
Input Evidential Output belief
— q function
data x regression
on the real line

This lecture

Unsupervised learning

Attribute data

(my...,my)

Dissimilarity data
D=(d;)

o Evidential Machine Learning (ML): an approach to ML in which uncertainty
is quantified by belief functions.

@ Previous work has mainly focussed on clustering and classification because
these learning tasks only require belief functions on finite frames.

o With models for defining and combining belief functions on continuous
frames, it is now possible to tackle other learning tasks, such as regression.
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e Learning

The ENNreg model

@ We consider a regression problem: the task is to predict a continuous random
response variable Y from p input variables X = (Xi, ..., X,), based on a
learning set {(x;, yi)}";.

@ We have proposed a neural network model* (ENNreg), which quantifies
uncertainty about the response Y given input vector X = x by a GRFN Y(x)
with associated belief function Be/;,(x).

@ ENNreg is based on prototypes. The distances to the prototypes are treated
as independent pieces of evidence about the response and are combined by
the product-intersection rule.

4T. Denceux. Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets:
the ENNreg model. |EEE Transactions on Fuzzy Systems, 31(10):3690=3699, 2023:
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Application to Machine Learning Neural network model

Outline

e Application to Machine Learning
@ Neural network model
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ation to Machine Learning Neural network model

Propagation equations (1/2)

o Let wy,...,wg denote K vectors in the p-dimensional input space, called
prototypes.

@ The similarity between input vector x and prototype wy is measured by

[sk(x) = exp(—Z 1x — wil]?)|

where 7y, > 0 is a scale parameter.

@ The evidence from prototype wy is represented by a GRFN

Yi(x) ~ N(pui(x), 0%, sic(x) )

where aﬁ and hy are variance and precision parameters, and

k(%) = BLx + Bro

where 3, is a p-dimensional vector of coefficients, and Sy is a scalar
parameter.
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Neural network model

Propagation equations (2/2)

@ The output \N/(x) for input x is computed as

Y(x) = Yi(x)B... B Yk(x)

where H denotes product intersection without soft normalization (to simplify
calculations).

o We have Y(x) ~ N (u(x),0%(x), h(x)), with

_ S sk(x) P (x)

M= ST s
02(X) = Zk;l Sk(x)hkak2 and h(x) = Zsk(x)hk
(Zk:l sk(x)hk) k=1
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Neural network architecture

2K units 2K units

Random fuzzy sets



Application to Machine Learning Learning

Outline

e Application to Machine Learning

@ Learning
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Learning

Negative log-likelihood loss (probabilistic forecasts)

@ In the case of a probabilistic forecast with pdf £, we typically measure the
prediction error (or loss) by the negative log-likelihood

L(y,f) =—Inf(y)
@ We actually never observe a real number y with infinite precision, but an
interval [y]e = [y — €,y + €] centered at y. The probability of that interval is
P(lyle) = F(y +€) = F(y — €) = 2f(y)e,
So, L(y,f) = —In P([y].) + cst.
@ Generalization in the case of prediction in the form of a belief function?
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Learning

Extension
o L(y,Y)=—In Belg([y]e) does not work (does not reward imprecision).
o L(y,Y)=—In PI3([y]c) also does not work (minimized when Y is vacuous).
@ Proposal:

Laely: Y) = =AIn Bely([yle) — (1 = A)In Ply([y]c)

with A € [0,1] and € > 0.
@ Smaller values of \ correspond to more cautious predictions.
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ion to Machine Learning Learning

Training

@ The network is trained by minimizing the regularized average loss

C)(\,e,gp Zﬁ)\e y,, X,, )—|— g th+ 14 Z’Yka

H,_/ H,_/
Cr,e(V) Ri(W) Ra (W)

where

» Ri(V) has the effect of reducing the number of prototypes used for the
prediction (setting hx = 0 amounts to discarding prototype k)

> Ry(W) shrinks the solution towards a linear model (setting v« = 0 for all k
yields a linear model).

@ Heuristics: A = 0.9, e = 0.01oy, £ and p tuned using a validation set or
cross-validation.
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Learning

Calibration

e For any a € (0, 1], we define an a-level belief prediction interval (BPI) as an
interval B, (x) centered at p(x), such that Be/;,(x)(Ba(x)) =a.

@ The predictions are said to be calibrated if, for all « € (0, 1], a-level BPIs
have a coverage probability at least equal to «, i.e,

\va €(0,1], Px.y (Y € Ba(X)) > (r‘ (1)

@ As in the probabilistic case, the calibration of evidential predictions can be
checked graphically using a calibration plot (see infra).

@ The precision output h(x) can be multiplied by a constant ¢ > 0 to ensure
(1) with predictions as precise as possible.
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Learning

Example

We consider iid data with one-dimensional input X ~ Unif(—2,2) and

X+2
Y:X+(sin3X)3+%U, U ~ N(0,1)

42

@ Learning and validation sets of size
n = 300.

@ Network with K = 30 prototypes
initialized by the k-means algorithm.

@ £ and p determined by minimizing
the validation MSE.

@ Shown: true regression function

(blue), expected values p(x) (red)
with BPIs at levels 0.5, 0.9 and 0.99
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on to Machine Learning Learning

Calibration curves

1.0

0.8

0.6
|

coverage rate
0.4

0.2

0.0
|

ll T T T T T
0.0 0.2 0.4 06 0.8 1.0
a

Calibration curves for the probabilistic Pls ji(x) £ u(114)/20(x) (in blue) and the
BPIs (in red)
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Application to Machine Learning Experimental results

Outline

e Application to Machine Learning

@ Experimental results
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Data sets

Experimental results

n p response
Boston 506 13 medv
Energy 768 8 Y2
Concrete 1030 8 strength
Yacht 308 6 Y
Wine 1599 11 quality
kin8nm 8192 8 V9
Crime 1994 100 ViolentCrimesPerPop
Residential 372 103 V10
Airfoil 1503 5 Y
Bike 731 9 cnt
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Experimental results

Comparison with classical methods (RMS)

ENNreg RBF RVM SVM GP RF MLP
Boston 2.87 £ 0.14 331 £0.19 342+ 0.17 317 £0.15 3.70 £0.22 3.11 + 0.14 3.14 £ 0.14
Energy 1.06 £ 0.05 2.06 +0.08 1.79 +0.05 1.39 £ 0.06 258 £ 0.07 1.75 + 0.06 0.95 + 0.16
Concr. 510 £0.12 6.30 £0.19 6.38 +0.16 5.62 + 0.13 6.93 +0.13 4.64 + 0.12 4.82 + 0.16
Yacht  0.44 + 0.04 2.00 +0.20 1.88+0.20 1.93 +0.11 6.12 £ 0.31 0.96 + 0.08 0.50 £ 0.05
Wine 0.63 £0.01 0.63 +0.01 0.80 £ 0.02 0.61 +0.01 0.61 &+ 0.01 0.56 £+ 0.01 0.77 &+ 0.01
kin8nm 0.08 £ 0.00 0.11 £ 0.00 - 0.09 + 0.00 0.08 £ 0.00 0.14 £ 0.00 0.07 + 0.00
Crime 0.14 = 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 £ 0.00
Resid.  0.11 £0.01 0.16 +0.01 0.17 £ 0.01 0.15+ 0.01 0.22 +0.01 0.16 £ 0.01 0.14 + 0.01
Airfoil  1.46 + 0.03 1.70 & 0.04 258 £ 0.04 2.37 +0.04 2.49 £ 0.04 1.44 + 0.04 1.53 £ 0.04
Bike 6.59 + 0.19 6.49 + 0.15 6.64 + 0.14 7.11 + 0.16 7.55 + 0.14 6.86 + 0.17 9.68 £ 0.20
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Experimental results

Comparison with SOTA methods (RMS & NLL)

RMS
ENNreg PBP MC-dropout Deep ens.  Deep ev. reg.
Boston 2.87 + 0.14 3.01 + 0.18 2.97 + 0.19 3.28 + 1.00 3.06 + 0.16
Energy 1.06 + 0.05 1.80 + 0.05 1.66 + 0.04 2.09 £ 0.29 2.06 £ 0.10
Concr. 5.10 +£ 0.12 5.67 + 0.09 5.23 + 0.12 6.03 £ 0.58 5.85 + 0.15
Yacht 0.44 £ 0.04 1.02 £0.05 1.11 +0.09 1.58 + 0.48 1.57 + 0.56
Wine 0.63 + 0.01 0.64 + 0.01 0.62 + 0.01 0.64 + 0.04 0.61 + 0.02
kin8nm 0.08 £ 0.00 0.10 £ 0.00 0.10 + 0.00 0.09 + 0.00 0.09 £ 0.00
NLL
ENNreg PBP MC-dropout Deep ens. Deep ev. reg.
Boston  2.53 + 0.07 2.57 £ 0.09 2.46 + 0.06 2.41 + 0.25 2.35 £+ 0.06
Energy 1.14 £ 0.07 2.04 +£0.02 1.99 +£0.02 1.38 £0.22 1.39 £+ 0.06
Concr. 3.38 +0.13 3.16 +£ 0.02 3.04 + 0.02 3.06 + 0.18 3.01 + 0.02
Yacht 0.13 £ 0.12 1.63 +0.02 1.55+0.03 1.18+0.21 1.03 £0.19
Wine 0.94 + 0.01 0.97 +0.01 0.93 £ 0.01 0.94 + 0.12 0.89 + 0.05
kinBhm -1.19 £ 0.00 -0.90 + 0.01 -0.95 + 0.01 -1.20 £ 0.02 -1.24 4+ 0.01
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Application to Machine Learning Experimental results

Calibration plots

Boston Energy
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Probabilistic predictions (blue), raw evidential predictions (red) and adjusted
evidential predictions (green).
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Application to Machine Learning Experimental results

Calibration plots

Concrete Wine
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Summary

Summary

@ The theory of epistemic RFSs is a very general framework, generalizing both
possibility theory and DS theory. It allows one to represent and reason with
uncertain, imprecise and vague information.

@ Practical models of RFNs and RFVs indexed by 3 parameters (mode, variance
and precision) make it possible to define belief functions on continuous

frames that can be easily manipulated and combined, overcoming a limitation
of DS theory.

@ As an example of application, we have described the ENNreg model, a
regression neural network based on the combination of GRFNs. The network
output for input vector x is a GRFN defined by three numbers:

> a point prediction p(x)
> a variance o°(x) measuring random uncertainty
> a precision h(x) representing epistemic uncertainty

@ Other applications include knowledge elicitation and statistical inference®.

5T. Denceux. Parametric families of continuous belief functions based on generalized
Gaussian random fuzzy numbers. Fuzzy Sets and Systems, 471:108679;:2023.
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References on epistemic RFSs

cf. https://www.hds.utc.fr/~tdenoeux

@ T. Denceux
Belief functions induced by random fuzzy sets: A general framework for
representing uncertain and fuzzy evidence.
Fuzzy Sets and Systems, 424:63-91, 2021

@ T. Denceux
Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models.
Fuzzy Sets and Systems, 453:1-36, 2023

@ T. Denceux
Parametric families of continuous belief functions based on generalized
Gaussian random fuzzy numbers.
Fuzzy Sets and Systems, 471:108679, 2023.
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References on the ENNreg model

cf. https://www.hds.utc.fr/~tdenoeux

@ T. Denceux
Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets:
the ENNreg model.
IEEE Transactions on Fuzzy Systems, 31(10):3690-3699, 2023.

@ T. Denceux
evreg: Evidential Regression
R package version 1.0.2, 2023. Available:
https://CRAN.R-project.org/package=evreg
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