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Chapter 1

Uncertainty

This book is about the theory of belief functions, a formal framework for rea-
soning and making decisions under uncertainty. This framework originates
from Arthur Dempster’s seminal work on statistical inference with lower and
upper probabilities [15, 17]. It was then further developed by Glenn Shafer
[58] who showed that belief functions can be used as a general framework
for representing and reasoning with uncertain information, beyond the very
important but limited confines of statistical inference. The theory of belief
functions, also referred to as Evidence theory or Demspter-Shafer theory, has
been widely used in several areas such as Artificial Intelligence, Information
Fusion and Risk Analysis. Recently, there has been a revived interested in its
application to statistical inference. This formalism seems particularly well
suited to situations where we are facing limited information such as uncertain
and low quality data, partially reliable and conflicting expert opinions, or
both. There has been thousands of applications in many domains, including
engineering, medicine, economics, etc.

In this introductory chapter, we will discuss the concept of uncertainty
and review two popular formalisms for handling uncertainty: sets and prob-
abilities. As we shall see all along this book, the theory of belief functions
builds upon these two approaches: in a way, a belief function can be seen as
the assignment of probabilities to sets.

1.1 Sources of uncertainty

Uncertainty is ubiquitous in every area of human activity. Typically, we are
interested in some question Q, such as: What is the mean value of some
variable in a population? What will be the economic growth rate in the

11



12 CHAPTER 1. UNCERTAINTY

United States next year? What was the amount of carbon dioxide emission
in China in 2012? etc. In the following, we will denote by Ω the set of possible
answers (one and only one is assumed to be true), and by ω the true answer.
If we know the exact value of ω, this is a situation of complete certainty. If we
know nothing at all (except that ω is in Ω), we have complete uncertainty.
Actually, these two extreme situations are not frequent: usually, we have
only partial knowledge of ω, based on limited evidence about the question of
interest. The issue then arises of how to represent such partial information
in such a way that it can be used for further reasoning, computation and
rational decision making.

It has become customary in some areas (such as risk analysis) to distin-
guish between two main sources of uncertainty:

1. When the question of interest concerns some property of an object
taken at random from a well-defined population (such as, e.g., the
color of a ball to be drawn from an urn), we say that we have random,
aleatory or physical uncertainty. Such uncertainty cannot be reduced
because it depends on the physical property of the population and of
the random experiment.

2. In many situations, uncertainty does not arise from randomness but
from lack of knowledge. For instance, the name of the next president
of the US is unknown, but it is not random because there is no notion
of random experiment (in particular, the next presidential election will
occur only once in precisely the same context). Such uncertainty is said
to be epistemic. It can be reduced by acquiring further information
related to the question of interest.

The two main classical formalisms for representing uncertainty are the set
theory (or, equivalently, propositional logic) and probability theory. These
approaches will be discussed below, with greater emphasis on probability
theory, which is by far the most widely used framework.

1.2 Set-based representation of uncertainty

Perhaps the simplest way of representing partial knowledge about some ques-
tion is as a set A ⊆ Ω that certainly contains the true answer ω. There is
a vast literature on set-membership approaches to uncertainty, with appli-
cation, e.g., in computer science and automatic control [47, 48, 33]. An
important special case is interval arithmetics, which includes syntactic rules
to compute with intervals, making it possible to produce rigorous enclosures
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of solutions to model equations. The fundamental operations on sets are
simple forms of operations on the more complex representations that will be
studied, in particular, in Chapters 3 and 5. We will briefly review these op-
erations in the following section, before showing the link with propositional
logic. Finally, we will discuss some limitations of this approach.

1.2.1 Operations on sets

As we will see later in this course, a major task when reasoning with uncer-
tainty is information fusion, i.e., combining pieces of information (evidence)
from different sources. Assume that two sources provide two subsets A and
B of Ω, assumed to contain the answer to the question of interest. How to
combine these pieces of information?

If both sources can be trusted, then it is reasonable to consider that the
true answer is in the intersection of A and B, denoted by A ∩ B, which is
the set containing the elements of Ω that belong to both A and B. This
mode of fusing information is called conjunctive; it is reasonable when all
information sources are assumed to be reliable. However, when A and B are
disjoint, i.e., A ∩ B = ∅, this rules leads a contradiction. In that case, the
assumption that the two sources can be trusted is no longer tenable. It is
then more cautious to conclude that the true answer is in the union of A
and B, denoted by A∪B, which is the set containing the elements of Ω that
belong to A or B. This is the simplest form of disjunctive rule for pooling
information, which is suitable when at least one of the sources is assumed to
be reliable.

Let us now assume that we have two questions of interest, whose true
answers are denoted by X and Y (X and Y may be called variables). Let ΩX

and ΩY be the sets of possible values for X and Y . To represent information
about the values that X and Y may take jointly, we need to place ourselves
in the Cartesian product ΩX × ΩY , denoted more concisely by ΩXY , and
defined as the set of ordered pairs (x, y) of an element of ΩX and an element
of Ωy. A subset of R of ΩXY is called a relation. It can be used to represent
a constraint on the values that X and Y may take jointly.

Example 1.1 Let ΩX = {x1, x2, x3} be a set of symptoms and ΩY = {y1, y2, y3}
a set of diseases. The relation R = {(x1, y1), (x1, y2), (x3, y2), (x2, y3)} may
express that symptom x1 is associated to diseases y1 and y2, x3 is associated
to y2, and x2 is associated to y3.

Let R be a relation on ΩXY . The projection of R onto ΩX , denoted by
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Figure 1.1: Reasoning with sets. Knowing that X ∈ A and the relation R
constraining the values of X and Y , we can deduce that Y ∈ B, where B is
the projection on ΩX of the intersection of R with the cylindrical extension
of A.

R ↓ ΩX , is the subset of ΩX defined by

R ↓ ΩX = {x ∈ ΩX |∃y ∈ ΩY , (x, y) ∈ R}. (1.1)

Symmetrically,

R ↓ ΩY = {y ∈ ΩY |∃x ∈ ΩX , (x, y) ∈ R}. (1.2)

Conversely, let A be a subset of ΩX . Its cylindrical extension in ΩXY ,
denoted by A ↑ ΩXY , is the subset of ΩXY defined as

A ↑ ΩXY = A× ΩY = {(x, y) ∈ ΩXY |x ∈ A}. (1.3)

To see how these notions can be used in a reasoning process, assume that
we have

• Evidence that X belongs to a subset A of ΩX ;

• Evidence about the values that X and Y can take jointly, represented
by a relation R ⊆ ΩXY (see Figure 1.1).

What can we deduce about Y ? Let B denote the set of possible values for
Y . It is clear that y belongs to B if and only of there is some x in A such
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that (x, y) ∈ R. Formally:

B = {y ∈ ΩY |∃x ∈ A, (x, y) ∈ R}, (1.4)

which can be written as

B = (R ∩ (A ↑ ΩXY )) ↓ ΩY . (1.5)

This kind of reasoning may straightforwardly be applied to any number of
variables. As we will see in Chapter 5, it can be extended to the more
complex framework of belief functions.

1.2.2 Relationship with propositional logic

Propositional logic is another formalism closely related to set theory. The ba-
sic constructs of that formalism are propositional variables p, q, r, . . ., which
represent statements that can be true (T ) or false (F ), and connectives
¬,∨,∧,→,↔, which make it possible to build formulas expressing more com-
plex propositions. The meaning of a connective is described by a truth table.
For instance, the following table,

p q p→ q

T T T
T F F
F T T
F F T

statest that p→ q is true if and only if p is false, or q is true.
An interpretation is a mapping from the set of propositional variables to

the set {T, F} of truth values. To each formula φ corresponds the set I(φ)
of interpretations under which it is true. For instance, to p→ q corresponds
the set {(T, T ), (F, T ), (F, F )}. If φ and ψ are two formulas, then I(φ∧ψ) =
I(φ)∩I(φ), I(φ∨ψ) = I(φ)∪I(φ) and I(¬φ) = I(φ), where I(φ) denotes
the complement of I(φ) in the set of all interpretations.

Interpretations can be seen as representing states of the world, and a
proposition can be identified to the set of states of the world under which
it is true. Propositional logic and set theory thus have the same expressive
power.

1.2.3 Limitations of sets for representing uncertainty

The main limitation of set-based representations of uncertainty (and propo-
sitional logic) is that they do not allow the expression of doubt. As a con-
sequence, they favor a conservative approach, in which the sets have to be
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chosen very large to contain the true value with full certainty. A lot of in-
formation is usually lost in such a representation. For instance, if an expert
is asked to give an interval that surely contains the mean sea level in 2050,
he will give a wide interval, even though he may actually believe that the
mean sea level will be contained within narrower bounds. As we will show
later, belief functions can be seen as extending the notion of set by allowing
one to provide different sets with attached degrees of support.

1.3 Probabilistic representation of uncertainty

Probability theory is another classical formalism for representing and reason-
ing with uncertainty. After recalling some basic definitions, we will provide
a brief review of interpretations and justifications of this approach.

1.3.1 Basic definitions

Let Ω be a set and A ⊆ 2Ω an algebra of subsets of Ω, defined as non-empty
collection of subsets of Ω (called events), closed under complementation and
finite union, i.e., for all A and B in A, A ∪ B ∈ A. We can remark that Ω
necessarily belongs to A. A finitely additive probability measure on (Ω,A) is
a function P from A to [0, 1] such that

1. P (Ω) = 1;

2. For all elements A and B of A such that A ∩B = ∅,

P (A ∪B) = P (A) + P (B). (1.6)

We can easily deduce from (1.6) that, for any elements A and B of A,

P (A ∪B) = P (A) + P (B)− P (A ∩B). (1.7)

More generally, we can prove by induction that, for any k ≥ 2 and any
collection A1, . . . , Ak of elements of A,

P

(
k⋃
i=1

Ai

)
=

∑
∅6=I⊆{1,...,k}

(−1)|I|+1P

(⋂
i∈I

Ai

)
. (1.8)

As we will see in Chapter 2, a weaker form of this property characterizes
belief functions.
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The notion of finitely additive probability is often extended to allow
probabilities to be assigned to the union or intersection of countable families
or events. For this, we need to consider a non-empty collectionA of subsets of
Ω that is closed under complementation and countable union. Such a family
is called a σ-algebra. A countably additive probability measure on (Ω,A) is
a function P from A to [0, 1] such that P (Ω) = 1 and, for all countable
collections (Ai), i = 1, . . . ,∞, of pairwise disjoint elements of A,

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai). (1.9)

The triple (Ω,A, P ) is called a probability space.
It is clear that the notions of finitely additive and countably additive

probability measures differ only when the space Ω is infinite.

1.3.2 Interpretations

The mathematical model briefly described above may be used to represent
different aspects of the real world. In particular, it can be used to represent
objective properties of random experiments, or subjective degrees of belief.
These two interpretations will be briefly reviewed below.

Objective probabilities

Probability theory is clearly suitable to represent aleatory uncertainty, in
which case the probability P (A) for an event A ⊆ Ω is interpreted either as
a frequency (actually, the limit of the frequency with which event A occurs, if
the random experiment is repeated n times and n→ +∞), or as a propensity
[53] (i.e., the tendency of A to happen across a large number of repetitions
of the random experiment). Since frequencies are additive, the additivity
axiom (1.9) is well justified.

Such probabilities can be considered as objective, because they describe
physical properties of the chance setup. For instance, when tossing a coin, the
probabilities P (Heads) = P (Tails) = 1/2 can be deduced from the symmetry
of the coin.

Subjective probabilities

The use of probability measures to represent epistemic uncertainty (as advo-
cated by the Bayesian school, see, e.g., [9, 34]) is more problematic, because
in this case probabilities can clearly no longer be interpreted as frequencies.
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In this context, they are usually interpreted as subjective (or personal) de-
grees of belief. However, we need to define more precisely the meaning of this
notion and to explain why degrees of belief should be additive. This can be
done in, at least, two ways: using a constructivist or a behavioral approach.

Constructivist approach In the constructivist approach, we construct
a probability measure P by comparing our evidence (i.e., what we know)
about Ω to a random experiment with known chances [60]. This allows us a
construct a scale of degrees of belief, with canonical examples. For instance,
in a coin tossing game, the chance for Heads is 1/2, which is taken as our
degree of belief that Heads will come up. If our beliefs about the truth of
some proposition A (e.g., “There is life on Mars”) is comparable to our belief
that Heads will come up when tossing a coin, we can say that our personal
probability for A is 1/2.

Behavioral approach In the behavioral approach, we assume that the
belief state of an agent can be deduced from observing its betting behavior.
The following “Dutch book” argument1, first put forward by Ramsey [55]
and de Finetti [12], shows that consistent betting behavior, in some sense,
should be based on probabilities. Assume that you have to enter a game
where there is a player and a banker. The player gives an amount of money
$p to the banker and the banker gives the player $1 if a proposition A is true,
and 0 otherwise. You do not know if you will be the banker or the player,
and you are asked to fix p. By definition, your fair betting rate P (A) = p
is equated to your personal probability of proposition A. It is postulated to
measure your belief in A: the more you believe in A, the more money you
will be willing to give to enter the game. Now, the main point is that an
opponent can compile a book of bets from your offer that assures a net gain
from you (a Dutch book) if and only if P fails to be a probability function.

To show this, consider two disjoint events A andB and the three following
bets:

1. Bet 1: the player gains $1 if A is true and 0 otherwise.

2. Bet 2: the players gain $1 if B is true and 0 otherwise.

3. Bet 3: the players gain $1 if A ∪B is true and 0 otherwise.

1A Dutch book is a set of odds and bets which guarantees a profit, regardless of the
outcome of the gamble.



1.3. PROBABILISTIC REPRESENTATION OF UNCERTAINTY 19

Let P (A), P (B) and P (A ∪ B) be the fair prices you are willing to pay
for the three tickets. Assume that P (A ∪ B) < P (A) + P (B). Then, the
opponent can raise a Dutch book against you by deciding that you will be
the player in the first two bets and the banker in the third bet. You will
then have to pay P (A)+P (B) to participate in the first two bets as a player
and you will receive P (A ∪ B) as a banker in the third bet. The balance is
thus −P (A)− P (B) + P (A ∪B) < 0. Now, as shown in Table 1.1, you will
not win any additional money, whatever the outcome. For instance, if A is
true and B is false, you will win $1 in the first bet but you will lose $1 in the
third bet, and similarly for the two other cases. Hence, you surely incur a
net loss. Similarly, if P (A ∪B) > P (A) + P (B), you will lose if you are the
banker in the first two bets and the player in the third bet. The only way to
avoid sure loss is to set the three numbers P (A), P (B) and P (A ∪ B) such
that P (A ∪B) = P (A) + P (B).

Table 1.1: Dutch book argument; gains in the three bets.

A B Bet 1 Bet 2 Bet 3
0 0 0 0 0
1 0 1 0 -1
0 1 0 1 -1

If we interpret degrees of belief as betting rates, it can thus be argued
that degrees of belief should be (finitely) additive and our state of knowledge
should be represented by a probability measure. However, this point of view
is open to criticism:

1. First, the betting scheme just described is a highly idealized situation,
and it is debatable if any situation of choice under uncertainty can
fit this idealized picture (probabilities and utilities do not exist, they
are a construction). Additionally, it is not obvious that the setting of
betting rates in some particular betting scheme is the primary purpose
of probability judgement [60].

2. Secondly, by slightly changing the story, we can arrive at different
conclusions. For instance, assume that you are not obliged to enter
the game and you are not required to accept to be the banker. Let
P∗(A) be the highest price you are willing to pay for the lottery ticket.
Then, a Dutch book can be raised against you iff P∗ fails to be a lower
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probability function, i.e., the lower envelope of a family of probability
measures [77].

1.3.3 Cox axioms

Some scholars have attempted to justify the use of probabilities to represent
degrees of belief using an axiomatic approach. In particular, the axioms
of Cox [11] and Savage [56] are often invoked by Bayesians to argue that
probability theory is the only “reasonable” formalism for reasoning with un-
certainty. In this section, we will briefly discuss Cox axioms. Savage’s axioms
will be discussed in Chapter 7.

Let Cr(A|B) ∈ R be a measure of the “credibility” of proposition A,
given that B is true, where A and B are non-empty subsets of Ω. Consider
the following axioms:

A1 : The credibility of the complement of A can be computed from the
credibility of A,

Cr(A|B) = S[Cr(A|B)], (1.10)

where S is a twice differentiable function;

A2 : The credibility of A ∩ A′ given B is a function of the credibility or A′,
given A ∩B, and the credibility of A given B,

Cr(A ∩A′|B) = F [Cr(A′|A ∩B), Cr(A|B)], (1.11)

where F is a twice differentiable function with a continuous derivative.

Under these assumptions, Cox showed Cr is isomorphic to a probability
distribution, in the sense that there exists a one-to-one mapping g : R→ R
such that g ◦ Cr is a probability measure, and

g[Cr(A|B)] · g[Cr(B)] = g[Cr(A ∩B)] (1.12)

for any A and non-empty B, with Cr(B) = Cr(B|Ω).
Significant as it may be, this result can hardly be considered as a final

justification of probabilities for representing degrees of belief. Indeed, close
inspection of the axioms shows that they can be seriously questioned.

The first assumption is that the credibility of a proposition can be repre-
sented by a single number. This condition is not assumed in some alternative
theories of uncertainty, such as the theory of belief functions. Axiom A1 is
also quite debatable. If degrees of credibility are identified with degrees of
support, the degree of support for some proposition is not a function of the
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degree of support for its negation (if A is not supported, A may be supported
or not), and Cr(A|Ω) will not be determined by Cr(A|Ω).

Cox merely justifies axiom A2 by an example. If A is the proposition
that some athlete can run to some point, given the conditions of the race
expressed by B, and if A′ denotes the proposition that he can come back,
then the probability that he can run to the point and come back depends
on the probability that he can come back, given that he has already reached
the point, and the probability that he can reach the point. Yet, as noted by
Shafer, even admitting that Cr(A∩A′|B) should be a function of Cr(A′|A∩
B) and Cr(A|B)], it is not obvious that the same function F should always
be used.

1.3.4 Two paradoxes

As shown in the previous section, attempts to justify the use of probabilities
to represent degrees of belief have not settled the question. In contrast,
there appears to be some serious arguments against the use of probability
theory as a model of epistemic uncertainty (Bayesian model) In particular,
the use of a probability distribution to represent ignorance may lead to some
inconsistencies, and probability theory does not seem to be a plausible model
of how people make decisions based on weak information. These arguments
are exemplified by the following two paradoxes.

The wine/water paradox Assume that all we now about some quan-
tity X is that it belongs to some set A. According to Laplace’s principle of
indifference (PI) – and also according to the principle of maximal entropy,
this state of knowledge should be represented by assigning equal probabili-
ties to any possible values of X. However, consider the following paradox,
attributed to Von Mises (see [45] and [13] for recent reviews and discussions).

Consider a certain quantity of liquids. All we know is that this liquid
is composed entirely of wine and water, and the ratio of wine to water is
between 1/3 and 3. What is the probability that the ratio of wine to water
is less than or equal to 2?

Let X denote the ratio of wine to water. All we know is that X ∈ [1/3, 3].
According to the PI, X ∼ U[1/3,3]. Consequently:

P (X ≤ 2) = (2− 1/3)/(3− 1/3) = 5/8. (1.13)

Now, let Y = 1/X denote the ratio of water to wine. All we know is that
Y ∈ [1/3, 3]. According to the PI, Y ∼ U[1/3,3]. Consequently:

P (Y ≥ 1/2) = (3− 1/2)/(3− 1/3) = 15/16. (1.14)
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By comparing (1.13) and (1.14), we can see that we have a paradox, as the
propositions X ≤ 2 and Y ≥ 1/3, being logically equivalent, should receive
the same probability.

The reason for this paradox is that, if X has a uniform distribution on
some set A, and if f is a non linear mapping, f(X) does not have, in general,
a uniform distribution on f(A). However, if we only know that X is in A,
we only know that f(X) is in f(A). This argument shows that set-valued
information cannot be adequately represented by a probability measure.

Ellsberg’s paradox The following paradox is due to Ellsberg [28]. Sup-
pose you have an urn containing 30 red balls and 60 balls, either black or
yellow. You are given a choice between two gambles:

• f1: You receive 100 euros if you draw a red ball;

• f2: You receive 100 euros if you draw a black ball.

Also, you are given a choice between these two gambles (about a different
draw from the same urn):

• f3: You receive 100 euros if you draw a red or yellow ball;

• f4: You receive 100 euros if you draw a black or yellow ball.

Most people strictly prefer f1 to f2, hence P (red) > P (black), but they
strictly prefer f4 to f3, hence P (black) > P (red).

This famous paradox shows that probability theory is not a plausible
descriptive model of how people make decisions under ambiguity (i.e., when
objective probabilities are not given).

1.4 Conclusions

The two main formalisms for representing uncertain information are set-
based representations and probability theory. We have shown in this lecture
that none of these two formalisms seems to be sufficient to represent all kinds
of uncertainties. In the next lecture, we will introduce the theory belief
functions, which can be seen as generalizing the two classical frameworks
outlined above.



Chapter 2

Representation of evidence

In this chapter, we define some of the main concepts of Dempster-Shafer
theory in the finite case. These notions are sufficient to cope with a large
number of applications. The extension to infinite spaces involves some math-
ematical intricacies and is technically more difficult, except in some simple
(and practically important) cases; it is postponed to Chapter 6.

2.1 Mass function

2.1.1 Definitions

Let Ω be a finite set of possible answers to some question Q, one and only
one of which is true. The true answer will be denoted by ω, and an arbitrary
element of Ω by ω. Shafer [58] calls such a space a frame of discernment,
to emphasize the fact that it is not a set of “states of nature” objectively
given, but a subjective construction based on our state of knowledge. For
instance, if Q relates to a person’s state of health, Ω might contain only the
diseases known at a certain time. This set could be later refined or extended
if new knowledge became available. We will come back in Chapter 5 to the
important issue of defining and modifying the frame of discernment.

A piece of evidence about Q will be represented by a mass function,
defined as a mapping m from the power set 2Ω to the interval [0, 1], such
that m(∅) = 0 and ∑

A⊆Ω

m(A) = 1. (2.1)

As will be discussed later, each number m(A) represents the probability that
the evidence supports exactly the proposition ω ∈ A, and no more specific

23
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Table 2.1: Four mass functions on Ω = {a, b, c} in Example 2.1.

A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1(A) 0 0.2 0.5 0 0.3 0 0 0
m2(A) 0 0 0 1 0 0 0 0
m?(A) 0 0 0 0 0 0 0 1
m3(A) 0 0.1 0.05 0.2 0.15 0.3 0.1 0.1

proposition. Any subset A of Ω such that m(A) > 0 is called a focal set of
m. The union of the focal sets of a mass function is called its core.

Before discussing the semantics of a mass function, it is interesting to
point out two special cases:

1. If m has only one focal set, it is said to be logical . Logical mass func-
tions are in one-to-one correspondence with subsets of Ω: consequently,
general mass functions can be viewed as generalized sets. A particular
logical mass function plays a special role in the theory; it is the vac-
uous mass function m? defined by m?(Ω) = 1; such a mass function
corresponds to a totally uninformative piece of evidence.

2. If all focal sets are singletons (i.e., sets of cardinality one), m is said
to be Bayesian. To each Bayesian mass function can be associated a
probability distribution p : Ω→ [0, 1] such that p(ω) = m({ω}) for all
ω ∈ Ω.

Example 2.1 Consider the mass on functions on Ω = {a, b, c} shown in
Table 2.1. Mass function m1 is Bayesian, m2 is logical, m? is vacuous, and
m3 has no special form.

A belief function may thus be viewed both as a generalized set and as a
non-additive measure. As we will see in Chapters 3 and 5, basic mechanisms
for reasoning with belief functions extend both probabilistic operations (such
as marginalization and conditioning) and set-theoretic operations (such as
projection and intersection).

2.1.2 Semantics

The following example will show how the formalism of mass functions can
be used to represent a piece of evidence. It will also serve as an illustration
of the semantics of mass functions.
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Example 2.2 A murder has been committed and there are three suspects:
Peter, John and Mary. The question Q of interest is the identity of the
murderer and the frame of discernment is Ω = {Peter, John,Mary}. The
piece of evidence under study is a testimony: a witness saw the murderer.
However, this witness is short-sighted and he can only report that he saw
a man. Unfortunately, this testimony is also not fully reliable, because we
know that the witness is drunk 20 % of the time. How can such a piece of
evidence be encoded in the language of mass functions?

We can see here that what the testimony tells us about Q depends on the
answer to another question Q′: Was the witness drunk at the time of the
murder? If he was not drunk, we know that the murderer is Peter or John.
Otherwise, we know nothing. Since there is 80% chance that the former
hypothesis holds, we may assign a 0.8 mass to the set {Peter, John}, and 0.2
to Ω:

m({Peter, John}) = 0.8, m(Ω) = 0.2

In the above example, we receive a message (a testimony) about Q, whose
meaning depends on the answer to a related question Q′ for which we have a
chance model (a probability distribution). We can compare our evidence to a
canonical example where we know that the outcomes of a random experiment
are s1 and s2 with corresponding chances p1 = 0.8 and p2 = 0.2, and the
message can only be interpreted with knowledge of the outcome. If the
outcome is s1, then the meaning is ω ∈ {Peter, John}, otherwise the meaning
is ω ∈ Ω, i.e., the message is totally uninformative.

As remarked by Shafer [60], probability judgements can be made by com-
paring the available evidence to some canonical example involving a chance
setup. In the Bayesian theory (see Section 1.3.2), we compare our evidence
to a situation where the truth is governed by chance (e.g., by thinking of
the murderer as having been selected at random). In the belief function
approach, the canonical example describes a situation where the meaning of
the evidence is governed by chance.

More precisely, two scenarios are specially useful to construct canonical
examples for mass functions.

The first scenario involves a machine that has two modes of operation,
normal and faulty. We know that in the normal mode it broadcasts true
messages, but we are completely unable to predict what it does in the faulty
mode. We further assume that the operating mode of the machine is random
and there a chance p that it is in the normal mode. It is then natural to say
that a message ω ∈ A produced by the machine has a chance p of meaning
what it says and a chance 1− p of meaning nothing. This leads to the mass
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Figure 2.1: Random code setup.

function m(A) = p and m(Ω) = 1− p. Such a mass function, with two focal
sets including Ω, is called a simple mass function.

The above story is simple and very useful to model situations in which
a partially reliable source of information provides a simple statement of the
form ω ∈ A and we can assess the probability of the source to be reliable.
How, it is not general enough to cover all kinds of evidence. In [60], Shafer
introduced a more sophisticated scenario that is general enough to produce
canonical examples for arbitrary mass functions. In this scenario, a source
holds some true information of the form ω ∈ A∗ for some A∗ ⊆ Ω. It sends
us this information as an encoded message using a code chosen at random
from a set of codes S = {s1, . . . , sr}, according to some known probability
measure µ (Figure 2.1). We know the set of codes as well as the chances of
each code to be selected. If we decode the message using code s, we get a
decoded message of the form ω ∈ Γ(s) for some subset Γ(s) of Ω. Then,

m(A) = µ({s ∈ S|Γ(s) = A}) (2.2)

is the chance that the original message was “ω ∈ A”, i.e., the probability of
knowing that ω ∈ A, and nothing more.

In the above framework, the mapping Γ : S → 2Ω \ {∅} is called a
multi-valued mapping and the 4-tuple (S, 2S , µ,Γ) is called a source. We can
observe that a source corresponds formally to a random set [51]. However,
the term “random set” may be misleading here, because we are not interested
in situations where a set is selected at random (such as, e.g., drawing a
handful of marbles from a bag). Here, the true answer to the question of
interest is a single element of Ω and it is not assumed to have been selected
at random. Instead, chances are introduced when comparing our evidence
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to a situation where the meaning of a message depends on the result of a
random experiment.

It is clear that a source (S, 2S , µ,Γ) always induces a mass function from
(2.1). Conversely, any mass function can be seen as generated by a source.
For instance, if A1, . . . , An are the focal sets of a mass function m, we may
set S = {1, . . . , n} and µ({i}) = m(Ai) for 1 ≤ i ≤ n. However, as we shall
see in Chapter 6, the concept of a source is more general than that of mass
function, because a source can be used in the infinite case to generate a belief
function even when a mass function does not exist.

2.2 Belief and plausibility functions

2.2.1 Definitions

Let us assume the available evidence to be encoded by a mass function m
on Ω generated by a source (S, 2S , µ,Γ). For any A ⊆ Ω, the uncertainty
pertaining to the proposition ω ∈ A can be quantified by two numbers:

1. The probability that the evidence supports (implies) A, defined by

Bel(A) = µ({s ∈ S|Γ(s) ⊆ A}) (2.3a)

=
∑
B⊆A

m(B); (2.3b)

2. The probability that the evidence does not contradict A, given by

Pl(A) = µ({s ∈ S|Γ(s) ∩A 6= ∅}) (2.4a)

=
∑

B∩A 6=∅

m(B). (2.4b)

Clearly, Bel(∅) = Pl(∅) = 0, Bel(Ω) = Pl(Ω) = 1, Bel(A) ≤ Pl(A) and
Pl(A) = 1 − Bel(A), where A denotes the complement of A. The quantity
Bel(A) can be interpreted as a degree of support for proposition A, or as a
degree of belief. The function Bel : 2Ω → [0, 1] is called a belief function.
In contrast, Pl(A) can be seen as the degree to which one fails to doubt A;
this number is called the plausibility of A and the function Pl : 2Ω → [0, 1]
is called a plausibility function.

Example 2.3 Consider a mass function m induced by the source shown in
Figure 2.2. It has four focals sets Bi, i = 1, 2, 3, 4. The degree of belief
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Figure 2.2: Belief and plausibility functions (Example 2.3).

in A is Bel(A) = m(B1) + m(B2), while the plausibility of A is Pl(A) =
m(B1) + m(B2) + m(B3). The degree of belief in the complement of A is
Bel(A) = m(B4), which is clearly equal to 1− Pl(A).

2.2.2 Properties

Theorem 2.1 A function Bel : 2Ω → [0, 1] is a belief function iff it satisfies
the following conditions:

1. Bel(∅) = 0;

2. Bel(Ω) = 1;

3. For any k ≥ 2 and any collection A1, . . . , Ak of subsets of Ω,

Bel

(
k⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
. (2.5)

Proof: See [58, page 51].
Property (2.5) is a weaker form of the corresponding property (1.8), which

holds for probability measure. In general, a function satisfying (2.5) for a
given k is said to be monotone of order k. It is clear that monotonicity of
order k implies monotonicity of order k′ for all k′ < k. A function that is
monotone for any k is said to be monotone of order infinite, or completely
monotone. Furthermore, properties 1 and 2 above imply that Bel is increas-
ing. To see this, let A and B be two subsets of Ω such that A ⊆ B and let
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C = B \A. We have B = A ∪C and A ∩C = ∅. From (2.5) with k = 2, we
have

Bel(B) = Bel(A ∪ C) ≥ Bel(A) +Bel(C)−Bel(A ∩ C)

= Bel(A) +Bel(C) ≥ Bel(A). (2.6)

Theorem 2.1 tells us that a completely monotone set function such that
Bel(∅) = 0 and Bel(Ω) = 1 is induced by some mass function m using
(2.3b). We may wonder whether there exists a unique m generating a belief
function Bel. Indeed, (2.3b) for A ∈ 2Ω \ {∅,Ω} provides 2|Ω| − 2 equations
and there are 2|Ω| − 2 free mass numbers (taking into account constraint
(2.1)). Consequently, one must be able to recover m from Bel in a unique
way. The following theorem states that m is actually the Möbius inverse of
Bel, a notion from combinatorial theory [58].

Theorem 2.2 Let Bel : 2Ω → [0, 1] be a belief function induced by a mass
function m. Then

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B), (2.7)

for all A ⊆ Ω.

Proof: See [58, page 52].
Using the identity Pl(A) = 1−Bel(A) for any A ⊆ Ω, it is easy to obtain

the Theorems 2.3 and 2.4, which are a counterparts of Theorems 2.1 and 2.2.

Theorem 2.3 A function Pl : 2Ω → [0, 1] is a plausibility function iff it
satisfies the following conditions:

1. Pl(∅) = 0;

2. Pl(Ω) = 1;

3. For any k ≥ 2 and any collection A1, . . . , Ak of subsets of Ω,

Pl

(
k⋂
i=1

Ai

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
. (2.8)

A set function verifying (2.8) is said to be alternating of order infinite, or
completely alternating. A plausibility function is thus a completely alternat-
ing set function Pl such that Pl(∅) = 0 and Pl(Ω) = 1. Given a plausibility
function Pl, the corresponding mass function m can be recovered using the
following theorem.
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Theorem 2.4 Let Pl : 2Ω → [0, 1] be a plausibility function induced by a
mass function m. Then

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B), (2.9)

for all A ⊆ Ω.

From the above results, it is clear that, given any of the three functions
m, Bel and Pl, we can recover the other two. Consequently, these three
functions can be seen as different facets of the same information. In the
sequel, we will sometimes use the term “belief function” to refer to any of
these functions, when there will be no risk of confusion.

2.2.3 Vector representation

A mass function on a finite frame may be represented as a vector once the
subsets of Ω have been arranged in some predefined order [68]. One such
order with nice properties is the binary order defined as follows. Let Ω =
{ω1, . . . , ωn} be the frame of discernment. For any A ⊆ Ω, let u(A) be
the binary number unun−1 . . . u2u1 such that uk equals 1 if ωk ∈ A and 0
otherwise. The rank of A in the binary ordering is r(A) =

∑n
k=1 uk2

k−1 + 1.
Assuming the focal sets A1, . . . , A2n to be indexed in such a way that

r(Ai) = i for all i, the vector representation of a mass function m on Ω is the
column vector m = (m1, . . . ,m2n)′, where mi = m(Ai). This representation
is shown in Table 2.2 in the case n = 3. An interesting property of this
ordering is that, whenever Ai ⊂ Aj , we always have i < j.

Table 2.2: Binary ordering in the case |Ω| = 3.

i u(Ai) Ai mi

1 000 ∅ m(∅)
2 001 {ω1} m({ω1})
3 010 {ω2} m({ω2})
4 011 {ω1, ω2} m({ω1, ω2})
5 100 {ω3} m({ω3})
6 101 {ω1, ω3} m({ω1, ω3})
7 110 {ω2, ω3} m({ω2, ω2})
8 111 {ω1, ω2, ω3} m({ω1, ω2, ω3})
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Arranging the belief and plausibility numbers in vectors

Bel = (Bel(A1), . . . , Bel(An))′

and
Pl = (Pl(A1), . . . , P l(An))′,

it is clear that the transformations from any of the three representations m,
Bel and Pl to another are linear. For instance, (2.3b) becomes, in vector
notation,

Bel = BfrM ·m, (2.10)

whereBfrM is a square matrix of size 2n, whose general term BfrMij equals
1 if Ai ⊆ Aj and 0 otherwise. We can easily check that matrix BfrMis lower
triangular.

2.3 Special cases and related theories

2.3.1 Bayesian mass functions

If m is Bayesian, then

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for any A ⊆ Ω. Furthermore, for any two disjoint subsets A and B of Ω,

Bel(A ∪B) =
∑

ω∈A∪B
m({ω}) =∑

ω∈A
m({ω}) +

∑
ω∈B

m({ω}) = Bel(A) +Bel(B). (2.11)

Consequently, belief functions induced by Bayesian mass functions are proba-
bility measures and are equal to their dual plausibility functions. Conversely,
it is clear that each probability measure P is a belief function induced by
the Bayesian mass function m such that m({ω}) = P ({ω}) for all ω ∈ Ω.

In other terms, the set of probability measures is exactly the set of belief
functions induced by Bayesian mass functions. This results shows us that the
language of belief functions is more general than that of probability theory.
As we will see in Chapter 3, the conditioning operation, which plays a major
role in updating beliefs based on new evidence in the Bayesian framework,
can also be seen as a special case of a more general operation in the belief
function framework.
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2.3.2 Consonant mass functions

A mass function m is said to be consonant if its focal sets are nested, i.e., if
they can be arranged in an increasing sequence A1 ⊂ . . . ⊂ Ar. In that case,
functions Bel and Pl satisfy the following properties.

For any A,B ⊆ Ω, let i1 and i2 be the largest indices such that Ai ⊆ A
and Ai ⊆ B, respectively. Then, Ai ⊆ A ∩B iff i ≤ min(i1, i2) and

Bel(A ∩B) =

min(i1,i2)∑
i=1

m(Ai) (2.12a)

= min

(
i1∑
i=1

m(Ai),

i2∑
i=1

m(Ai)

)
(2.12b)

= min(Bel(A), Bel(B)). (2.12c)

Now, from the equality A ∪B = A ∩B, we have

Pl(A ∪B) = 1−Bel(A ∪B) (2.13a)

= 1−Bel(A ∩B) (2.13b)

= 1−min(Bel(A), Bel(B)) (2.13c)

= max(1−Bel(A), 1−Bel(B)) (2.13d)
= max(Pl(A), P l(B)). (2.13e)

Properties (2.12c) and (2.13) characterize, respectively, possibility and ne-
cessity measures, which form the basis of Possibility theory introduced by
Zadeh in [82]. In this theory, Pl(A) is the degree to which proposition A is
possible, and Bel(A) is the degree to which A is certain, i.e., the degree to
which A is impossible. As possibility measures are special plausibility func-
tions (induced by consonant mass functions), the theory of belief functions
can be considered as more expressive than Possibility theory. However, as
we shall see in Chapter 3, the two theories depart in the way different pieces
of information are combined: in the belief function approach, a mass func-
tion resulting from the combination of two consonant mass functions will
generally not be consonant.

An important consequence of (2.13) is that function Pl can be deduced
from its restriction to singletons. More precisely, let pl : Ω → [0, 1] be the
contour function of m, defined by pl(ω) = Pl({ω}), for all ω ∈ Ω. For all
A ⊆ Ω,

Pl(A) = max
ω∈A

pl(ω). (2.14)
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We note that the condition Pl(Ω) = 1 implies that maxω∈Ω pl(ω) = 1.
The contour function pl is then the possibility distribution associated to the
possibility measure Pl.

We have seen that the plausibility function induced by a consonant mass
function is a possibility measure. Conversely, a possibility measure Π is
always a plausibility function for some consonant mass function, which can
be recovered from π as explained in the following theorem [24].

Theorem 2.5 Let π be a possibility distribution on the frame Ω = {ω1, . . . , ωn},
with elements arranged by decreasing order of plausibility, i.e.,

1 = π(ω1) ≥ π(ω2) ≥ . . . ≥ π(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n. Then, π is the contour
function for a mass function m obtained by the following formula:

m(Ai) = π(ωi)− π(ωi+1), 1 ≤ i ≤ n− 1, (2.15a)
m(Ω) = π(ωn). (2.15b)

Proof: Let A be a non empty subset of Ω. Let Π be the possibility measure
induced by π and let Pl be the plausibility measure induced by m, given by
(2.15). The possibility of A is

Π(A) = max
ω∈A

π(ω) = π(ωi0) (2.16)

for some 1 ≤ i0 ≤ n. It is clear that Ai intersects A if and only if i ≥ i0.
Consequently,

Pl(A) =
∑

Ai∩A 6=∅

m(Ai) =
n∑

i=i0

m(Ai) (2.17a)

= pl(ωi0)− pl(ωi0+1) + pl(ωi0+1)− . . .− pl(ωn) (2.17b)
= pl(ωi0) (2.17c)
= Π(A), (2.17d)

which completes the proof. �

Example 2.4 Consider, for instance, the following possibility distribution
defined on the frame Ω = {a, b, c, d}:

ω a b c d

π(ω) 0.3 0.5 1 0.7
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The corresponding mass function is

m({c}) = 1− 0.7 = 0.3 (2.18a)
m({c, d}) = 0.7− 0.5 = 0.2 (2.18b)

m({c, d, b}) = 0.5− 0.3 = 0.2 (2.18c)
m({c, d, b, a}) = 0.3. (2.18d)

Possibility theory has a strong connection with the theory of Fuzzy Sets
[81]. More precisely, if we receive evidence of the form “ω is F ”, where F is a
fuzzy subset of Ω with membership function µF , then this piece of evidence
may be represented by a consonant belief function with contour function
pl = µF .

2.3.3 Relation with imprecise probabilities

Let P be a non empty set of probability measures on some frame Ω. Its
lower and upper envelopes are set functions defined as follows:

P∗(A) = inf
P∈P

P (A), (2.19a)

P ∗(A) = sup
P∈P

P (A). (2.19b)

for all subsets A of Ω. Function P∗ and P ∗ are called, respectively, coherent
lower and upper probabilities [75]. Clearly,

P ∗(A) = 1− P∗(A) (2.20)

for all A, which is reminiscent of the relation between belief and plausibility
functions. What is the relation between these notions?

First of all, we can observe that, to each belief function Bel we can
associate the set of probability measures P that dominate Bel, i.e., the set
of probability measures such that P (A) ≥ Bel(A) for all subset A of Ω.
Because of the relation Bel(A) = 1−Pl(A), we also have P (A) ≤ Pl(A) for
all A, or

Bel(A) ≤ P (A) ≤ Pl(A), ∀A ⊆ Ω. (2.21)

Any probability measure P verifying (2.21) is said to be compatible with
Bel, and the set P(Bel) of all probability measures compatible with Bel is
called the credal set of Bel.

An arbitrary element of P(Bel) can be obtained by distributing each
mass m(A) among the elements of A. More precisely, let us call an allocation
of m any function

α : Ω× 2Ω \ {∅} → [0, 1] (2.22)
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such that, for all A ⊆ Ω, ∑
ω∈A

α(ω,A) = m(A). (2.23)

Each quantity α(ω,A) can be viewed as a part of m(A) allocated to the
element ω of A. By summing up the numbers α(ω,A) for each ω, we get a
probability mass function on Ω,

pα(ω) =
∑
A3ω

α(ω,A). (2.24)

It can be shown [15] that the set of probability measures constructed in that
way is exactly equal to the credal set P(Bel). Furthermore, the bounds in
(2.21) are attained. A belief function is thus a coherent lower probability.
However, a coherent lower probability is not always a belief function. To
see this, consider, for instance, the following counterexample taken from [75,
page 274]. Suppose a fair coin is tossed twice, in such a way that the outcome
of the second toss may depend on the outcome of the first toss. The outcome
of the experiment can be denoted by Ω = {(H,H), (H,T ), (T,H), (T, T )}.
Let H1 = {(H,H), (H,T )}, H2 = {(H,H), (T,H)}, and let P be the set of
probability measures on Ω which assign P (H1) = P (H2) = 1/2 and have an
arbitrary degree of dependence between tosses. Let P∗ be the lower envelope
of P. It is clear that P∗(H1) = 1/2), P∗(H2) = 1/2 and P∗(H1∩H2) = 0 (as
the occurrence of H1 may never lead to H2). Now, in the case of complete
positive dependence, P (H1∪H2) = P (H1) = 1/2, hence P∗(H1∪H2) ≤ 1/2.
We thus have

P∗(H1 ∪H2) < P∗(H1) + P∗(H2)− P∗(H1 ∩H2), (2.25)

which violates the complete monotonicity condition (2.5) for k = 2.
Mathematically, the notion of coherent lower probability is thus more

general than that of belief function. However, the definition of the credal set
associated with a belief function is purely formal, as these probabilities have
no particular interpretation in our framework. The theory of belief functions
is not a theory of imprecise probabilities.

Exercices

1. Let Bel be a belief function on Ω and let Pl be the corresponding
plausibility function. Show directly (without using Theorems 2.1 or
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2.3) that

Bel(A ∪B) ≥ Bel(A) +Bel(B)−Bel(A ∩B)

and
Pl(A ∩B) ≤ Pl(A) + Pl(B)− Pl(A ∪B),

for all A,B ⊆ Ω.

2. Let m be the mass function on Ω = {a, b, c} defined by:

m({a}) = 0.2 m({a, b}) = 0.5 m(Ω) = 0.3.

Compute Bel(A) and Pl(A) for all A ⊆ Ω. Which special properties
do these functions possess?

3. Represent the uncertainty about the outcome of the Ellsberg’s exper-
iment described in Section 1.3.4, using a mass function on a suitable
frame. Compute the corresponding belief and plausibility functions.

4. Let us consider the following plausibility function on Ω = {a, b, c}:

A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
Pl(A) 0 0.5 0.55 1 0.5 0.8 0.7 1

Compute the corresponding mass function.

5. Let π be the following possibility distribution on Ω = {a, b, c, d, e, f}:

ω a b c d e f

π(ω) 0.1 0.3 0.5 1 0.7 0.3

Compute the corresponding mass function.

6. Let m be a consonant mass function on a frame Ω and let Bel and Pl
be the corresponding belief and plausibility functions. Show that, for
any subset A of Ω, Bel(A) > 0⇒ Pl(A) = 1.



Chapter 3

Combination of evidence

As discussed in Chapter 2, the theory of belief functions essentially models
the process whereby degrees of belief are constructed from pieces of evidence.
As several pieces of evidence are typically available, we need a mechanism
for combining them. This issue will be addressed in this chapter.

3.1 Introductory example

Let us come back to the murder story of Example 2.2. Remember that the
first item of evidence gave us the following mass function

m1({Peter, John}) = 0.8, m1(Ω) = 0.2

over the frame Ω = {Peter, John,Mary}. Let us now assume that we have
a new piece of evidence: a blond hair has been found. This new evidence
supports the hypothesis that the murderer is either John or Mary, as they
are blond while Peter is not. However, this piece of evidence is reliable only
if the room has been cleaned before the crime. If we judge that there is 60%
chance that it is the case, then our second piece of evidence can be modeled
by the following mass function : m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

The process for combining these two pieces of evidence is illustrated by
Figure 3.1. The meaning of each piece of evidence depends on the answer to
some related question, which can be seen as being generated by a random
process with known chances. For instance, if the witness was not drunk, we
know that the murderer is either Peter or John. If the room had been cleaned
before the crime, we know that the murderer was either John or Mary. If
both assumptions hold, then we know that the murderer is John. What is the
probability that this conclusion can be derived from the available evidence?

37
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(S1,	
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  µ2)	
  

Γ2	
  

cleaned	
  (0.6)	
  

not	
  cleaned	
  
(0.4)	
  

Figure 3.1: Combination of evidence in the murder example.

To answer this question, we need to describe the dependence between the
two pieces of evidence by specifying a joint probability measure µ12 on the
product space S1 × S2. Independence between the two pieces of evidence
corresponds to the case where µ12 is the product measure µ1 ⊗ µ2. Under
this independence assumption, the probability of knowing that the murder
is John is equal to 0.6× 0.8 = 0.48. As the product space S1 × S2 has four
elements, there are four cases to consider, which can be summarized in the
following table, where, for each case (s1, s2), we give the set Γ1(s1) ∩ Γ2(s2)
and the corresponding probability µ1({s1})µ2({s2}):

cleaned not cleaned
drunk {John,Mary}, 0.12 Ω, 0.08

not drunk {John}, 0.48 {Peter, John}, 0.32

We then get the following combined mass function,

m({John,Mary} = 0.12, m(Ω) = 0.08
m({John}) = 0.48, m({Peter, John}) = 0.32.

(3.1)

In some cases, there may be some conflict between two pieces of evidence
being combined. For instance, suppose now that only Mary is blond. If
we assume that the witness was not drunk and the room had been cleaned
before the crime, we get a logical contradiction. Consequently, these two
interpretations cannot hold jointly and the joint probability measure on S1×
S2 must be conditioned to eliminate this as well as other conflicting pairs of
interpretations. In our second example, we start from the following table:
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cleaned not cleaned
drunk {Mary}, 0.12 Ω, 0.08

not drunk ∅, 0.48 {Peter, John}, 0.32

After conditioning to eliminate the pair (not drunk, cleaned), we get

cleaned not cleaned
drunk {Mary}, 0.12/0.52 Ω, 0.08/0.52

not drunk ∅, 0 {Peter, John}, 0.32/0.52

which yields the following combined mass function,

m({Mary}) = 0.12/0.52, m(Ω) = 0.08/0.52
m(∅) = 0, m({Peter, John}) = 0.32.

(3.2)

It is clear that such conditioning induces some dependence between the
two pieces of evidence. For instance, in the second version of the story, if we
learn that the room had been cleaned, then we can deduce that the witness
was drunk at the time of the crime. This fact seems to be contradictory with
our initial claim that the two pieces of evidence are independent. However,
this apparent contradiction is resolved if we consider the meanings of the
two pieces of evidence to be governed by a physical chance process, as in
the random code metaphor. If S1 and S2 are seen as sets of codes selected
at random, then independence of the two pieces of evidence corresponds to
the assumption of stochastic independence of the two random experiments.
After these experiments have taken place, we know that pairs of codes (s1, s2)
in S1×S2 such that Γ1(s1)∩Γ2(s2) = ∅ could not have been selected and we
must condition µ1⊗µ2 on the event {(s1, s2) ∈ S1×S2|Γ1(s1)∩Γ2(s2) 6= ∅}.
This line of reasoning leads to Dempster’s rule for combining mass functions,
which will be formally defined in the next section.

3.2 Dempster’s rule

3.2.1 Definition and elementary properties

Let M be the set of mass functions on Ω. Dempster’s rule is the partial
binary operation ⊕ onM defined by

(m1 ⊕m2)(A) = K
∑

B∩C=A

m1(B)m2(C) (3.3a)

for all A ⊆ Ω, A 6= ∅ and

(m1 ⊕m2)(∅) = 0. (3.3b)
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This operation is also called the orthogonal sum. The normalizing constant
K in (3.3a) is equal to (1− κ)−1, where

κ =
∑

B∩C=∅

m1(B)m2(C) (3.4)

is called the degree of conflict between m1 and m2. The two mass functions
can be combined only if κ < 1, which is the reason why ⊕ is a partial binary
operation.

Example 3.1 Consider, for example, the frame Ω = {a, b, c} and the fol-
lowing mass functions,

A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

To combine m1 and m2, it is convenient to present the calculations in a
table in which each rows corresponds to a focal set B of m1 and each column
corresponds to a focal set C of m2. The corresponding cell contains B ∩ C
with the mass m1(B)m2(C). Here, we have

m2

{a}, 0.1 {a, b}, 0.4 {c}, 0.5
{b}, 0.5 ∅, 0.05 {b}, 0.2 ∅, 0.25

m1 {a, b}, 0.2 {a}, 0.02 {a, b}, 0.08 ∅, 0.1
{a, c}, 0.3 {a}, 0.03 {a}, 0.12 {c}, 0.15

The degree of conflict is

κ = 0.05 + 0.25 + 0.1 = 0.4 (3.5)

and the combined mass function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6 (3.6a)
(m1 ⊕m2)({b}) = 0.2/0.6 (3.6b)

(m1 ⊕m2)({a, b}) = 0.08/0.6 (3.6c)
(m1 ⊕m2)({c}) = 0.15/0.6. (3.6d)

We may observe that each focal set ofm1⊕m2 is obtained by intersecting
one focal set of m1 and one focal set of m2. Consequently, m1 ⊕m2 is more
focussed (precise) than both m1 and m2: we say that ⊕ is a conjunctive
operation. Two special cases are of particular interest:
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1. If mA and mB are logical mass functions focussed, respectively, on A
and B and if A ∩ B 6= ∅, then they are combinable and mA ⊕mB =
mA∩B: Dempster’s rule thus extends set intersection.

2. If either m1 or m2 is Bayesian, then so is m1⊕m2 (as the intersection
of a singleton with another subset is either a singleton, or the empty
set).

It is clear from (3.3) that ⊕ is commutative (m1 ⊕ m2 = m2 ⊕ m1 for
any m1 and m2) and that it admits the vacuous mass function m? as neutral
element (m ⊕m? = m? ⊕m = m for any m). We may wonder whether ⊕
is associative, i.e., for any three mass functions m1, m2 and m3, do we have
(m1⊕m2)⊕m3 = m1⊕ (m2⊕m3)? In other words, does the order in which
the mass functions are combined matter? Actually, it does. This property
will become obvious once Dempster’s rule is expressed in terms of another
representation of a mass functions: the commonality function introduced in
the next section.

3.2.2 Commonality function

We have already encountered in Sections 2.1 and 2.2 three equivalent repre-
sentations of a piece of evidence: the mass function m, the belief function
Bel and the plausibility function Pl. There actually exists a fourth repre-
sentation: the commonality function defined by

Q(A) =
∑
B⊇A

m(B), (3.7)

for all A ⊆ Ω. It can be shown (see [58, Chapter 2]) that m, Bel and Pl can
be uniquely recovered from Q using the following equations:

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (3.8a)

Bel(A) =
∑
B⊆A

(−1)|B|Q(B), (3.8b)

Pl(A) =
∑
∅6=B⊆A

(−1)|B|+1Q(B), (3.8c)
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for all A ⊆ Ω. Conversely, Q can be directly computed from Bel or Pl as
follows:

Q(A) =
∑
B⊆A

(−1)|B|Bel(B), (3.9a)

Q(A) =
∑
B⊆A

(−1)|B|+1Pl(B), (3.9b)

for all A ⊆ Ω.

It is obvious that Q(∅) = 1. Furthermore, using (3.8a) or (3.8b) with
A = ∅, we get ∑

B⊆Ω

(−1)|B|Q(B) = 0 (3.10)

or, equivalently, ∑
∅6=B⊆Ω

(−1)|B|+1Q(B) = 1. (3.11)

Equation (3.11) makes it possible to compute the commonality function once
commonality numbers are determined up to some multiplicative constant.

The interpretation of the commonality function is not as obvious as that
of the belief and plausibility functions. However, it has a remarkable property
in relation with Dempster’s rule, as described by the following theorem.

Theorem 3.1 Let Q1, Q2 and Q1⊕Q2 be the commonality functions induced
by mass functions m1, m2 and m1 ⊕m2. Then

(Q1 ⊕Q2)(A) = KQ1(A) ·Q2(A), (3.12)

for all A ⊆ Ω, A 6= ∅, where K is the same constant as in (3.3a).
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Proof. For any subset A of Ω, we have

(Q1 ⊕Q2)(A) =
∑
B⊇A

(m1 ⊕m2)(B)

= K
∑
B⊇A

∑
C∩D=B

m1(C)m2(D)

= K
∑

C∩D⊇A
m1(C)m2(D)

= K
∑

C⊇A,D⊇A
m1(C)m2(D)

= K

∑
C⊇A

m1(C)

∑
D⊇A

m2(D)


= KQ1(A) ·Q2(A).

Given two mass functions m1 and m2, we can thus combine them ei-
ther using (3.3), or by converting them to commonality functions, multiply-
ing them pointwise, and computing the corresponding mass function using
(3.8a).

Let us now assume that we wish to combine nmass functionsm1, . . . ,mn.
It can be done by combining m1 with m2, then combining the result m1⊕m2

with m3, etc. The resulting commonality function after combining the n
mass functions is

Q(A) = KQ1(A) . . . Qn(A) (3.13)

for all non-empty A ⊆ Ω, where K is the product of normalizing constants
obtained at each stage. Using (3.11), we get the expression of K as:

K =

 ∑
∅6=B⊆Ω

(−1)|B|+1Q1(B) . . . Qn(B)

−1

. (3.14)

As both (3.13) and (3.14) are unaffected by permutation of indices, we can
conclude that ⊕ is associative and the result of the combination does not
depend on the order in which the combination is performed. We can remark
that m can also be computed directly by combining the n mass functions
m1, . . . ,mn at once using the following formula, which extends (3.3):

(m1 ⊕ . . .⊕mn)(A) = K
∑

B1∩...∩Bn=A

m1(B1) . . .mn(Bn) (3.15a)
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for all A ⊆ Ω, A 6= ∅ and

(m1 ⊕ . . .⊕mn)(∅) = 0, (3.15b)

with K = (1− κ)−1 and

κ =
∑

B1∩...∩Bn=∅

m1(B1) . . .mn(Bn). (3.16)

As mentioned above, κ is called the degree of conflict between the n mass
function. It ranges between 0 (no conflict) to 1 (total conflict). A related,
and perhaps more useful notion is that of weight of conflict [58], defined as

Con(m1, . . . ,mn) = logK = − log(1− κ). (3.17)

As the normalizing constant K obtained when combining n mass functions
is equal to the product of the normalizing constants at each stage, it follows
that the weights of conflict combine additively, i.e.,

Con(m1, . . . ,mn+1) = Con(m1, . . . ,mn)+Con(m1⊕. . .⊕mn,mn+1). (3.18)

Theorem 3.1 also has an interesting implication in term of decision-
making (see Chapter 7). Assume that our goal when combining n mass
functions is only to compute the plausibility of each element of Ω, in view,
e.g., of selecting the most plausible element (see Section ??). Then, by notic-
ing that pl(ω) = Q({ω}) for any ω ∈ Ω, we can obtain the contour function
pl of m1 ⊕ . . .⊕mn as the product of the contour functions of the mi’s:

pl = pl1 . . . pln, (3.19)

which does not require to compute the whole combined mass function.

3.2.3 Conditioning

In Bayesian probability theory, conditioning is the fundamental mechanism
for updating a probability measure P with new evidence of the form ω ∈ B
for some B ⊆ Ω such that P (B) 6= 0. The conditional probability measure
is defined as

P (A|B) =
P (A ∩B)

P (B)
(3.20)

for all A ⊆ Ω. In a similar way, a conditioning rule for mass functions can
be defined as a special case of Dempster’s rule, in which an arbitrary mass
function m is combined with a logical mass function mB focussed on B:

m(·|B) = m⊕mB. (3.21)
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We thus have m(A|B) = 0 for any A not included in B and, for any A ⊆ B,

m(A|B) = K
∑

C∩B=A

m(C), (3.22)

where the normalizing constant K is

K =

 ∑
C∩B 6=∅

m(C)

−1

= Pl(B)−1

and the plausibility function Pl(·|B) induced by m(·|B) is given by

Pl(A|B) =
∑

C:C∩A 6=∅

m(C|B) (3.23a)

= Pl(B)−1
∑

C:C∩A 6=∅

∑
D:D∩B=C

m(D) (3.23b)

= Pl(B)−1
∑

D:D∩B∩A 6=∅

m(D) (3.23c)

=
Pl(A ∩B)

Pl(B)
. (3.23d)

We note the similarity between (3.20) and (3.23d). In particular, if m is
Bayesian, Pl is a probability measure, and Pl(·|B) is the conditional proba-
bility measure obtained by the Bayesian conditioning of Pl by B. This fact
implies that Dempster’s rule can be seen as a proper extension of Bayesian
conditioning, which is nothing but Dempster’s combination of a probability
measure with a logical mass function.

The expression of the conditional belief function Bel(·|B) can easily ob-
tained from Pl(·|B). We have

Bel(A|B) = 1− Pl(A|B) (3.24a)

= 1− Pl(A ∩B)

Pl(B)
(3.24b)

= 1− 1−Bel(A ∪B)

1−Bel(B)
(3.24c)

=
Bel(A ∪B)−Bel(B)

1−Bel(B)
. (3.24d)
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3.2.4 Computational complexity

The orthogonal sum of two mass functions m1 and m2 can be performed
in two ways: either directly using (3.3), or by computing the product of
commonalities. Using the former, mass-based approach, the time needed
to compute the combination is proportional to |F(m1)||F(m2)||Ω|, where
F(mi) ⊆ 2Ω is the collection of focal sets of mi [78]. In the worst case
where both mass functions have 2|Ω|− 1 focal sets, the computing time thus
becomes proportional to 22|Ω||Ω|. The other approach implies converting the
mass functions into commonalities using (3.7), multiplying the commonalities
pointwise, normalizing, and computing the combined mass function using
(3.8a). The conversion from one of the equivalent functions m, Bel, Pl and
Q to another can be performed using the Fast Möbius tranform [38], which
takes time proportional to |Ω|22|Ω|. The mass-based approach is thus more
efficient when the number of focal sets is much smaller than the cardinality
of 2Ω.

Although the combination of mass functions has, in the worst case, ex-
ponential complexity, this is rarely an obstacle for practical applications of
Dempster-Shafer theory, for several reasons. First, elementary mass func-
tions to be combined often have a simple form, which can considerably sim-
plify the calculations. For instance, the combination of simple mass functions
(see Section 3.4) with focal sets of the form {ω} or {ω} can be performed in
time proportional to the size of the frame [6].

A second reason why complexity is usually not prohibitive is that the
ultimate goal of uncertain reasoning is often to make decisions. As mentioned
in Section 3.2.2, if one seeks the element of Ω with the largest plausibility,
then we do not need to compute the whole combined mass function. Again,
computing the combined contour function can be done in time proportional
to the size of the frame. This important property makes it possible to apply
Dempster-Shafer reasoning in huge frame of discernment (such as, e.g., the
set of all partitions of of dataset).

Finally, if computing time is limited, we may resort to approximations.
As the computational complexity of the mass-based algorithm depends heav-
ily on the number of focal sets, a useful strategy may be to approximate each
mass function by a simpler mass function with fewer focal sets. Several meth-
ods with different degrees of complexity have been proposed for this purpose
[43, 72, 7, 31, 20]. The simplest, yet quite effective approach, is the Summa-
rization algorithm [43], which works as follows. Let F1, . . . , Fn be the focal
sets of m ranked by decreasing mass, i.e., m(F1) ≥ m(F2) ≥ . . . ≥ m(Fn). If
n exceeds some the maximum allowed number k of focal sets, then the n−k
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focal sets Fi, i = k+ 1, . . . , n with the smallest masses are replaced by their
union, and m is approximated by the mass function m′ defined as

m′(Fi) = m(Fi), i = 1, . . . , k, (3.25a)

m′

(
n⋃

i=k+1

Fi

)
=

n∑
i=k+1

m(Fi). (3.25b)

As we will see in Chapter 4, mass function m′ can be considered to be less
precise, or less “committed” than m. Using a completely different approach,
the combination of several belief functions can also be performed by Monte-
Carlo simulation (see, e.g., [49]).

3.3 Related combination rules

Let (S1, 2
S1 , µ1,Γ1) and (S2, 2

S2 , µ2,Γ2) be two sources generating mass func-
tions m1 and m2. The combined mass function m1 ⊕m2 is induced by the
source (S1 × S2, 2

S1×S2 , µ,Γ∩), where µ is obtained by conditioning µ1 ⊗ µ2

with the event {(s1, s2) ∈ S1 × S2|Γ∩(s1, s2) 6= ∅}.
When deriving Dempster’s rule, we have made two important assump-

tions. First, we have assumed both sources to be reliable. In the random
code metaphor, this corresponds to the hypothesis that each source encodes
a message containing some true information about ω. This assumption is
at the origin of selecting Γ∩ as the multi-valued mapping for the combined
mass function. We could, however, make different assumptions about the
reliability of the two sources. For instance, we could assume that at least
one of them is reliable [69]. In that case, assuming the codes s1 and s2 to
be used, we can deduce that ω ∈ Γ∪(s1, s2) = Γ1(s1)∪Γ2(s2). This assump-
tion results in the following binary operation, called the disjunctive rule of
combination [25, 66]:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), (3.26)

for all A ⊆ Ω.

Example 3.2 Let us consider again the two mass functions of Example 3.1.
To combine them using the disjunctive rule, we may present the calculations
as in the following table,
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m2

{a}, 0.1 {a, b}, 0.4 {c}, 0.5
{b}, 0.5 {a, b}, 0.05 {a, b}, 0.2 {b, c}, 0.25

m1 {a, b}, 0.2 {a, b}, 0.02 {a, b}, 0.08 {a, b, c}, 0.1
{a, c}, 0.3 {a, c}, 0.03 {a, b, c}, 0.12 {a, c}, 0.15

The resulting mass function is

(m1 ∪m2)({a, b}) = 0.05 + 0.2 + 0.02 + 0.08 = 0.35 (3.27a)
(m1 ∪m2)({b, c}) = 0.25 (3.27b)
(m1 ∪m2)({a, c}) = 0.03 + 0.15 = 0.18 (3.27c)

(m1 ∪m2)(Ω) = 0.1 + 0.12 = 0.22. (3.27d)

This operation is clearly commutative and associative, and it does not
have a neutral element. We can observe that it never generates conflict,
so that no normalization has to be performed. The disjunctive rule can be
expressed in a simple way using belief functions: if Bel1 ∪Bel2 denotes the
belief function corresponding to m1 ∪m2, we have

(Bel1 ∪Bel2)(A) = Bel1(A)Bel2(A), (3.28)

for all A ⊆ Ω, which is the counterpart of (3.12). Combining mass func-
tions disjunctively can be seen as a conservative strategy, as the disjunctive
rule relies on a weaker assumption about the reliability of the sources, as
compared to Dempster’s rule. However, mass functions become less and less
focussed as more pieces of information are combined using the disjunctive
rule. In particular, the vacuous mass function m? is an absorbing element,
i.e, m ∪m? = m? ∪m = m? for all m.

In general, the disjunctive rule may be preferred in case of heavy conflict
between the different pieces of evidence. An alternative rule, which is some-
how intermediate between the disjunctive and conjunctive rules, has been
proposed by Dubois and Prade [25]. It is defined as follows:

(m1 ]m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}

m1(B)m2(C),

(3.29)
for all A ⊆ Ω, A 6= ∅, and (m1 ? m2)(∅) = 0. This rule boils down to the
conjunctive and disjunctive rules when, respectively, the degree of conflict
is equal to zero and one. In other cases, it has some intermediate behavior.
We note that this rule is not associative. If several pieces of evidence are
available, they should be combined at once using an obvious n-ary extension
of (3.29).
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Example 3.3 Let us consider once more the two mass functions of Exam-
ples 3.1 and 3.2. To intermediate calculations to combine them using the
Dubois-Prade rule are given in the following table,

m2

{a}, 0.1 {a, b}, 0.4 {c}, 0.5
{b}, 0.5 {a, b}, 0.05 {b}, 0.2 {b, c}, 0.25

m1 {a, b}, 0.2 {a}, 0.02 {a, b}, 0.08 {a, b, c}, 0.1
{a, c}, 0.3 {a}, 0.03 {a}, 0.12 {c}, 0.15

The resulting mass function is

(m1 ]m2)({a, b}) = 0.05 + 0.08 = 0.13 (3.30a)
(m1 ]m2)({b}) = 0.2 (3.30b)

(m1 ]m2)({b, c}) = 0.25 (3.30c)
(m1 ]m2)({a}) = 0.02 + 0.03 + 0.12 = 0.17 (3.30d)
(m1 ]m2)({c}) = 0.15 (3.30e)

(m1 ]m2)(Ω) = 0.1. (3.30f)

The other fundamental assumption underlying Dempster’s rule is inde-
pendence of the sources of evidence, which is at the origin of the selection
of µ1 ⊗ µ2 as a joint probability measure on S1 × S2. In principle, any form
of dependence between the two sources can be described by defining a joint
probability measure µ12 on S1×S2, with marginals µ1 and µ2. To each joint
measure µ12 corresponds a distinct combination rule. In practice, however,
the dependence between two sources can rarely be specified in that way. An-
other situation is that where the dependence between sources is unknown.
In that case, we could try to find a minimally informative joint probability
measure µ∗12, among all joints measures with marginals µ1 and µ2. This is
still a research problem. We will get back to it in Section 4.3.4.

3.4 Separable belief functions

Dempster’s rule provides the fundamental mechanism for combining elemen-
tary items of evidence. The simplest form of such evidence corresponds to
the situation where we get a message from a source of the form ω ∈ A for
some non-empty A ⊂ Ω, and we assess the chance for the source to be re-
liable is p. Such evidence can be represented by a simple mass function of
the form

m(A) = p, m(Ω) = 1− p.
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Shafer [58] defined the weight of evidence associated tom as w = − log(1−p).
The weight of evidence thus equals 0 if m is vacuous, and ∞ if m is logical.
The interest of the notion of weight of evidence arises from the following
observation.

Let m1 and m2 be two simple mass functions with the same focal set
A ⊂ Ω and masses p1 and p2. Then m1 ⊕m2 is still a simple mass function
and it is given by

(m1 ⊕m2)(A) = 1− (1− p1)(1− p2) (3.31)
(m1 ⊕m2)(Ω) = (1− p1)(1− p2). (3.32)

The weight of evidence associated to m1 ⊕m2 is thus

w12 = − log((1− p1)(1− p2)) = w1 + w2. (3.33)

We can see that weights of evidence are additive and capture the notion of
accumulation of evidence.

A simple support function focused on A with weight w will be denoted
by Aw. We thus have

Aw1 ⊕Aw2 = Aw1+w2 . (3.34)

A mass function is said to be separable if it can be obtained as the
combination of simple mass function Aw1

1 , . . . , Awn
n for some proper non-

empty subsets of Ω:

m =
n⊕
i=1

Awi
i , (3.35)

We note that this combination is well defined iff⋂
wi=∞

Ai 6= ∅.

A separable mass function generally admits several decompositions as the
combination of simple mass functions. As shown by Shafer [58], a particular
“canonical” decomposition can be obtained as follows:

m =
⊕
A⊆Ω

Aw(A), (3.36)

with

w(A) =


∑

B⊆C,B⊇A(−1)|B|−|A| logQ(B) if A ⊆ C, A 6= ∅, A 6= C
∞ if A = C
0 if A = ∅ or A 6⊆ C,

(3.37)
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where C is the core of m. Shafer [58] called function w : 2Ω → [0,+∞]
defined by (3.37) the assessment of evidence associated with m. As shown
in [58], a function w : 2Ω → [0,+∞] is an assessment of evidence (for some
separable mass function m) if and only of w(∅) = 0, w assigns the value
+∞ to exactly one subset C of Ω, and w assigns the value zero to every
subset of Ω not contained in C. Assessments of evidence defined in that way
are in one-to-one correspondence with separable mass functions. A mass
function m is separable if and only if function w computed using (3.37) is
an assessment of evidence. If C = Ω, then (3.37) has the following simpler
expression,

w(A) =


∑

B⊇A(−1)|B|−|A| logQ(B) if A 6= ∅, A 6= Ω

∞ if A = Ω

0 if A = ∅.
(3.38)

We can remark the similarity between (3.38) and (3.8a): w can be obtained
from logQ using the same formula that computes m from Q.

Not all mass functions are separable. For instance, it is clear that
Bayesian mass functions cannot be obtained by combining simple mass func-
tions using Dempster’s rule. However, the class of separable mass function
does encompass most mass functions used in practice. Two important cases
are considered in the following two propositions [21] .

Proposition 3.1 Let m be a mass function with focal sets A1, . . . , Ar and
B, such that Ak ∩ A` = ∅ for all k 6= ` and

⋃r
k=1Ak ⊆ B. Then m is

separable and its assessment of evidence is

w(Ak) = − log

(
m(B)

m(Ak) +m(B)

)
, k = 1, . . . , r (3.39a)

w(B) = +∞ (3.39b)
w(A) = 0, ∀A 6∈ {A1, . . . , Ar, B}. (3.39c)

Proof. We need to show that m = A
w(A1)
1 ⊕ . . . ⊕ A

w(Ar)
r ⊕ Bw(B). Let

mk = A
w(Ak)
k , we have

mk(Ak) =
m(Ak)

m(Ak) +m(B)
(3.40a)

mk(Ω) =
m(B)

m(Ak) +m(B)
. (3.40b)
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Let m0 = A
w(A1)
1 ⊕ . . . ⊕ Aw(Ar)

r . It is easy to see that m0(Ak) = m(Ak)
for k = 1, . . . , r and m0(Ω) = m(B). Combining m0 with the logical mass
function mB yields m. �

Proposition 3.2 Let m be a consonant mass function, with associated con-
tour function πk = pl({ωk}), k = 1, . . . , n. We assume that the elements of
Ω = {ω1, . . . , ωn} have been arranged in decreasing order of plausibility, i.e.,
we have

1 = π1 ≥ π2 ≥ . . . ≥ πr > 0

and πk = 0 for k > r. Let Ak = {ω1, . . . , ωk}, k = 1, . . . , n. Then m is
separable and its assessment of evidence is

w(Ak) = log

(
πk
πk+1

)
, k = 1, . . . , r − 1 (3.41a)

w(Ar) = +∞ (3.41b)
w(A) = 0, ∀A 6∈ {A1, . . . , Ar}. (3.41c)

Proof. Let mk = A
w(Ak)
k for k = 1, . . . , r − 1. We have

mk(Ak) = 1− πk+1

πk
, (3.42a)

mk(Ω) =
πk+1

πk
. (3.42b)

After combining the r mass function mk, the mass assigned to Ak is

m(Ak) = mk(Ak)
k−1∏
i=1

mi(Ω) (3.43a)

=

(
1− πk+1

πk

) k−1∏
i=1

πi+1

πi
(3.43b)

=
πk − πk+1

πk
πk (3.43c)

= πk − πk+1 (3.43d)

for k = 1, . . . , r − 1 and

m(Ar) =

r−1∏
i=1

mi(Ω) = πr. (3.44)

From Theorem 2.5, this is the consonant mass function with contour function
πk = pl({ωk}), k = 1, . . . , n. �
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Exercices

1. Let m1 and m2 be two mass functions on Ω = {a, b, c, d} defined as
follows

m1({a}) = 0.3 m1({a, c}) = 0.5 m1({b, c, d}) = 0.2

and

m2({b, c}) = 0.4 m2({a, c, d}) = 0.5 m2({d}) = 0.1.

Compute the combined mass functions using different combination op-
erators.

2. Let m be a mass function on Ω and B a non-empty subset of Ω.

(a) Express the conditional belief function Bel(.|B) as a function of
Bel.

(b) What does this formula become when Bel is a probability mea-
sure?

3. Let m1 and m2 be two consonant mass functions, and let Pl1 and Pl2
be the corresponding plausibility measures.

(a) Show that Pl1 ∨ Pl2 = max(Pl1, P l2) is a plausibility measure.

(b) What are the properties of this operator?

(c) Using a counterexample, show that Pl1 ∨Pl2 may not be a plau-
sibility measure when m1 and m2 are not consonant.
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Chapter 4

Least commitment principle

In many situations, a belief functions is only partially specified by some
constraints. For instance, assume that we wish to represent an expert’s
opinion using a belief function. Unless the frame of discernment is very
small, it will usually not be practical or even feasible to elicit 2|Ω| masses
or degrees of belief, while maintaining the consistency of the evaluations.
Instead, one might elicit some specific aspects of the belief function, such as
the contour functions or the plausibility of some propositions. These aspects
can then be considered as constraints that should be verified by any belief
function representing the expert’s opinion. To avoid unwittingly introducing
additional information, one should select the minimally informative (or least
committed) belief function satisfying the constraints.

This reasoning mechanism, in which the conclusions are not entailed by
the given premises, is sometimes referred to as ampliative reasoning [40].
To implement it, one usually applies a principle of maximal uncertainty,
or least commitment. In the Bayesian theory, uncertainty is measured by
the Shannon entropy, and the maximum entropy principle is widely used
in the probabilistic modeling of information [34]. To apply the maximal
uncertainty principle in the belief function framework, we need a way to
compare belief functions with respect to their information content. This can
be done either qualitatively by defining inclusion relations between belief
functions, or quantitatively using uncertainty measures. These approaches
will be introduced in Sections 4.1 and 4.2, respectively. Applications of the
Least Commitment Principles (LCP) will then be given in Section 4.3.

55
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4.1 Inclusion relations

Let m1 and m2 be two mass functions on the same frame Ω. We wish to
capture the idea that m1 is consistent with, but more committed (precise,
informative) than m2. As we shall see, this can be done in different ways.

In the special case where m1 = mA and m2 = mB are logical mass
functions focussed, respectively, on subsets A and B, the above condition
translates easily to A ⊆ B. We thus wish to extend the inclusion relation to
any belief functions.

4.1.1 Belief and commonality-based inclusion relations

In the special case of two logical mass functions mentioned above, we have

BelA(C) =

{
1 if A ⊆ C
0 otherwise

(4.1)

and

BelB(C) =

{
1 if B ⊆ C
0 otherwise.

(4.2)

If A ⊆ B, then B ⊆ C ⇒ A ⊆ C; consequently, BelA ≥ BelB.
More generally, m1 can be considered to be more committed than m2 if

it does not assign a smaller degree of belief to any proposition [25]. This
relation will be denoted by vBel:

m1 vBel m2 iff Bel1 ≥ Bel2. (4.3)

As Pl(A) = 1−Bel(A) for all A, this translates to the equivalent condition
Pl1 ≤ Pl2. We may observe that this relation has a natural interpretation
in terms of inclusion of the credal sets (see Section 2.3.3), namely,

m1 vBel m2 iff P(Bel1) ⊆ P(Bel2), (4.4)

where P(Beli) is the credal set of Beli.
Relation vBel is a partial order (i.e., a reflexive, antisymmetric and tran-

sitive relation) in the set of mass functions on Ω. Its greatest element is
the vacuous mass function m?, which assigns null degrees of belief to all
proper subsets of Ω. There is no least element (i.e., no mass function is more
committed than any other), but the Bayesian mass functions are minimal
elements (for any Bayesian mass function m, there is no other mass function
m′ such that m′ vBel m).



4.1. INCLUSION RELATIONS 57

Combining two mass functions m1 and m2 using the disjunctive rule
(3.26) produces a new mass function m1∪m2 that is less committed, accord-
ing to the vBel ordering, than both m1 and m2: we have m1 vBel m1 ∪m2

and m2 vBel m1 ∪m2, as a direct consequence of (3.28).
In the special case where m1 and m2 are consonant, the condition of

inclusion with respect to beliefs can be checked by comparing the contour
functions: it can easily be checked that

m1 vBel m2 ⇔ pl1 ≤ pl2. (4.5)

Instead of reasoning with beliefs, we might have well have reasoned dually
with commonalities. Getting back to the special case of two mass logical
functions mA and mB, we have

QA(C) =

{
1 if C ⊆ A
0 otherwise

(4.6)

and

QB(C) =

{
1 if C ⊆ B
0 otherwise.

(4.7)

If A ⊆ B, then C ⊆ A⇒ C ⊆ B; consequently, QA ≤ QB.
This observation leads us to define another inclusion relation: m1 vQ iff

Q1 ≤ Q2, introduced in [25]. This partial ordering relation has the same
properties as vBel, i.e., m? is the greatest element, Bayesian mass functions
are minimal elements, and for any two consonant mass functions m1 and m2,

m1 vQ m2 ⇔ pl1 ≤ pl2. (4.8)

An immediate consequence is that, given two consonant mass functions m1

and m2, m1 vQ m2 iff m1 vBel m2. However, this equivalence does not hold
in the general case, as shown by the following example.

Example 4.1 Let Ω = {a, b, c} and let us consider the following mass func-
tions:

m1({a}) = 1− α
m1({a, b}) = 2α− 1

m1(Ω) = 1− α

and

m2({a, b}) = α

m2({a, c}) = 1− α
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for some α ∈ (0.5, 1]. It can easily be verified that m1 vBel m2, whereas
m2 vQ m1.

For any two mass functions m1 and m2 with zero degree of conflict, we
have m1 ⊕m2 vQ m1 and m1 ⊕m2 vQ m2, as a consequence of Theorem
3.1. This observation is consistent with the interpretation of Dempster’s rule
as a mechanism for pooling evidence: m1 ⊕ m2 aggregates the two pieces
of evidence and, consequently, is more informative than both m1 and m2

(assuming there is no conflict).

4.1.2 Strong inclusion

Yet another extension of the inclusion relation from subsets to belief func-
tions is the strong inclusion, or specialization relation [80, 39, 25]. We say
that m1 is strongly included in (is a specialization of) m2 (which will be
denoted by m1 vs m2) iff m1 can be obtained from m2 by distributing each
mass m2(B) for some B ⊆ Ω to non-empty subsets of B:

m1(A) =
∑
B⊇A

S(A,B)m2(B), (4.9)

for all A ⊆ Ω, where S(A,B) is the proportion of m2(B) transferred to
A ⊆ B. The numbers S(A,B) thus verify the following equations:∑

A:A⊆B
S(A,B) = 1, (4.10)

for all B ⊆ Ω. We can say that each mass m2(B) “flows down” to subsets
of B. Using the vector representation introduced in Section 2.2.3, the terms
S(A,B) can be arranged in an upper triangular square matrix of size 2|Ω|,
called a specialization matrix [68].

If m1 is a specialization of m2, then m2 can be recovered from m1 by
distributing each mass m1(A) to supersets of A, i.e., we have

m2(B) =
∑
A⊆B

G(B,A)m1(A), (4.11)

for all A ⊆ Ω, where G(B,A) is the proportion of m1(A) transferred to
B ⊇ A. We say that m2 is a generalization of m1 and the square matrix
with general term G(B,A) is a generalization matrix.

Example 4.2 Let m1 and m2 be the following mass functions on Ω =
{a, b, c},
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A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1(A) 0 0.1 0.3 0.3 0.2 0.1 0 0
m2(A) 0 0 0.2 0.2 0 0.3 0 0.3

We have

m1({a}) =
1

3
m2({a, b, c}) = 0.3/3 = 0.1 (4.12a)

m1({b}) = m2({b}) +
1

3
m2({a, b, c}) = 0.2 + 0.3/3 = 0.3 (4.12b)

m1({a, b}) = m2({a, b}) +
1

3
m2({a, b, c}) = 0.2 + 0.3/3 = 0.3 (4.12c)

m1({c}) =
2

3
m2({a, c}) = 2× 0.3/3 = 0.2 (4.12d)

m1({a, c}) =
1

3
m2({a, c}) = 0.3/3 = 0.1. (4.12e)

The specialization matrix is thus

S =



· · · · · · · ·
· · · · · · · 1/3
· · 1 · · · · 1/3
· · · 1 · · · 1/3
· · · · · 2/3 · ·
· · · · · 1/3 · ·
· · · · · · · ·
· · · · · · · ·


, (4.13)

where the rows and columns are arranged in the binary order (see Section
2.2.3).

Conversely, m2 can be obtained from m1 as follows:

m2({b}) =
2

3
m1({b}) = 2× 0.3/3 = 0.2 (4.14a)

m2({a, b}) =
2

3
m1({a, b}) = 2× 0.3/3 = 0.2 (4.14b)

m2({a, c}) = m1({c}) +m1({a, c}) = 0.2 + 0.1 = 0.3 (4.14c)

m2({a, b, c}) = m1({a}) +
1

3
m1({b}) +

1

3
m1({a, b}) (4.14d)

= 0.1 + 0.3/3 + 0.3/3 = 0.3.
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The corresponding generalization matrix is

G =



· · · · · · · ·
· · · · · · · ·
· · 2/3 · · · · ·
· · · 2/3 · · · ·
· · · · · · · ·
· · · · 1 1 · ·
· · · · · · · ·
· 1 1/3 1/3 · · · ·


. (4.15)

We observe that G is lower-triangular.

As the two previous ordering relations, vs admits the vacuous mass func-
tion m? as the unique greatest element and Bayesian mass functions as min-
imal elements. Furthermore, the following implications hold:

m1 vs m2 ⇒
{
m1 vBel m2

m1 vQ m2.
(4.16)

These implications are obvious because, as masses flow down to smaller
subsets when building m1 from m2, degrees of belief can only increase and
commonalities can only decrease. However, the converse implications do not
hold: we may have m1 vBel m2 or m1 vQ m2 without having m1 vs m2.
For instance, for the two mass functions of Example 4.1, we can check that
m1 6vs m2 and m2 6vs m1.

4.1.3 Weight-based inclusion

Let m1 and m2 be two separable mass functions. We further assume that m1

and m2 are non-dogmatic, i.e., we assume that m1(Ω) > 0 and m2(Ω) > 0.
Consequently, their core is Ω and, from (3.38), their assessments of evidence
w1 and w2 verify wi(Ω) = +∞ and 0 ≤ wi(A) < +∞ for all A ⊂ Ω and
i = 1, 2. Keeping in my the interpretation of w(A) as a weight of evidence
pointing to A, it makes sense to consider that m1 is more committed than
m2 if w1 ≥ w2. We then write m1 vw m2. This ordering was introduced
in [21], where it was even extended to non-separable mass function, using
the general canonical decomposition introduce by Smets in [67]. However,
we will only consider the case of separable mass functions here, to keep the
exposition simple.

As explained in Section 3.4, assignments of evidence combine additively
with Dempster’s rule, i.e., the assignment of evidence corresponding to m1⊕
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m2 is w1 + w2. It follows that m1 ⊕ m2 vw m1 and m1 ⊕ m2 vw m2.
Furtermore, ifm1 vw m2, there exists a separable functionm such thatm1 =
m2 ⊕ m. This property makes it clear that m1, in some sense, aggregates
more evidence than m2.

4.2 Uncertainty measures

Another approach to compare the information content of belief functions
is based on the definition of uncertainty measures. As belief functions ex-
tend both sets and probability distributions, such measures can be defined
as extensions of set-based or probabilistic uncertainty measures. As op-
posed to the probabilistic case, where there are strong arguments to support
the Shannon entropy as the most relevant measure of uncertainty [34], the
situation is less clear in belief function theory, in which several notions co-
exist. We will review some of the main definitions with there justifications,
and show how the minimal commitment principle can be implemented using
these measures.

4.2.1 Nonspecificity

Assume we receive some piece of information of the form ω ∈ A for some
non-empty subset A of Ω. The amount of uncertainty associated with that
statement can be measured by the amount of information needed to remove
the uncertainty. Such a measure should naturally be a function of the car-
dinality of A. Let

h : N→ R+ (4.17)

be such a measure. Let us consider the following three requirements:

(H1) Additivity h(r · s) = H(r) +H(s).

(H2) Monotonicity h(s) < h(s+ 1).

(H3) Normalization h(2) = 1.

H2 is quite natural and H3 is a matter of convention. The only non-trivial
axiom is H1; it has the following meaning. Consider a partition of Ω into r
subsets of s elements. Characterizing an element of Ω requires the amount
h(r · s) of information. However, we could also proceed in two steps: first,
we could characterize the subset to which the element belongs (requiring an
amount h(r) of information, and then characterize the element in this subset
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(with required information h(s)). The equivalence of the two methods leads
to Axiom H3.

It can be shown [40] that the only functionH verifying these three axioms
is defined by

h(n) = log2 n. (4.18)

The function H : 2Ω \ ∅ → R+ defined by H(A) = log2 |A| is called the
Hartley function. Its range is [0, log2 |Ω|]. We can observe that H(A) is
equal to the Shannon entropy of the uniform probability distribution on A.

As a natural extension from sets to mass function, we can compute the
average value of the Hartley function for all focal sets:

N(m) =
∑
∅6=A⊆Ω

m(A) log2 |A|, (4.19)

which is called the nonspecificity of m. The range of N is the same as that
of H, and the following implication holds:

m1 v m2 ⇒ N(m1) ≤ N(m2). (4.20)

The nonspecificity was shown by Ramer [54] to be the only function satisfying
the five axioms below. Before introducing these axioms, we need to define
the notion of non-interactive marginal mass functions. Let mΩ×Θ be a mass
function on a product frame Ω × Θ. The marginals1 of mΩ×Θ on Ω and Θ
are the mass functions obtained by transferring each mass mΩ×Θ(C) to the
projections of C on Ω and Θ, respectively. The marginals mΩ and mΘ are
said to be non-interactive if, for all C ⊆ Ω×Θ,

mΩ×Θ(C) =

{
mΩ(A)mΘ(B) if C = A×B,
0 otherwise.

(4.21)

Otherwise, they are said to be interactive.

(N1) Additivity for non-interactive mass functions Let mΩ×Θ be a
joint mass function with non-interactive marginals mΩ and mΘ, then

N(mΩ×Θ) = N(mΩ) +N(mΘ). (4.22)

(N2) Subadditivity for interactive mass functions LetmΩ×Θ be a joint
mass function with interactive marginals mΩ and mΘ, then

N(mΩ×Θ) ≤ N(mΩ) +N(mΘ). (4.23)
1The notion of marginal mass function will be further studied in Chapter 5.
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(N3) Normalization N(m) = 1 when m(A) = 1 and |A| = 2.

(N4) Symmetry N is invariant with respect to permutations of values of
the mass functions within each group of subsets of Ω that have equal
cardinalities.

(N5) Branching N(m) = N(m1)+N(m2) for any three bodies of evidence
with focal sets

F = {A,B,C, . . .},F1 = {A1, B,C, . . .},F2 = {A,B1, C1, . . .},

where A1 ⊆ A, B1 ⊆ B, C1 ⊆ C, etc. and |A1| = |B1| = |C1| = . . . =
1, and

m(A) = m1(A1) = m2(A),

m(B) = m1(B) = m2(B1),

m(C) = m1(C) = m2(C1), etc.

Nonspecificity is obviously a well justified measure of the uncertainty of
a belief function. However, we can remark that N(m) = 0 for any Bayesian
mass function. This observation shows that nonspecificity only measures one
aspect of uncertainty, related to imprecision. Another aspect of uncertainty
is related to conflict, i.e., the fact that evidence points to several totally
or partially disjoints focal sets. This aspect may be described using other
measures that extend the Shannon entropy.

4.2.2 Entropy-like measures

Seeing a mass function as the density of a random set [51], we could define
its entropy as

S(m) = −
∑
A⊆Ω

m(A) log2m(A). (4.24)

The problem with that definition is that it does not take into account the
structure of the focal sets. For instance, the two mass functions m1({ω1}) =
0.5, m1({ω2}) = 0.5 and m2({ω1}) = 0.5, m2({ω1, ω2}) = 0.5 have the same
entropy, yet the latter has obviously less uncertainty (and less conflict) than
the former.

Several alternative generalizations of the Shannon entropy to belief func-
tions have been proposed. One of them is the measure of dissonance defined
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by

E(m) = −
∑
A⊆Ω

m(A) log2 Pl(A) (4.25a)

= −
∑
A⊆Ω

m(A) log2

1−
∑

B∩A 6=∅

m(B)

 . (4.25b)

The term
K(A) =

∑
B∩A 6=∅

m(B) (4.26)

in (4.25b) can be interpreted as measuring the degree to which the evidence
conflicts with focal set A. The term

− log2[1−K(A)] (4.27)

is strictly increasing withK(A) and extends its range to [0,+∞). Dissonance
can thus be seen as the mean value of the conflict among focal sets of a piece
of evidence.

Several variants have been proposed. For instance, it has been proposed
to replace K(A) by the following conflict measure

CON(A) =
∑
∅6=B⊆Ω

m(B)
|A \B|
|A|

, (4.28)

which takes into account the proportion of elements of A not included in B.
Replacing K(A) with CON(A), we get a new uncertainty measure called
strife, defined by the formula:

ST (m) = −
∑
A⊆Ω

m(A) log2

1−
∑
∅6=B⊆Ω

m(B)
|A \B|
|A|

 (4.29a)

= −
∑
A⊆Ω

m(A) log2

∑
B∩A 6=∅

m(B)
|A ∩B|
|A|

. (4.29b)

4.2.3 Other uncertainty measures

Other uncertainty measures have been proposed. For example, the total
uncertainty in a belief function may be defined the aggregate uncertainty,
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defined as the maximum value of the Shannon entropy over all compatible
probabilities:

AU(Bel) = max
P(Bel)

(
−
∑
ω∈Ω

p(ω) log2 p(ω)

)
. (4.30)

The range of AU is [0, log2 |Ω|]. It boils down to the Shannon entropy when
Bel is Bayesian and to the Hartley function when Bel is logical. It is also
subadditive for interactive marginal belief functions and additive for inteac-
tive ones. However, there is no proof that it is the only measure verifying all
these properties.

A different approach was proposed by Smets [65], who argued that a
measure of the information content of a mass function should be additive
with respect to Dempster’s rule in the case where there is no conflict. Let
m1 and m2 be two mass functions, and let Q1 and Q2 be the corresponding
commonality functions. We know that, when the degree of conflict is null,
we have Q1 ⊕Q2 = Q1Q2. The requirement

I(m1 ⊕m2) = I(m1) + I(m2) (4.31)

as well as some other trivial requirements lead to

I(m) = −
∑
A⊆Ω

c(A) logQ(A), (4.32)

where c(A) is a constant depending on A. Choosing c(A) = 1, we get

I(m) = −
∑
A⊆Ω

logQ(A). (4.33)

It is obvious that
m1 vQ m2 ⇒ I(m1) ≥ I(m2). (4.34)

4.3 Applications

Uncertainty measures can be used to implement the minimal commitment
principle, especially in situations when the least committed belief function
(according to some inclusion relation) satisfying some constraints does not
exist or is hard to find. The nonspecificity measure is specially convenient
as it is linear in the masses: when the constraints are themselves linear,
finding a least committed mass functions satisfying the constraints is a linear
programming problem and can be solved very efficiently. We will study two
examples.
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4.3.1 Least committed belief function from consonant sets

Assume that we wish to elicit an expert’s opinion on given question defined
on a frame Ω. We may do it by asking him to give a strictly increasing
sequence

A1 ⊂ A2 ⊂ . . . ⊂ An

of subsets of Ω with their degrees of belief

0 < α1 < α2 < . . . < αn = 1.

The least committed mass function (according to any of the ordering re-
lations vBel, vQ and vs) can be constructed as follows. To satisfy the
constraint Bel(A1) = α1, we need to distribute a mass α1 to some subsets of
A1. The largest such subset is A1 itself. We thus get m(A1) = α1. To satisfy
the constraint Bel(A2) = α2, we now need to distribute a mass α2 − α1 to
some subsets of A2 that are not subsets of A1. The largest such subset is
A2. We thus get m(A2) = α2 − α1. By pursuing this line of reasoning, we
get the following mass function:

m(A1) = α1

m(A2) = α2 − α1

...
m(Ai) = αi − αi−1

...
m(An) = 1− αn−1.

4.3.2 Conditional embedding

As another example of partial information about a belief function, assume
that a source gives us a mass function m0 representing evidence about some
question Q defined on frame Ω, assuming that some proposition A ⊂ Ω
holds. This mass function can be interpreted as a conditional mass function
m(·|A) obtained by conditioning some unknown mass function m by A (see
Section 3.2.3). However, there will usually exist several mass functions m
verifying this property. LetMA(m0) be the set of mass functions such that
m(·|A) = m0. The least committed element in MA(m0) (according to the
three previous inclusion relations) can be found as follows.
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Let m be a mass function inMA(m0). Any mass m0(B) for some B ⊆ A
is obtained from m by transferring masses m(B ∪C) to B, for some C ⊆ A:

m0(B) =
∑
C⊆A

m(B ∪ C). (4.35)

The largest possible C is A itself. The least committed mass function mLC
inMA(m0) is thus obtained by transferring each mass m0(B) to B ∪A:

mLC(D) =

{
m0(B) if D = B ∪A,
0 otherwise.

(4.36)

The operation that maps m0 to mLC is called deconditioning, or conditional
embedding.

4.3.3 Partial beliefs specifications

Consider a problem similar to that presented in Section 4.3.1, where we are
given the degrees of belief for r subsets A1, . . . , Ar. However, we no longer
impose any structure on these sets. Let αi = Bel(Ai), i = 1, . . . , r. The least
specific mass function verifying these constraints can be found by solving the
following linear program:

max
m

∑
A⊆Ω

m(A) log2 |A| (4.37a)

under the constraints: ∑
B⊆Ai

m(B) = αi, i = 1, . . . , r (4.37b)

∑
A⊆Ω

m(A) = 1 (4.37c)

m(∅) = 0. (4.37d)

4.3.4 Combination of mass functions with unknown depen-
dence

Let us consider two sources (U1, µ1,Γ1) and (U2, µ2,Γ2) generating mass
functions m1 and m2. When taking into account both items of evidence
jointly, we must consider a joint probability measure µ12 on U1 ×U2, whose
marginals are µ1 and µ2.
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Let A1, . . . , Ar denote the focal sets of m1, B1, . . . , Bs the focal sets of
m2, pi = m1(Ai), i = 1, . . . , r, qj = m2(Bj), j = 1, . . . , s, and

pij = µ({(u, v) ∈ U1 × U2|Γ1(u) = Ai,Γ2(v) = Bj}). (4.38)

Assuming both sources to be reliable, the combined mass function m has
the following expression

m(A) =
∑

Ai∩Bj=A

pij . (4.39)

When the dependence between the two sources is unknown, the pij ’s are
unknown, but we can find the least committed mass function of the form
(4.39) by solving the following linear optimization problem:

max
pij

∑
i,j

pij log2 |Ai ∩Bj | (4.40a)

under the constraints: ∑
i,j

pij = 1 (4.40b)

∑
i

pij = qj , j = 1, . . . , s (4.40c)

∑
j

pij = pi, i = 1, . . . , r. (4.40d)



Chapter 5

Reasoning with multiple frames

As already mentioned in Section 2.1.1, the definition of a frame of discern-
ment is, to a large extent, a matter of convention, as its granularity is often
a matter of choice. Different sources of information may provide evidence
represented in frames of different granularities. Consider, for example, a
multi-sensor system for road scene understanding such as described in [79].
Some sensor or image processing algorithm may detect if an object is a
pedestrian or not, while some others may provide more detailed information
about the nature of the object (such as two or four-wheel vehicle, etc.). Also,
when several variables are defined, we may receive evidence about different
subsets of variables, and we may wish to express the result of the analysis
according to some specific subset containing the variables of interest [63].
In evidential reasoning with uncertain information, we thus have to express
belief functions in different frames with varying granularities.

5.1 Refinement and coarsening

Let Ω and Θ be two frames of discernment. We say that Ω is a refinement of
Θ (or, equivalently, Θ is a coarsening of Ω) if elements of Ω can be obtained
by splitting some or all of the elements of Θ (Figure 5.1) [58]. Formally, Ω
is a refinement of a frame Θ iff there is a mapping ρ : 2Θ → 2Ω (called a
refining) such that:

• {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and

• For all A ⊆ Ω, ρ(A) =
⋃
θ∈A ρ({θ}).

Let mΘ be a mass function representing some piece of evidence expressed
in the frame Θ, and let Ω be a refinement of Θ. We can carry mΘ from Θ

69
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Figure 5.1: Refinement of a frame of discernment.

to Ω by transferring each mass mΘ(A) to ρ(A). The resulting mass function
is denoted by mΘ↑Ω and is called the vacuous extension of mΘ in Ω: for all
B ⊆ Ω,

mΘ↑Ω(B) =

{
mΘ(A) if B = ρ(A), A ⊆ Ω,

0 otherwise.
(5.1)

Conversely, given a mass function mΩ on Ω, how to express it in the
coarser frame Θ? Here, the solution is not so obvious because the mapping
ρ is not invertible. However, we can define two generalized inverses of ρ. Let
ρ−1 and ρ−1 be two mappings from 2Ω to 2Θ defined as follows:

ρ−1(B) = {θ ∈ Θ|ρ({θ}) ⊆ B}, (5.2a)

ρ−1(B) = {θ ∈ Θ|ρ({θ}) ∩B 6= ∅}, (5.2b)

for any subset B of Ω. The subsets ρ−1(B) and ρ−1(B) are called, re-
spectively, the inner reduction and the outer reduction of B [58]. When
computing the image by ρ of the inner or the outer reduction of B, we do
not recover B in general. The following relations hold:

ρ[ρ−1(B)] ⊆ B ⊆ ρ[ρ−1(B)], (5.3)

and the inclusions may be strict.
Let us now assume that we have a mass function mΩ defined in Ω. In

principle, it can be carried to Θ in two ways, i.e., by transferring each mass
mΩ(B) to the inner reduction or to the outer reduction of B. In the lat-
ter case, the resulting mass function is denoted by mΩ↓Θ and is called the
restriction of mΩ in Θ: for all subset A of Θ,

mΩ↓Θ(A) =
∑

ρ−1(B)=A

mΩ(B). (5.4)
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We may observe that, in the process of carryingmΩ from Ω to the coarser
frame Θ, some information may be lost. In particular, ifmΩ↓Θ is carried back
to Ω, we will not recover mΩ in general. The resulting mass function will
usually be strictly less informative thanmΩ according to the strong inclusion
relation v (cf. Section 4.1.2), because any mass mΩ(B) initially assigned to
B is now assigned to a superset ρ[ρ−1(B)]. This actually makes sense: since
some information is lost, we get a less informative mass function. This is the
reason why the outer reduction ρ−1 is used in (5.4).

If two mass functions mΩ and mΩ′

Example 5.1 Consider, for instance, a ground detector and a sky detector.

5.2 Special case of product spaces

5.2.1 Marginalization and vacuous extension

Let us now assume that we have two frames ΩX and ΩY related to two
different questions about, e.g., the values of two unknown variables X and
Y . Let ΩXY = ΩX × ΩY be the product space. It is a refinement of both
ΩX and ΩY . For instance, we can define the following mapping ρ from 2ΩX

to 2ΩX×ΩY :
ρ(A) = A× ΩY , (5.5)

for all A ⊆ ΩX . The set ρ(A) is called the cylindrical extension of A in ΩXY

and is denoted by A ↑ ΩXY (see Section 1.2.1).
The vacuous extension of a mass function mX from ΩX to ΩXY is ob-

tained by transferring each mass mΩX (B) for any subset B of ΩX to the
cylindrical extension of B (Figure 5.2):

mX↑XY (A) =

{
mX(B) if A = B × ΩY

0 otherwise.
(5.6)

Conversely, let mXY be a joint mass function on the product space ΩXY .
Typically, such a mass function represents partial knowledge about the rela-
tion between variables X and Y . Now, assume that we are only interested
in evidence about ΩX . We then have to compute the restriction of mXY to
the coarser frame ΩX :

mXY ↓X(A) =
∑

B↓ΩX=A

mXY (B), (5.7)
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Figure 5.2: Vacuous extension.

where B ↓ ΩX denotes the projection of B on ΩX (see Section 1.2.1). The
mass functions mXY ↓X and mXY ↓Y are called the marginals of mXY and
the operation that computes the marginals from a joint mass functions is
called marginalization (Figure 5.3).

We can observe that this operation extends both set projection and
marginalization of joint probability distributions:

• If mXY
B is a logical mass function with focal set B ⊆ ΩXY , its marginal

mXY ↓X
B is still a logical mass function with focal set B ↓ ΩX .

• If mXY is a Bayesian mass function, then mXY ↓X is still Bayesian and
it is defined by

mXY ↓X({x}) =
∑
y∈Ωy

mXY ({x, y}), (5.8)

which corresponds to probabilistic marginalization.

5.2.2 Application to evidential reasoning

Most problems in engineering or economics can be modeled by defining vari-
ables and relations between variables. Based on partial information about
some variables, the problem is then to infer the values of variables of interest.
This problem can be cast in the belief function framework, as relations are
sets and can thus be represented by joint mass functions. The three fun-
damental operations in evidential reasoning are Dempster’s rule, marginal-
ization and vacuous extension. For instance, assume for simplicity that we
have only two variables X and Y and we have:
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Figure 5.3: Marginalization.

• Partial knowledge of X formalized as a mass function mX , and

• A joint mass function mXY representing an uncertain relation between
X and Y .

These two pieces of evidence can be combined by vacuously extendingmX to
ΩXY and combining mX↑XY with mXY . The combined joint mass function
can then be marginalized on ΩY . Formally,

mY =
(
mX↑XY ⊕mXY

)↓Y
. (5.9)

To simplify the notation, we may assume implicitly that the mass func-
tions being combined are expressed in the coarsest common refinement. For
instance, mX ⊕mY is understood to be mX↑XY ⊕mY ↑XY . With this con-
vention, (5.9) can be written more compactly as

mY =
(
mX ⊕mXY

)↓Y
. (5.10)

Equation (5.10) is clearly a generalization of (1.5).
We can remark that these operations become intractable when the num-

ber of variables and/or the size of the frames of discernment become very
large, but efficient algorithms exist to carry out the operations in frames of
minimal dimensions [62, 3, 64].

In Section 5.4 below, we will describe two important applications of this
mechanism. However, before that, we need to come back to the notions of
conditioning and deconditioning in the context of multiple frames of discern-
ment.
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Figure 5.4: Conditional embedding operation. The mass on mX(A|B) is
transferred to (A× ΩY ) ∪ (ΩX ×B).

5.3 Conditioning and deconditioning

In Section 3.2.3, we introduced the notion of conditioning as a special case
of Dempster’s rule. Given a mass function m on Ω, a subset B of Ω and mB

the logical mass function such as mB(B) = 1, the conditional belief function
m(·|B) is:

m(·|B) = m⊕mB. (5.11)

An inverse operation, called deconditioning or conditional embedding, was
later introduced in Section 4.3.2 as a consequence of the Least Commitment
Principle. Given a mass function m on Ω whose core is included in B, its
deconditioning yields the mass function m′ defined by

m′(C) =

{
m(A) if C = A ∪B for some A ⊆ B,
0 otherwise,

(5.12)

for any D ⊆ Ω.
Let us now assume that mXY is a mass function on the product space

ΩX × ΩY and B is a subset of ΩY . The conditional mass function mX(·|B)

is defined by combining mXY with mY ↑XY
B (where mY

B is the logical mass
function focussed on B), and marginalizing the result on X:

mX(·|B) =
(
mXY ⊕mY ↑XY

B

)↓X
. (5.13)

Conversely, let mX(·|B) represents your beliefs on ΩX conditionally on
B for some B ⊆ ΩY , i.e., in a context where Y ∈ B holds. There are usually
many mass functions on ΩX ×ΩY , whose conditioning on B yields mX(·|B).
The least committed one can be obtained by vacuously extending mX(·|B)
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in ΩX ×ΩY and deconditioning using (5.12). As shown in [66], the results is

mXY (C) ={
mX(A|B) if C = (A× ΩY ) ∪ (ΩX ×B) for some A ⊆ ΩX ,

0 otherwise.
(5.14)

5.4 Applications

5.4.1 Discounting

Let us assume that we receive a mass function mΩ
0 from a source S, describ-

ing some information about ω. However, this information is not fully reliable
or not fully relevant because, e.g., it is provided by a possibly faulty sensor,
the measurement was performed in unfavorable experimental condition, or
the information is related to a situation or an object that only has some
similarity with the situation or the object considered. By combining infor-
mation provided by the source with metaknowledge about the reliability of
the source, we get a new, less informative mass function. This operation is
called discounting [58, 66].

Let R = {R,NR} be the set of possible states of the source, i.e., reliable
or not reliable. Let us assume we have a Bayesian mass function mR on R,

mR({R}) = 1− α (5.15a)

mR({NR}) = α, (5.15b)

for some α ∈ [0, 1]. If S is reliable, we can adopt mΩ
0 to represent our belief,

mΩ(·|R) = mΩ
0 . (5.16)

If S is not reliable, the information it provides cannot be taken into account,
and our mass function should be vacuous:

mΩ(Ω|NR) = 1. (5.17)

Therefore, we have two non-vacuous pieces of evidence, mR andmΩ(·|R).
Vacuously extending mR on Ω×R results in the following mass function:

mΩ×R
1 (Ω× {R}) = mR({R}) = 1− α, (5.18a)

mΩ×R
1 (Ω× {NR}) = mR({NR}) = α. (5.18b)
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Now, deconditioning mΩ(·|R) yields a second mass function on the product
space,

mΩ×R
2 ((A×R) ∪ (Ω× {NR})) = mΩ

0 (A), (5.19)

for all A ⊆ Ω. Combining mΩ×R
1 and mΩ×R

2 and marginalizing the result on
Ω yields the discounted mass function,

αmΩ(A) =

{
(1− α)mΩ

0 (A) if A 6= Ω,

(1− α)mΩ
0 (Ω) + α if A = Ω.

(5.20)

The coefficient α is called the discount rate. The mass function αmΩ
0 is

simply a weighted sum of mΩ
0 and the vacuous mass function mΩ

? :

αmΩ
0 = (1− α)mΩ

0 + α mΩ
? . (5.21)

The corresponding belief function has the following simple expression,

αBelΩ(A) =

{
(1− α)BelΩ0 (A) if A 6= Ω

1 otherwise.
(5.22)

5.4.2 Generalized Bayes’ Theorem

The Generalized Bayes’ Theorem (GBT) is due to Smets [66]. It is an ex-
tension of Bayes’ theorem when probabilities are replaced by general belief
functions.

Let us assume that we have two variables X and Y defined on frames
ΩX and ΩY . Let ΩY = {y1, . . . , yn} and mX(·|yk) = mX

k , for k = 1, . . . , n
be a mass functions representing our belief about X in a context where
Y = yi holds. These conditional mass functions are assumed to be provided
by independent sources. Based on this conditional knowledge, we want to
derive a mass function representing our belief about Y when X ∈ A holds,
for some A ⊆ ΩX .

For instance, assume that ΩX is a set of symptoms and ΩY is set of
health states of a patient. Based on evidence from past observations, we can
construction a conditional mass function mX

k on the set of symptoms, for
each of the patient’s states yk. If the datasets for two states y and y′ are
not overlapping, we can consider the mass functions mX

k for k = 1, . . . , n as
independent. The diagnosis problem is to derive a belief functionmY (·|A) on
the patient’s state, knowing that the patient’s symptom belongs to a subset
A of ΩX .

This problem can be solved by applying the following steps [66]:
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1. Decondition each conditional mass function mX
k in ΩX × ΩY ; the re-

sulting mass function is such that

mXY
k (C × ΩY ∪ ΩX × {y}) = mX

k (C) (5.23)

for all C ⊆ ΩX .

2. Condition each mass function mXY
k by A×ΩY and marginalize on ΩY .

We get the following simple mass function on ΩY ,

mY
k ({yk}|A) = 1− PlXk (A) (5.24a)

mY
k (ΩY |A) = PlXk (A), (5.24b)

where PlXk is the plausibility function corresponding to mX
k . Using the

notation introduced in Section 3.4, each simple mass function mY
k (·|A)

can be denoted by {yk}
− logPlXk (A)

.

3. Combine the n mass function {yk}
− logPlXk (A)

using Dempster’s rule.
We get

mY (·|A) =
n⊕
k=1

{yk}
− logPlXk (A)

. (5.25)

Equation (5.25) can be interpreted as follows. Assume that PlXk (A)
is low, which means that proposition X ∈ A is not very plausible given
that Y = yk. Then, the fact that X ∈ A supports the hypothesis that
Y is not equal to yk. In contrast, if PlXk (A) is high, the mass function

{yk}
− logPlXk (A)

is almost vacuous: observing that X ∈ A does not support
the hypothesis that Y equals yk (because A may be plausible given other
values y` of Y , too). The same kind of reasoning is used in significance tests.
Consider a significance test with p-value p = PH0(T > t), where H0 is the
null hypothesis, T is the test statistic and t its realization. A small value of p
is considered as evidence against H0, but a high value of p is not considered
to support H0. In fact, a significance can only provide evidence against H0,
or fail to provide such evidence.

The degree of conflict between the n mass functions {yk}
− logPlXk (A)

is

κ =
n∏
k=1

(
1− PlXk (A)

)
. (5.26)
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The conflict is thus high when A is implausible under all possible values of
Y . The commonality function QYk (·|A) corresponding to the mass function

{yk}
− logPlXk (A)

is

QYk (B|A) =

{
PlXk (A) if y ∈ B,
1 otherwise,

(5.27)

for all B ⊆ ΩY . Consequently, the combined commonality function corre-
sponding to (5.25) is

QY (B|A) = K
∏
yk∈B

PlXk (A), (5.28)

where K = (1− κ)−1. Smets [66] shows that the corresponding plausibility
function is:

PlY (B|A) = K

1−
∏
yk∈B

(1− PlXk (A))

 . (5.29)

The GBT has some interesting properties. First, assume that the condi-
tional mass functions mX

k are Bayesian and we have some prior information
on Y in the form of a Bayesian mass function mY

0 . Then we can compute
mY (·|A) using (5.25) and combine it with the prior mY

0 . The result is a
Bayesian mass function defined as

mY
1 ({yk}|A) =

mX
k (A)mY

0 ({yk})∑n
`=1m

X
` (A)mY

0 ({y`})
(5.30)

for all k. When provided with the same information, the GBT and the
Bayes theorem thus lead to the same conclusions. However, the GBT does
not require a prior (or, equivalently, the prior mY

0 may be vacuous), and the
conditional belief function on ΩX given y need not be Bayesian.

The second remarkable property is related to the notion of cognitive inde-
pendence [58]. Assume that we have three variables X, Y and Z. Variables
X and Z are said to be cognitively independent conditionally on Y if, or all
A ⊆ ΩX , B ⊆ ΩZ and yk ∈ ΩY ,

plXZ(A×B|yk) = plX(A|yk) · plZ(B|yk). (5.31)

Assume that this property holds, and we observe X ∈ A and Z ∈ B. Then,
we can equivalently apply the GBT to compute a conditional mass function
mY (·|X ∈ A,Z ∈ B) on ΩY given the facts X ∈ A and Z ∈ B directly using
(5.25), or we can compute mY (·|X ∈ A) and mY (·|Z ∈ B) separately and
combine them using Dempster’s rule:

mY (·|X ∈ A,Z ∈ B) = mY (·|X ∈ A)⊕mY (·|Z ∈ B). (5.32)
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Exercises

1. Let Θ = {θ1, θ2} and Ω = {a, b, c, d} be two frames of discernment,
and let ρ be the refinement defined by ρ({θ1}) = {a, b} and ρ({θ2}) =
{c, d}.

(a) Compute the vacuous extension on Ω of the mass function defined
by mΘ(∅) = 0.1, mΘ({θ1}) = 0.2, mΘ({θ2}) = 0.4, mΘ(Θ) = 0.3.

(b) Compute the restriction on Θ of the mass function mΩ({a}) =
0.1, mΩ({a, b}) = 0.2, mΩ({a, b, c}) = 0.3, mΩ({c, d}) = 0.2,
mΩ({b, d}) = 0.2.

2. Let Θ = {θ1, θ2, θ3} and Ω = {a, b, c} be two frames of discernment.
We consider the following mass function on Ω×Θ:

mΩ×Θ({(a, θ1)}) = 0.2 mΩ×Θ(Ω× {θ2}) = 0.3

mΩ×Θ({b} ×Θ}) = 0.4 mΩ×Θ({(a, θ1), (b, θ2), (c, θ3)}) = 0.1

(a) Compute mΩ×Θ↓Ω and its vacuous extension on Ω×Θ.

(b) Compute mΩ×Θ↓Θ and its vacuous extension on Ω×Θ.
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Chapter 6

Belief functions on infinite
spaces

Until now, the presentation of belief functions has been restricted to the
case where Ω is finite. The theory of belief functions on finite frames is
sufficient to represent expert opinions, because any infinite frame can always
be coarsened to a finite one, which is more easily conceived by an expert.
However, in some applications, the restriction to finite frames does appear
as a limitation. For instance, in most statistical models, the parameter space
is Rd for some d ≥ 1. It is thus useful to extend the theory from finite to
infinite (continuous) spaces. This extension involves, in the most general
case, considerably more mathematical sophistication than involved in the
finite case [57, 59]. In the presentation below, we will try to avoid entering
technical details and we will focus on the simplest models, which are sufficient
for most applications, in particular for uncertainty propagation in numerical
models, or for statistical inference.

In Chapter 2, we have noticed the formal connection between belief func-
tions and random sets. This connection remains valid in the infinite case and,
as the theory of random sets is well developed mathematically [51], it will
provide a solid foundation for a theory of belief functions in infinite spaces.

6.1 General definitions and results

In the finite case, we derived the notion of belief function from that of mass
function, and we later showed the equivalence with the complete monotonic-
ity condition. In the infinite case, there may not be a mass function associ-
ated with a completely monotone function, so that we have to define a belief
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function axiomatically from its properties (the most important one being
complete monotonicity).

6.1.1 Definitions

Let us consider a set Ω and an algebra B of subsets of Ω (see Section 1.3.1).
A belief function on B is a function Bel : B → [0, 1] verifying the following
three conditions:

1. Bel(∅) = 0;

2. Bel(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Bel

(
k⋃
i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)
. (6.1)

Similarly, a plausibility function can be defined as a function Pl : B →
[0, 1] such that:

1. Pl(∅) = 0;

2. Pl(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Pl

(
k⋂
i=1

Bi

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Bi

)
. (6.2)

It is clear that, whenever Bel is a belief function, Pl defined by Pl(A) =
1−Bel(A) is a plausibility function.

6.1.2 Belief function induced by a source

A convenient way to create a belief function is to define a source, i.e., a
multivalued mapping from a probability space to B [15]. More precisely, let
S be a set, A an algebra of subsets of S, µ a finitely additive probability
measure on A, and Γ : S → 2Ω a multi-valued mapping. We can define two
inverses of Γ:
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1. The lower inverse

Γ∗(B) = B∗ = {s ∈ S|Γ(s) 6= ∅,Γ(s) ⊆ B}; (6.3)

2. The upper inverse

Γ∗(B) = B∗ = {s ∈ S|Γ(s) ∩B 6= ∅}, (6.4)

for all B ∈ B. We say that Γ is strongly measurable with respect to A and
B iff, for all B ∈ B, B∗ ∈ A. This implies that, for all B ∈ B, B∗ ∈ A. To
see this, we can notice that

B∗ = {s ∈ S|Γ(s) 6= ∅,Γ(s) ⊆ B} (6.5a)
= {s ∈ S|Γ(s) ⊆ B} ∩ {s ∈ S|Γ(s) 6= ∅} (6.5b)

= {s ∈ S|Γ(s) ∩B = ∅} ∩ {s ∈ S|Γ(s) 6= ∅} (6.5c)

= B∗ ∩ Ω∗. (6.5d)

We then have the following important theorem [50].

Theorem 6.1 Let A be an algebra of subsets of a set S, µ a finitely additive
probability measure on A, B an algebra of subsets of a set Ω, and Γ a strongly
measurable mapping w.r.t. A and B such that µ(Ω∗) 6= 0. Let the lower and
upper probability measures on B be defined as follows: for all B ∈ B,

µ∗(B) = Kµ(B∗), (6.6a)

µ∗(B) = Kµ(B∗) = 1− µ∗(B), (6.6b)

where K = [µ(Ω∗)]−1. Then, µ∗ is a belief function and µ∗ is the dual
plausibility function.

Proof. First, we have

Ω∗ = {s ∈ S|Γ(s) 6= ∅} (6.7a)
= {s ∈ S|Γ(s) ∩B 6= ∅} ∪ {s ∈ S|Γ(s) ∩B = ∅,Γ(s) 6= ∅} (6.7b)

= B∗ ∪ (B)∗. (6.7c)

Since B∗ ∩ (B)∗ = ∅, we can deduce that µ∗(B) = 1− µ∗(B). To prove that
µ∗ verifies (2.5), we can remark that

Γ∗

(⋂
i

Bi

)
=
⋂
i

Γ∗(Bi) (6.8)
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and

Γ∗

(⋃
i

Bi

)
⊇
⋃
i

Γ∗(Bi). (6.9)

Consequently, for any k and any collection B1, . . . , Bk of elements of B,

∑
∅6=I⊆{1,...,k}

(−1)|I|+1µ∗

(⋂
i∈I

Bi

)
=

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Kµ

(⋂
i∈I

Γ∗(Bi)

)
= Kµ

(⋃
i∈I

Γ∗(Bi)

)

≤ Kµ

[
Γ∗

(⋃
i

Bi

)]
= µ∗

(⋃
i

Bi

)
. (6.10)

Thus, to define a belief function on (Ω,B), it suffices to define a finitely
additive probability µ on an algebra A of subsets of a set S and a strongly
measurable mapping Γ from S to A. By analogy with the finite case, the
sets Γ(s) for s ∈ S can be called the focal sets of Bel.

Conversely, Shafer [57] showed that any belief function Bel on an alge-
bra B is induced by a source (S,A, µ,Γ), where A is an algebra and µ a
finitely additive probability. In Shafer’s contructive proof (too complex to
be reproduced here), S = 2Ω, A is an algebra of subsets of 2Ω, and Γ is the
identity mapping. However, as well shall see in Section 6.2, a much simpler
representation can often be found in practice.

As shown by Shafer [59], any belief function Bel on (Ω,B) can be ex-
tended to (Ω, 2Ω) as

B̃el(A) = sup{Bel(B)|B ∈ B, B ⊆ A}, (6.11)

for all A ⊆ Ω. A belief function Bel on a σ-algebra B is continuous if, for
any decreasing sequence B1 ⊃ B2 ⊃ B3 ⊃ . . . of elements of B,

lim
i→+∞

Bel(Bi) = Bel

(⋂
i

Bi

)
. (6.12)

If the algebras A and B of Theorem 6.1 are σ-algebras, and if µ is a count-
ably additive probability, then the belief function Bel on B induced by a
strongly measurable mapping Γ is continuous. To see this, we can notice
that, for any decreasing sequence B1 ⊃ B2 ⊃ B3 ⊃ . . . of elements of B,
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Γ∗(B1) ⊃ Γ∗(B2) ⊃ Γ∗(B3) ⊃ . . . is a decreasing sequence of elements of A.
Consequently,

lim
i→+∞

µ∗(Bi) = lim
i→+∞

Kµ (Γ∗(Bi)) =

Kµ

(⋂
i

Γ∗(Bi)

)
= Kµ

[
Γ∗

(⋂
i

Bi

)]
= µ∗

(⋂
i

Bi

)
. (6.13)

6.1.3 Dempster’s rule

Assume that we have n sources (Si,Ai, µi,Γi) for i = 1, . . . , n, where each
Γi is a multi-valued mapping from Si to 2Ω. Then, the combined source
(S,A, µ,Γ∩) can be defined as follows [15]:

S = S1 × S2 . . .× Sn, (6.14a)
A = A1 ⊗A2 . . .⊗An, (6.14b)
µ = µ1 × µ2 . . .× µn, (6.14c)

Γ∩(s) = Γ1(s1) ∩ Γ2(s2) ∩ . . . ∩ Γn(sn), (6.14d)

where A is the algebra generated by subsets of S of the form A1 × . . .×An,
with Ai ∈ Ai, and µ is the product measure. The belief function Bel induced
by (S,A, µ,Γ∩) can then be written as Bel1 ⊕ . . . ⊕ Beln, where Beli is
the belief function induced by source i. For each B ∈ B, Bel(B) is the
conditional probability that Γ∩(s) ⊆ B, given that Γ∩(s) 6= ∅,

Bel(B) =
µ ({s ∈ S|Γ∩(s) 6= ∅,Γ∩(s) ⊆ B})

µ({s ∈ S|Γ∩(s) 6= ∅})
, (6.15)

which is well defined iff the denominator is non null (i.e., if the n belief func-
tions are not totally conflicting). As in the finite case, the degree of conflict
between the n belief functions can be defined as one minus the denominator
in (6.15).

This combination rule, introduced by Dempster in Ref. [15], clearly gen-
eralizes that introduced in Chapter 3 for the finite case. The consideration
of the product probability measure in (6.14c) corresponds to an assumption
of independence between the items of evidence, as discussed in Chapter 3.

A source (S,A, µ,Γ) induces a commonality function Q if for any B ∈ B,
the set {s ∈ S|Γ(s) ⊇ B} is in Ai. We can then define the commonality
function as

Q(B) = Kµ ({s ∈ S|Γ(s) ⊇ B}) , (6.16)
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for all B ∈ B, with K = [µ(Ω∗)]−1. If each of the n sources (Si,Ai, µi,Γi) in-
duces a commonality functionQi, then so does the combined source (S,A, µ,Γ∩),
andw e can easily check that

Q(B) =
1

1− κ

n∏
i=1

Qi. (6.17)

6.2 Practical models

In this section, we describe two special cases of belief functions on Rd that
will play an important role in applications, especially for statistical inference:
consonant random closed sets and random intervals.

6.2.1 Consonant random closed sets

Let us assume that Ω = Rd and B = 2Ω. Let π be an upper semi-continuous
map from Rd to [0, 1], i.e., for any s ∈ [0, 1], the set

sπ = {x ∈ Rd|π(x) ≥ s} (6.18)

is closed. Furthermore, assume that π(x) = 1 for some x. Let S = [0, 1], A
be the Borel σ-field on [0, 1], µ the Lebesgue measure, and Γ the mapping
defined by Γ(s) = sπ. Then Γ is strongly measurable and it defines a random
closed set [51]. We can observe that its focal sets are nested: it is said to be
consonant. Let Bel, Pl and Q be the corresponding belief, plausibility and
commonality functions. Then, for any B ⊆ Rd:

Pl(B) = µ({s ∈ S|sπ ∩B 6= ∅}) (6.19a)
= µ({s ∈ S|∃x ∈ B, π(x) ≥ s}) (6.19b)
= µ({s ∈ S|s ≤ sup

x∈B
π(x)}) (6.19c)

= sup
x∈B

π(x), (6.19d)

Bel(B) = 1− Pl(B) = 1− sup
x 6∈B

π(x) = inf
x 6∈B

(1− π(x)) (6.20)

and

Q(B) = µ({s ∈ S|sπ ⊇ B}) (6.21a)
= µ({s ∈ S|∀x ∈ B, π(x) ≥ s}) (6.21b)
= µ({s ∈ S|s ≤ inf

x∈B
π(x)}) (6.21c)

= inf
x∈B

π(x). (6.21d)
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In particular, Pl{x} = Q({x}) = π(x) for all x.
We will see an example of a belief function induced by a random closed

set in Section 8.3.

6.2.2 Random closed intervals

In this section, we consider the case where Ω = R. In this case, a special
class of random closed set is of special interest: random closed intervals [18].

Definition and properties

Let (U, V ) be a bi-dimensional random vector from (S,A, µ) to R2 such that

µ({s ∈ S|U(s) ≤ V (s)}) = 1. (6.22)

The mapping
Γ : s→ Γ(s) = [U(s), V (s)], (6.23)

is strongly measurable. It defines a random closed interval. Two special
cases are of interest:

1. If the random vector (U, V ) is discrete, with µ(U = ui;V = Vi) =
mi, we have a discrete random interval; it is characterized by a mass
function m with focal sets Ii = [ui, vi] and masses m(Ii) = mi.

2. If (U, V ) is absolutely continuous with density f(u, v), we have a con-
tinuous random interval.

For all x ∈ R, we have:

Bel((−∞, x]) = µ([U, V ] ⊆ (−∞, x]) = µ(V ≤ x) = FV (x), (6.24)

where FV is the cumulative distribution function (cdf) of V , and

Pl((−∞, x]) = µ([U, V ] ∩ (−∞, x] 6= ∅) = µ(U ≤ x) = FU (x). (6.25)

These functions are called, respectively, the lower and upper cdf of [U, V ].
Now, for any a ≤ b, we have

Bel([a, b]) = µ([U, V ] ⊆ [a, b]) = µ(U ≥ a;V ≤ b), (6.26)

Pl([a, b]) = µ([U, V ] ∩ [a, b] 6= ∅) =

1− µ([U, V ] ∩ [a, b] = ∅) = 1− µ(V < a)− µ(U > b) (6.27)
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and
Q([a, b]) = µ([U, V ] ⊇ [a, b]) = µ(U ≤ a;V ≥ b). (6.28)

We can observe that If [U, V ] is continuous, these probabilities can be com-
puted by integrating the joint density f(u, v). For instance,

Q([a, b]) =

∫ a

−∞

∫ +∞

b
f(u, v)dvdu, (6.29)

Bel([a, b]) =

∫ b

a

∫ b

u
f(u, v)dvdu. (6.30)

Conversely,

f(a, b) = −∂
2Q([a, b])

∂a∂b
= −∂

2Bel([a, b])

∂a∂b
. (6.31)

Lower and upper quantiles

If the random vector (U, V ) is continuous, we can define its lower and upper
quantiles at level α, for any α ∈ (0, 1), as:

q∗(α) = F−1
U (α), (6.32a)

q∗(α) = F−1
V (α). (6.32b)

By definition, q∗(α) and q∗(α) are thus, respectively, the values such that

Pl((−∞, q∗(α)]) = α (6.33a)

and
Bel((−∞, q∗(α)]) = α (6.33b)

or, equivalently,
Pl((q∗(α),+∞)) = 1− α. (6.33c)

For any α ∈ (0, 0.5], we may compute the α-quantile interval (q∗(α), q∗(1−
α)], which is such that Pl((−∞, q∗(α)]) = Pl((q∗(1−α),+∞)) = α. Because
of the sub-additivity of PlYx , we may conclude that

Pl((q∗(α), q∗(1− α)]) ≤ 2α. (6.34a)

or, equivalently,
Bel((q∗(α), q∗(1− α)]) ≥ 1− 2α. (6.34b)

The definitions of lower and upper quantiles can be extended to the case
where (U, V ) is discrete by linearly interpolating the lower and upper cdfs
between the discrete values of U and V .
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Combination by Dempster’s rule

As in the finite case, random closed intervals can be combined using Demp-
ster’s rule. Let [U1, V1] and [U2, V2] be two random closed intervals, and let
Q1 and Q2 be their commonality functions. We have the following equality:

(Q1 ⊕Q2)([a, b]) =
1

1− κ
Q1([a, b])Q2([a, b]), (6.35)

where
κ = µ([U1, V2] ∩ [U2, V2] = ∅) (6.36)

is the degree of conflict between the two random sets. To see this, we may
observe that

(Q1 ⊕Q2)([a, b]) =

µ([U1, V1] ∩ [U2, V2] ⊇ [a, b]|[U1, V1] ∩ [U2, V2] 6= ∅), (6.37)

which may be computed as

(Q1 ⊕Q2)([a, b]) =
µ([U1, V1] ⊇ [a, b], [U2, V2] ⊇ [a, b])

µ([U1, V1] ∩ [U2, V2] 6= ∅)
(6.38a)

=
Q1([a, b])Q2([a, b])

1− κ
. (6.38b)

When [U1, V1] and [U2, V2] are continuous, the combination of [U1, V1]⊕
[U2, V2] may be cumbersome or even intractable. We may then compute an
approximation, either by discretizing the two random intervals, or by using
Monte Carlo simulation [4]. For instance, the following algorithm can be
used to approximate (Pl1 ⊕ Pl2)(A) for some A ⊆ R:
k = 0
for i = 1 : N do
Generate realizations [u1, v1] and [u2, v2] of [U1, V1] and [U2, V2]
I = [u1, v1] ∩ [u2, v2]
if I ∩A 6= ∅ then
k = k + 1

end if
end for

̂(Pl1 ⊕ Pl2)(A) = k
N
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Chapter 7

Decision-making

Quite often, if not always, the ultimate purpose of quantifying uncertainty
is to make decisions. The general problem of decision-making under uncer-
tainty has a long history and is of the utmost importance in many areas,
such as economics and engineering. In this chapter, we will review differ-
ent principles for making decisions, when uncertainty is quantified by belief
functions. The formal framework will first be introduced in Section 7.1. The
classical approaches to decision-making under complete ignorance, and in a
context where uncertainty is probabilized, will then be described in Section
7.2. These preliminaries will set the ground for a review of the main ap-
proaches for decision-making with belief functions and their justifications,
which will be presented in Section 7.3.

7.1 Formal framework

A decision problem can be seen as a situation in which a decision-maker
(DM) has to choose a course of action (an act) in some set F . An act may
have different consequences, depending on the state of nature. Denoting by
Ω = {ω1, . . . , ωn} the set of states of nature and by C = {c1, . . . , cr} the set
of consequences (or outcomes), an act can thus be formalized as a mapping
f from Ω to C. In most of this chapter, the three sets Ω, C and F will be
assumed to be finite.

The desirability of the consequences can often be modeled by a utility
function u : C → R, which assigns a numerical value to each consequence.
The higher this value, the more desirable is the consequence for the DM.
In some problems, the consequences can be evaluated in terms of monetary
value. The utilities can then be defined as the payoffs, or a function thereof.
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Table 7.1: Payoff matrix (in e) for the investment example.

Act Good Economic Poor Economic
(Purchase) Conditions (ω1) Conditions (ω2)

Apartment building (f1) 50,000 30,000
Office building (f2) 100,000 -40,000
Warehouse (f3) 30,000 10,000

If the actions are indexed by i and the states of nature by j, we will denote
by uij the quantity u[fi(ωi)]. The n × r matrix U = (uij) will be called
a payoff or utility matrix. These notions will now be illustrated using the
following example taken from [52].

Example 7.1 Assume that an investor can decide between three acts: buying
an apartment building (f1), an office building (f2), or a warehouse (f3).
The consequences of these acts are payoffs, which depend on the economic
conditions: good (ω1) or poor (ω2). Here, we assume the utilities to be equal
to the payoffs. The utility matrix is shown in Table 7.1.

If the true state of nature is know, then the desirability of an act can be
deduced from that of its consequences f(ω). Typically, however, the state
of nature is unknown. Based on partial information, it is usually assumed
that the DM can express preferences among acts, which may be represented
mathematically by a preference relation < on F . This relation is interpreted
as follows: given two acts f and g, f < g means that f is found by the DM
to be at least as desirable as g. We also define the strict preference relation
as f � g iff f < g and not(g < f) (meaning that f is strictly more desirable
than g) and an indifference relation f ∼ g iff f < g and g < f (meaning that
f and g are equally desirable).

Quite often, the decision problem is to construct a preference relation
among acts, from a utility matrix and some description of uncertainty, and
to find the maximal elements of this relation. The main purpose of this
chapter is to review the main solutions, when uncertainty is described by
belief functions. before that, we will start

Different decision problems arise, depending on the nature of the available
information. Several such problems will be considered in this chapter.
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7.2 Elements of classical decision theory

In this section, we first consider the case where a utility function is given, but
the DM is in a state of complete ignorance about the state of nature (Section
7.2.1). We will then consider the situation where probabilities on Ω are given,
which gives rise to the expected utility (EU) model (Section 7.2.2). Final
several axiomatic justification of the EU model will be reviewed in Section
??.

7.2.1 Decision-making under complete ignorance

Let us start with the situation where the DM is totally ignorant of the state
of nature. All the information given to the DM is thus the utility matrix U .
A act fi is said to be dominated by fk if uij ≤ ukj for all j, and uij < ukj
for some j. It means that the consequences of act fk are always at least
as desirable as those of act fi, whatever the state of nature. The non-
domination principle [71] prohibits the choice of an act that is dominated by
another one. For instance, in Table 7.1, we can see that act f3 is dominated
by f1: consequently, we can remove f3 from further consideration.

After all dominated acts have been removed, there remains the problem
of ordering them by desirability, and of finding the set of mots desirable
acts. Several criteria of “rational choice” that have been proposed to derive
a preference relation over acts. They are summarized in the following list
(see, e.g., [44, 71]).

1. The Laplace criterion ranks acts according to the average utility of
their consequences: fi � fk iff

1

n

∑
j

uij ≥
1

n

∑
j

ukj . (7.1)

2. The maximax criterion considers, for each act, its more favorable con-
sequence. We then have fi � fk iff

max
j
uij ≥ max

j
ukj . (7.2)

3. Conversely, the maximin criterion takes into account the least favor-
able consequence of each act: act fi is thus more desirable than fk
iff

min
j
uij ≥ min

j
ukj . (7.3)
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4. The Hurwicz criterion considers, for each act, a convex combination
of the minimum and maximum utility: fi � fk iff

αmin
j
uij + (1− α) max

j
uij ≥ αmin

j
ukj + (1− α) max

j
ukj , (7.4)

where α is a parameter in [0, 1], called the pessimism index.

5. Finally, the minimax regret criterion considers an act fi to me at least
as desirable than fk if it has smaller maximal regret, where regret is
defined as the utility difference with the best act, for a given state of
nature: we thus have fi � fk iff

max
j

(max
`
u`j − uij) ≤ max

j
(max

`
u`j − ukj). (7.5)

Example 7.2 Consider again Example 7.1. We have seen that act f3 is
dominated and should be ruled out. It is easy to check that f1 � f2 for the
Laplace, maximin and minimax regret criteria, while f2 � f1 for the maximax
criterion. For the Hurwicz criterion, we let the reader verify that f1 � f2 iff
α ≥ 5/12.

Let us briefly comment on these criteria. The Laplace criterion is actu-
ally based on the expected utility, using a uniform probability distribution
on the state of nature (see Section 7.2.2 below). It can thus be considered as
resulting from the Principle of Indifference (see Section 1.3.4). The maximax
and maximin criteria correspond, respectively, to extreme optimistic and pes-
simistic (or conservative) attitudes of the DM. The Hurwicz criterions allows
to parameterize the DM’s attitude toward ambiguity, using the pessimism
index. These four criteria amount to extending the utility function to sets,
i.e., they aggregate, for each act fi, the utilities uij for all j, into a single
number. The minimax regret criterion works differently, as it measures the
desirability of an act by a quantity that depends on the consequences of all
the other acts.

Each of the five criteria listed above induces a complete preorder over
the set of acts. Let F∗ be the set of greatest element (called the choice-
set) for one of these preorders. Luce and Raiffa [44] have proposed a set of
“postulates of rational choice” as a means of appraising the criteria. However,
none of the five criteria satisfies all these postulates. For instance, it may
be argued that F∗ should be invariant under deleting a repetitious column,
a requirement that is clearly violated by the Laplace criterion. Another
compelling postulate is that “an act not belonging to F∗ cannot be made to
belong to F∗ by adding new acts to F . This postulate is violated by the
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minimax regret criterion. Consider again, for instance, the data of Example
7.1. We have seen that F∗ = {f1} according to the minimax regret criterion.
Now, consider a new act f4 such that u41 = 130, 000 and u42 = −45, 000.
With this new act, the regret of f1 becomes 80,000 under ω1 and 0 under
ω2: the maximal regret is thus 80,000. Now, the regret of f2 becomes 30,000
under ω1 and -45,000 under ω2, with a maximal regret of 30,000. We can
see that f2 now becomes more desirable than f1, as a consequence of adding
a new act. As remarked by Szaniawski [71], this behavior can hardly be
considered rational.

7.2.2 Decision-making with probabilities

Let us now consider the situation where uncertainty about the state of nature
is quantified by probabilities p1, . . . , pn on Ω. Typically, these probabilities
are assumed to be objective: we say that we have a problem on decision under
risk. However, the following developments also applied to the case where
the probabilities are subjective. In any case, the probability distribution
p1, . . . , pn is assumed to be known, together with the utility matrix U . We
can then compute, for each act fi, its expected utility as

EU(fi) =
∑
j

uijpj . (7.6)

According to the Maximum Expected Utility (MEU) principle, an act fi is
more desirable than an act fk if its yields more desirable consequences on
average over all possible states of nature, i.e., if it has a higher expected
utility: fi � fk iff EU(fi) ≥ EU(fk).

Example 7.3 Continuing Examples 7.1 and 7.2, assume that there is 70%
chance that the economic situation will be poor. The expected utilities of acts
f1 and f2 are

EU(f1) = 50, 000× 0.4 + 30, 000× 0.6 = 38, 000 (7.7a)
EU(f2) = 100, 000× 0.4− 40, 000× 0.6 = 16, 000. (7.7b)

Act f1 is thus clearly more desirable according to the maximum expected
utility criterion.

The MEU principle was first axiomatized by von Neumann and Mor-
genstern [73]. We give hereafter a summary of their argument. Given a
probability distribution on Ω, an act f : Ω → C induces a probability mea-
sure P on the set C of consequences (assumed to be finite), called a lottery.
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We denote by L the set of lotteries on C. If we agree that two acts providing
the same lottery are equivalent, then the problem of comparing the desir-
ability of acts becomes that of comparing the desirability of lotteries. Let
� be a preference relation among lotteries. Von Neumann and Morgentern
argued that, to be rational, a preference relation should very the following
three axioms.

1. Complete preorder: the preference relation is a complete and non trivial
preorder (i.e., it is a reflexive, transitive and complete relation) on L.

2. Continuity: for any lotteries P , Q and R such that P � Q � R, there
exists a probability α ∈ [0, 1] such that

αP + (1− α)R ∼ Q, (7.8)

where αP+(1−α)R is a compound lottery, which refers to the situation
where you receive P with probability α and Q with probability 1− α.

3. Independence: for any lotteries P , Q and R and for any α ∈ (0, 1],

P � Q⇔ αP + (1− α)R � αQ+ (1− α)R. (7.9)

We then have the following theorem.

Theorem 7.1 (Von Neumann and Morgentern) The two following propo-
sitions are equivalent:

1. The preference relation � verifies the axioms of complete preorder, con-
tinuity, and independence;

2. There exists a utility function u : C → R such that, for any two lotteries
P = (p1, . . . , pr) and Q = (q1, . . . , qr),

P � Q⇔
r∑
i=1

piu(ci) ≥
r∑
i=1

qiu(ci). (7.10)

Function u is unique up to an strictly increasing affine transformation.

7.2.3 Savage’s theorem

Savage [56] proposed seven axioms that a preference relation among acts
should verify. We will review the the first four, which are considered to be
meaningful, the other three being mostly technical.
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The first axiom (ordering) states that < should be a complete, reflexive
and transitive relation. In particular, completeness implies that the DM
is always able to choose between any two acts, even in the absence of any
evidence about Ω.

To introduce the second axiom, we need the following definition. Given
two acts f, h ∈ F and a subset E of Ω, let fEh denote the act defined by

(fEh)(ω) =

{
f(ω) if ω ∈ E
h(ω) if ω 6∈ E.

(7.11)

The act fEh thus has the same consequence as f if E is true, and the same
consequences as h otherwise. The second axiom, called the the Sure Thing
Principle (STP), states that for any event E ⊆ Ω and any acts f, g, h, h′,

fEh < gEh⇒ fEh′ < gEh′. (7.12)

In other words, the preference between two acts with a common extension
outside some event E does not depend on this common extension. This axiom
seems reasonable. However, we will see that it is not verified experimentally.

Without any risk of ambiguity, let us use the same notation for any
outcome x ∈ C and the constant act such that f(ω) = x for all ω ∈ Ω.
According to the third axiom (monotonicity), for any event E and for any
two constant acts x and y, if x is preferred to y, it is so whatever the state
in which these outcomes are obtained:

x < y ⇔ (∀f ∈ F , xEf < yEf). (7.13)

Lastly, the fourth axiom (Weak comparative ordering) can be stated as
follows: for all events A and B and outcomes x′ � x and y′ � y,

x′Ax < xBx′ ⇒ y′Ay < yBy′. (7.14)

Since x′ is strictly preferred to x, the first preference rank means that the DM
considers A to be more likely than B. This judgement should not depend
on the particular outcomes x′ � x, which is the meaning of this axiom.

Savage showed that any preference relation < satisfies the above four
axioms (plus three more technical ones) iff there is a finitely additive proba-
bility measure P and a function u : C → R such that f is at most preferable
to g iff the expected utility of f is not smaller than that of g,

∀f, g ∈ F , f < g ⇔ EP [u ◦ f ] ≥ EP [u ◦ g]. (7.15)
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Moreover, P is unique and u is unique up to a positive affine transformation.
Function u is called a utility function.

This is a very powerful result. It means that any DM verifying the above
axioms

• Quantifies uncertainty about the states by a subjective probability
measure;

• Ranks consequences according to a utility function that reflects his/her
preferences;

• Evaluates acts according to the expected utility criterion.

7.3 Decision-making with belief functions

7.3.1 Upper and lower expected utility

7.3.2 Other approaches

7.3.3 Axiomatic justifications



Chapter 8

Statistical inference

In this chapter, we will consider the problem of modeling statistical evidence
in the belief function framework. This problem actually motivated the first
developments in the theory of belief functions [14, 15, 17, 18]. Statistical
evidence consists in the observation of data generated by some random pro-
cess. Based on this evidence, we wish to quantify the uncertainty about the
random generating process itself, or about future data to be generated by the
same or a related process. The former problem is referred to as estimation,
the latter as prediction.

In this chapter, we will adopt the following notation. The observed data
will be supposed to be a realization x of a random variable X taking values
in a sample space X (usually, X = Rn or {0, 1}n). The distribution of X
is assumed to be known up to a parameter θ ∈ Θ and fθ(x) will denote its
probability mass or density function. The estimation problem is to construct
a belief function on Θ, while the prediction problem is to construct a belief
function about some new data Y to be generated from a random process
depending on θ.

In this chapter, we will first motivate the introduction of belief function-
based methods by pointing to some limitations of classical approaches to sta-
tistical inference (Section 8.1). We will then present the two main methods
of inference in the belief function framework: Dempster’s method (Section
8.2) and the likelihood-based method (Section 8.3). A general prediction
method will be then exposed in Section 8.4.
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8.1 Limitations of classical approaches

There is a huge literature on statistical inference and we will not attempt to
summarize it here. The purpose of this section is simply to underline some
limitations of the classical approaches to statistical inference, which have
motivated the development of new approaches based on belief functions.

8.1.1 Frequentist approach

The mainstream approach to statistical inference is the so-called frequentist
approach, which essentially relies on confidence intervals (or, more generally,
confidence sets) and significance testing.

A confidence set at level 1−α is a random set that contains the true value
of the parameter 100(1−α)% of the time, when samples are repeatedly drawn
from the population. It is thus a pre-experimental measure of evidence, in
so far as the accuracy of the evidence (the confidence level) is determined
before the data is actually collected. Consequently, the confidence level
does not qualify as a measure of the strength of the evidence for a particular
realization of the random sample. To see this, consider the following example
taken from [8].

Example 8.1 Suppose X1 and X2 are iid with probability mass function

Pθ(Xi = θ − 1) = Pθ(Xi = θ + 1) =
1

2
, i = 1, 2, (8.1)

where θ ∈ R is an unknown parameter. Consider the following confidence
set for θ,

C(X1, X2) =

{
1
2(X1 +X2) if X1 6= X2

X1 − 1 otherwise.
(8.2)

The corresponding confidence level 1− α = Pθ(θ ∈ C(X1, X2)) is

1− α = Pθ(θ ∈ C(X1, X2)|X1 6= X2)Pθ(X1 6= X2)+

Pθ(θ ∈ C(X1, X2)|X1 = X2)Pθ(X1 = X2) =

1× 0.5 + (0.5)2 = 0.75. (8.3)

Now, let (x1, x2) be a given realization of the random sample (X1, X2). If
x1 6= x2, we know for sure that θ = (x1 + x2)/2 and it would be absurd to
take 75% as a measure of the strength of the statistical evidence. If x1 = x2,
we know for sure that θ is either x1 − 1 or x1 + 1, but we have no reason
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to favor any of these two hypotheses in particular. Again, it would make no
sense to claim that the evidence support the hypothesis θ = x1 − 1 with 75%
confidence. �

The above example clearly shows that the confidence level is a pre-
experimental measure that may not be relevant after seeing the data. From
a more practical point of view, we may also notice that we often do not know
how to construct exact confidence intervals for finite samples. Most confi-
dence intervals used in practice are based, except for the simplest cases, on
asymptotic assumptions. When used with small samples, these confidence
intervals may have actual coverage probabilities quite different from their
intended ones.

The other method for assessing the strength of statistical evidence in the
frequentist approach is significance testing. Here, a hypothesis H ⊂ Θ is
contemplated, and a test statistic T is defined such that, say, large values
of T are considered as evidence against H. Having observed a realization t
of T , the p-value is defined as the probability of observing a value of T at
least as large as t: p = PH(T ≥ t). We can argue here that the logic of
including not only the observed value t, but also more extreme values that
have not been observed, is questionable. The problem with this approach is
illustrated by the following example from [8].

Example 8.2 Suppose the distributions of a discrete random variable X for
two values θ1 and θ2 of some parameter θ are given in the following table.

x 0 1 2 3 4
fθ1(x) 0.75 0.14 0.04 0.037 0.033
fθ2(x) 0.70 0.25 0.04 0.005 0.005

Let T = X be a test statistic for a significance test of either H1 = {θ1}
or H2 = {θ2}, i.e., large values of X are considered as evidence against these
hypotheses. If we have observed x = 2, the p-value against H1 is

p1 = Pθ1(X ≥ 2) = 0.04 + 0.037 + 0.033 = 0.11, (8.4)

while the p-value against H2 is

p2 = Pθ2(X ≥ 2) = 0.04 + 0.005 + 0.005 = 0.05. (8.5)

Thus, we would reject H2 at the 5% significance level, but we would not
reject H1 at the same level. Yet, the probability of observed value, x = 2, is
exactly the same under both hypotheses! There seems to be little ground for
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including, in the calculation of the p-value, the probabilities of larger values
of X that have not been observed. �

The fact that the p-value depends not only on observed data, but also
on more extreme data that have not been observed, is a violation of the
likelihood principle that will be exposed in Section 8.1.3.

To conclude this section, we may remark that frequentist methods are
widely used for the interpretation of experimental data and they do yield
sensible results in many situations. However, as shown by the example be-
low, neither confidence sets nor significance tests provide post-experimental
measures of the strength of statistical evidence.

8.1.2 Bayesian approach

The second main approach to statistical inference is the Bayesian approach,
which treats the parameter as a random variable with prior distribution π(θ).
The prior probabilities are usually considered as subjective and assumed
to reflect the statistician’s initial knowledge about the parameter, before
observing the data. Considering the pdf fθ(x) as the conditional density
f(x|θ) of x given θ, Bayes’ rule allows us to compute the conditional pdf of
θ given the data x, referred to as the posterior distribution of θ, and defined
as

f(θ|x) ∝ π(θ)f(x|θ). (8.6)

This method does not have the same problem as the confidence inter-
vals and significance levels examined in the previous section, as the posterior
distribution depends only on observed data, and is not based on averaging
over the whole sample space. However, the critical issue is here the choice
of the prior distribution in the (common) situation where we know nothing
about θ before observing the data. We should then select a “noninforma-
tive” prior distribution, but how can it be defined? If we can specificy a
bounded support for θ, say, the interval [a, b], then Laplace’s Insufficient
Reason Principle supports selecting a uniform distribution U([a, b]). How-
ever, we have already stressed the main problem with this approach, which
is that g(θ) for a nonlinear function g will not have a uniform distribution,
as illustrated by the wine-water paradox described in Section 1.3.4. Conse-
quently, the Insufficient Reason Principle yields priors that are not invariant
under reparameterization of the distribution of X.

Of course, this problem has been recognized for a long time and several
remedies have been proposed. One of them is, in the case of a real parameter
taking values in the real line, to define the prior distribution as π(θ) = c for
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all θ ∈ R and some constant c. Function π is, of course, no longer a pdf: it is
said to be an improper distribution. This approach thus departs from “pure”
probability theory, in which Bayesian inference is supposed to be grounded.
Another attempt to define uninformative priors was made by Jeffreys [35].
The Jeffreys prior is defined objectively as being proportional to the square
root of the determinant of the Fisher information.

π(θ) ∝
√

det I(θ), (8.7)

where the component (i, j) of the information matrix I(θ)ij is

I(θ)ij = Eθ
[
∂ log fθ(x)

∂θi

∂ log fθ(x)

∂θj

]
. (8.8)

The motivation for this definition is that the Jeffreys prior is invariant under
reparameterization: if ϕ is a one-to-one transformation and ν = ϕ(θ), then
the Jeffreys prior on ν is proportional to

√
det I(ν). However, there are

still some issues with this approach. First, the Jeffreys prior is sometimes
improper. Secondly, and maybe more importantly, the Jeffreys prior can
hardly be considered to be truly noninformative. For instance, consider an
iid sample X1, . . . , Xn from a Bernoulli distribution B(θ). The Jeffreys prior
on θ is the beta distribution B(0.5, 0.5) whose pdf is displayed in Figure 8.1.
We can see that extreme values of θ are considered a priori more probable
that central values, which does represent non vacuous knowledge about θ.

8.1.3 Likelihood-based approach

Beside the frequentist and Bayesian schools of scientific inference, a third
tradition can be traced back from Fisher’s later work [30] to Barnard [5],
Birnbaum [10] and Edward [27], among others. The likelihood-based ap-
proach to statistical inference centers on direct inspection of the likelihood
function Lx(θ) alone, without relying on the concept of repeated sampling
(underlying long-run frequency considerations) and without assuming the ex-
istence of a prior probability distribution. For proponents of this approach as
Birnbaum [10], “reports of experimental results in scientific journals should
in principle be descriptions of likelihood functions, when adequate mathe-
matical models can be assumed, rather than reports of significance levels or
interval estimates”.

The likelihood principle underlies the likelihood-based approach to sta-
tistical inference [10]. Let E denote a statistical model representing an ex-
perimental situation. Typically, E is composed of the parameter space Θ,
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Figure 8.1: Jeffreys prior for a Bernoulli sample.

the sample space X and a probability mass or density function fθ(x) for
each θ ∈ Θ. Following Birnbaum [10], let us denote by Ev(E, x) the evi-
dential meaning of the specified instance (E, x) of statistical evidence. The
likelihood Principle (L) can be stated as follows:

If E and E′ are any two experiments with the same parameter space Θ,
represented by probability mass or density functions fθ(x) and gθ(y), and if x
and y are any two respective outcomes which determine likelihood functions
satisfying fθ(x) = cgθ(y) for some positive constant c = c(x, y) and all θ ∈ Θ,
then Ev(E, x) = Ev(E′, y).

As noted by Birnbaum [10], the likelihood principle is an immediate
consequence of Bayes’ principle, which implies that the evidential meaning
of (E, x) is contained in the posterior probability distribution distribution
p(θ|x) ∝ fθ(x)π(θ), where π(θ) is the prior probability distribution. How-
ever, it was also accepted as self-evident by statisticians who did not adhere
to the Bayesian school, including Fisher [30] and Barnard [5]. From a non
Bayesian perspective, it was placed on firm ground by Birnbaum [10], who
showed that it can be derived from the principles of sufficiency and condi-
tionality, which are accepted by most (but not all) statisticians.

As already remarked above, Bayesian inference complies with the likeli-
hood principle. However, for a Bayesian statistician, the likelihood function
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alone does not constitute a valid representation of the statistical evidence, it
needs to be multiplied by a prior. Frequentist methods, in contrast, do not
comply with the likelihood principle. For instance, consider an urn with a
proportion θ of black balls, and the following two experiments:

• Experiment 1: a fixed number n of balls are drawn with replacement
from the urn and the number X of black balls is observed; X has a
binomial distribution B(n, θ).

• Experiment 2: balls are drawn with replacement from the urn until a
fixed number x of black balls have been drawn; we observe the number
N of draws, which has a negative binomial distribution.

Confidence intervals computed in these two cases are different, although
the likelihood functions for these two experiments are identical. This is
because confidence intervals (and significance tests) depend not only on the
likelihood, but also on the sample space.

The concept of likelihood function is clear from a statistical point of
view, but it does not fit clearly in the more general landscape of uncertainty
theories. Fisher, who introduced the likelihood function [27, 2], repeatedly
stressed that “probability and likelihood are quantities of an entirely different
nature” [29] as, in particular, likelihoods are not additive. In Section 8.3,
we will present an approach that links the notion of likelihood function to
that of belief function, allowing us to represent statistical evidence in the
Dempster-Shafer framework. Before that, we will study in the next section
the method of inference initially proposed by Dempster, based on different
ideas.

8.2 Dempster’s method

The starting point of the theory of belief functions is a series of papers
published by Dempster in 1960 [14, 15, 16, 17, 18], in which a new method
of inference based on a multi-valued mapping was introduced. A recent
account of this method can be found in Dempster’s later work [19]. Similar
ideas are explored in [41, 42, 46] with a different terminology.

8.2.1 General method

The key idea underlying Dempster’s method of inference is to model the
data-generating mechanism by an equation

X = ϕ(θ,W ) (8.9)
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that relates the dataX, the parameter θ and an unobserved auxiliary variable
W with sample spaceW and known probability distribution PW independent
of θ, such that, for any measurable subset A of X ,

Pθ(X ∈ A) = PW (ϕ(θ,W ) ∈ A). (8.10)

When X is a one-dimensional continuous random variable, a natural
choice forW isW = Fθ(X), where Fθ is the cumulative distribution function
(cdf) of X. The random variable W then has then a uniform distribution
on [0, 1] and (8.9) becomes

X = F−1
θ (W ). (8.11)

When W is discrete, (8.11) is still valid if F−1
θ now denotes the generalized

inverse of Fθ,
F−1
θ (w) = inf{x|Fθ(x) ≥ w}. (8.12)

From now on, we will assume that W = [0, 1] and PW is the uniform proba-
bility measure on [0, 1].

Equation (8.9) defines a multi-valued mapping from [0, 1] to 2X×Θ that
maps each W to the pairs (X, θ) compatible with W ,

Γ : W → Γ(W ) = {(x, θ) ∈ X ×Θ|x = ϕ(θ,W )}. (8.13)

The four-tuple ([0, 1],B([0, 1]),P−W,Γ), where B([0, 1]) is the Borel sigma-
field on [0, 1], is a source for a belief function BelX×Θ on X ×Θ (see Section
6.1.2).

Assume that θ is known. Our belief about X is obtained by conditioning
BelX×Θ on X × {θ} and marginalizing on X . The multi-valued mapping
(8.13) becomes

Γθ : W → Γ(W ) = {x ∈ X |x = ϕ(θ,W )} = {ϕ(θ,W )}. (8.14)

By construction, for any measurable subset A of X ,

BelX (A) = PW (ϕ(θ,W ) ∈ A) = Pθ(X ∈ A), (8.15)

i.e., BelX is the probability distribution of X given θ.
Symmetrically, assume that we observe X = x. Our belief in θ is ob-

tained by conditioning BelX×Θ on {x} × Θ and marginalizing on Θ. The
corresponding multi-valued mapping is

Γx : W → Γ(W ) = {θ ∈ Θ|x = ϕ(θ,W )}. (8.16)
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The source ([0, 1],B([0, 1]),PW ,Γx) defines a belief function BelΘx on Θ,
which represents the statistical evidence.

This method has the following important property. Let X1, . . . , Xn be
an iid sample from fθ(x). Each Xi can be written as Xi = ϕ(θ,Wi), where
W1, . . . ,Wn are iid from the standard uniform distribution. The belief func-
tion on Θ after observing x = (x1, . . . , xn) is obtained by combining each
BelΘxi by Dempster’s rule,

BelΘx = BelΘx1 ⊕Bel
Θ
x2 ⊕ . . .⊕Bel

Θ
xn . (8.17)

8.2.2 Application to a Bernoulli sample

Let us assume that we have an urn with an unknown proportion θ of black
balls, and consider the experiment that consists of drawing n balls with
replacement from the urn. The result of this experiment can be denoted by
X1, . . . , Xn, where Xi = 1 if the i-th ball drawn from the urn was black and
Xi = 0 otherwise. It is an iid sample from the Bernoulli B(θ) distribution.
Based on these observations, what can be said about the composition of the
urn? The solution of this problem using Dempster’s method (given in [14])
is described in this section.

The ϕ-equation (8.9) in this case is

Xi = ϕ(θ,Wi) =

{
1 if Wi ≤ θ
0 otherwise,

(8.18)

where Wi has a standard uniform distribution. The multi-valued mapping
Γ from (8.14) is

Γ(W ) = ({0} × [0,W )) ∪ ({1} × [W, 1]). (8.19)

The form of the corresponding focal sets is illustrated in Figure 8.2.
After conditioning on x, we get

Γx(W ) =

{
[0,W ) if x = 0,

[W, 1] if x = 1,
(8.20)

which defines a random interval (see Section 6.2.2). The corresponding com-
monality function can be computed as follows. If x = 0, for any 0 ≤ u ≤
v ≤ 1,

Qx([u, v]) = PW ([0,W ) ⊇ [u, v]) = PW (W > v) = 1− v. (8.21)
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Figure 8.2: Focal sets ({0} × [0,W )) ∪ ({1} × [W, 1]) of the belief function
BelX×Θ in the case of a Bernoulli sample.

If x = 1,

Qx([u, v]) = PW ([w, 1] ⊇ [u, v]) = PW (W ≤ u) = u. (8.22)

After observing n realizations x1, . . . , xn, the commonality function becomes,
from (8.17) and (6.35),

Q([u, v]) ∝
n∏
i=1

Qxi([u, v]) = uN (1− v)n−N , (8.23)

where N =
∑n

i=1 xi. The joint density f(u, v) of the bounds U and V of the
random interval can be obtained from (6.31), by differentiating Q([u, v]). If
0 < N < n,

f(u, v) = −∂
2Q([u, v])

∂u∂v
= c uN−1(1− v)n−N−1, (8.24)

where the proportionality constant can be shown to be

c = N(n−N)CNn . (8.25)

The cases where N = 0 and N = n require special treatment. If N = 0, all
the focal sets are of the form [0, v) and

Q([u, v]) = (1− v)n. (8.26)

(Note that the degree of conflict in Dempster’s combination is equal to zero
in this case). The lower bound U is then constant, while the upper bound
has density

f(v) = −∂
2Q([0, v])

∂v
= (1− v)n−1. (8.27)

If N = n, the focal sets are of the form [u, 1] and

Q([u, v]) = un. (8.28)
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The lower bound V is constantly equal to 1, while the lower bound has
density

f(u) = −∂
2Q([u, 1])

∂u
= nun−1. (8.29)

We can remark that, if exactly N of the xi’s equal 1, we can deduce that
N of the wi’s are less than or equal to θ, and n−N are strictly greater than θ.
The intersection of the N intervals [0, wi) for xi = 0 and the n−N intervals
[wi, 1] for xi = 1 is thus [w(N), w(N+1)), where w(k) is the k-th order statistics
of the iid uniform sample W1, . . . ,Wn. Consequently, f(u, v) is the pdf of
(W(N),W(N+1)). The marginal distributions of U and V are, respectively,
the Beta distributions B(N,n − N + 1) and B(N + 1, n − N). The upper
and lower cdf of θ are thus easily computed from (6.24) and (6.25) as

Bel(θ ≤ t) = FB(N,n−N+1)(t), (8.30a)

Pl(θ ≤ t) = FB(N+1,n−N)(t), (8.30b)

where FB(α,β) denotes the cdf of the Beta distribution B(α, β). Given that
the expectation of the distribution B(α, β) is α/(α+β), the lower and upper
expectations of θ are obtained from (??) and (??) as

E∗(θ) = E(U) =
N

n+ 1
, (8.31a)

E∗(θ) = E(V ) =
N + 1

n+ 1
. (8.31b)

8.3 Likelihood-based method

Although based on simple principles, Dempster’s method of inference quickly
leads to intricate derivations, as shown in Section 8.2.2, where it was applied
to one the of simplest statistical models. In this section, we will introduce
another method in which a belief function in the parameter space is con-
structed from the likelihood function. This approach, first introduced by
Shafer in [58], was later studied by Wasserman [76] and Aickin [1], among
others. It was recently justified axiomatically by Denœux [22].

8.3.1 General method

Given the statistical model fθ(x), x ∈ X , θ ∈ Θ, assume that we observe a
realization x of the random variableX. We wish to represent the information
gained on parameter θ by a belief function BelΘx . Which requirements should
be imposed on BelΘx ? The following three requirements seem relevant [22]:



110 CHAPTER 8. STATISTICAL INFERENCE

1. Likelihood principle: BelΘx should only depend on the likelihood func-
tion. As noted in Section 8.1.3, the likelihood principle has a solid
foundation, as it can be derived from the two generally accepted prin-
ciples of exhaustivity and conditionality [10].

2. Compatibility with Bayesian inference: if a Bayesian prior π(θ) is avail-
able, combining it with BelΘx using Dempster’s rule should yield the
Bayesian posterior.

3. Least Commitment Principle (see Chapter 4): BelΘx should be the least
committed belief function, among all those satisfying the previous two
requirements.

The first two requirements jointly imply that the contour function plx(θ)
associated to BelΘx should be proportional to the likelihood function:

plx(θ) ∝ Lx(θ), (8.32)

for all θ ∈ Θ. The least committed belief function, according to the com-
monality ordering vQ introduced in Section 4.1.1, among all those verifying
(8.32), is the consonant belief function whose contour function is the relative
likelihood function,

plx(θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
. (8.33)

for all θ ∈ Θ, where it is assumed that supθ′∈Θ Lx(θ′) <∞.
This belief function is called the likelihood-based belief function on Θ

induced by x. The corresponding plausibility function can be computed
from plx as:

PlΘx (A) = sup
θ∈A

plx(θ), (8.34)

for all A ⊆ Θ. The focal sets of BelΘx are the levels sets of plx(θ) defined as
follows:

Γx(S) = {θ ∈ Θ|plx(θ) ≥ S}, (8.35)

for S ∈ [0, 1]. These sets may be called plausibility regions and can be
interpreted as sets of parameter values whose plausibility is greater than
some threshold S. If S is considered to be random with continuous uniform
distribution PS in [0, 1], then the four-tuple ([0, 1],B([0, 1],PS ,Γ) is a source
for the belief function BelΘx (see Section 6.2.1). In particular, the following
equalities hold:

BelΘx (A) = PS({Γx(S) ⊆ A}) (8.36a)

PlΘx (A) = PS({Γx(S) ∩A 6= ∅}), (8.36b)
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for all A ⊆ Θ such that the above expressions are well-defined.
We can also remark that the maximum likelihood estimate (MLE) of

θ can be interpreted as the value of θ with the highest plausibility, and
likelihood regions as defined by Edwards [27], among others, are identical to
plausibility regions.

8.3.2 Bernoulli example

As an example, let us consider the same model as in Section 8.2.2. The
likelihood function after observing a realization x = (x1, . . . , xn) of the iid
random sample X1, . . . , Xn is

Lx(θ) = θN (1− θ)n−N (8.37)

with N =
∑n

i=1 xi. The likelihood-based belief function induced by x has
the following contour function:

plx(θ) =
θx(1− θ)n−N

θ̂N (1− θ̂)n−N
=

(
θ

θ̂

)nθ̂ (1− θ
1− θ̂

)n(1−θ̂)
, (8.38)

for all θ ∈ Θ = [0, 1], where θ̂ = N/n is the maximum likelihood estimate
(MLE) of θ. Function plx(θ) is plotted in Figure 8.3 for θ̂ = 0.4 and n ∈
{10, 20, 100}. We can see that the contour function becomes more specific
as n increases.

As plx(θ) is unimodal and continuous, each plausibility region Γx(S) for
S ∈ [0, 1] is a closed interval [U(S), V (S)] and BelΘx is equivalent to the
a closed random interval [U, V ] [18]. The marginal cumulative probability
distribution of U and V can be obtained as follows:

FU (u) = P(U ≤ u) (8.39a)
= P([U, V ] ∩ (−∞, u] 6= ∅) (8.39b)

= PlΘx ((−∞, u]) (8.39c)

=

{
plx(u) if u ≤ θ̂
1 otherwise,

(8.39d)
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Figure 8.3: Contour functions (normalized likelihood functions) for the bi-
nomial distribution with θ̂ = 0.4 and n ∈ {10, 20, 100}.

and

FV (v) = P(V ≤ v) (8.40a)
= P([U, V ] ⊆ (−∞, v]) (8.40b)

= BelΘx ((−∞, v]) (8.40c)

= 1− PlΘx ((v,+∞)) (8.40d)

=

{
0 if v ≤ θ̂
1− plx(v) otherwise.

(8.40e)

8.3.3 Properties

Viewing the relative likelihood function as the contour function of a con-
sonant belief function or, equivalently, as a possibility distribution [82, 26]
is, to a large extent, consistent with statistical practice. For instance, like-
lihood intervals [32, 70] are focal intervals of the relative likelihood viewed
as a possibility distribution. In the case where θ = (θ1, θ2) ∈ Θ1 × Θ2 is a
vector parameter, the marginal contour function on Θ1 is

plx(θ1) = sup
θ2∈Θ2

plx(θ1, θ2), (8.41)
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which is the relative profile likelihood function when θ2 is considered as a
nuisance parameter. As another example, the usual likelihood ratio statistics
Λ(x) for a composite hypothesis H0 ⊂ Θ can be seen as the plausibility of
H0, as

Λ(x) =
supθ∈H0

Lx(θ)

supθ′∈Θ Lx(θ′)
= sup

θ∈H0

pLx(θ) = PlΘx (H0). (8.42)

However, the likelihood-based construction of belief functions is not com-
patible with Dempster’s rule, i.e., Property (8.17) does not hold for this
method. This does seem to be a weak point of this approach [61], although
one might as well question Dempster’s rule for combining independent statis-
tical evidence, as was done by Aickin [1] and Walley [74], among others. Let
E and E′ be two independent random experiments with the same parameter
space Θ, producing outcomes x and y according to frequency distributions
fθ(x) and gθ(y). Let BelΘx and BelΘy denote the belief functions on Θ ob-
tained after observing x and y, respectively. It is clear that BelΘx ⊕BelΘy and
BelΘxy are different, although they have the same contour function. However,
BelΘxy can be obtained from BelΘx and BelΘy using the product rule of Pos-
sibility theory [26], which amounts to multiplying the contour functions (or
possibility distributions) and renormalizing:

plxy(θ) =
plx(θ)ply(θ)

supθ′∈Θ plx(θ′)ply(θ′)
. (8.43)

The apparent inadequacy of Dempster’s rule in this case remains to be con-
vincingly explained. It might be that different kinds of evidence require
different combination mechanisms, as suggested by Dubois et al. in [23].

8.4 Prediction

In Section 8.2 and 8.3, we have described two solutions to the estimation
problem, which consists in making statements about some parameter θ after
observing a realization x of some random quantity X ∼ fθ(x). The pre-
diction problem considered in this section is, in some sense, the inverse of
the previous one: given some knowledge about θ obtained by observing x
(represented here by a belief function), we wish to make statements about
some random quantity Y ∈ Y whose conditional distribution gx,θ(y) given
X = x depends on θ. In some cases, X = (X1, . . . , Xn) and Y = Xn+1,
where X1, . . . , Xn, Xn+1 is an iid sample. However, the model used here is
more general. For instance, X = (Z0, Z1, . . . , ZT ) might be a time series and
Y = (ZT+1, . . . , ZT+h) might represent h future values to be predicted. For
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simplicity, we will assume Y to be a one-dimensional random variable in the
rest of this section. The method presented here was introduced in [37, 36].

8.4.1 General method

To make statements about Y , given some partial knowledge about θ, we
need to describe the relation between these two quantities. In the Dempster-
Shafer framework, the uncertain relation between two variables is expressed
by a joint belief function. Such a relation can be obtained by considering a
ϕ-equation such as (8.9),

Y = ϕ′(θ,W ′), (8.44)

where, as before, we will assume, without loss of generality, W ′ to have a
standard uniform distribution. This equation defines a multi-valued mapping

Γ′ : W → Γ′(W ) = {(y, θ) ∈ Y ×Θ|y = ϕ′(θ,W ′)}, (8.45)

where Y is the sample space of Y . The source ([0, 1],B([0, 1]), P rW ′ ,Γ)
defines a joint belief function BelY×Θ on Y ×Θ.

We now have two belief functions, BelΘx and BelY×Θ, induced by multi-
valued mapping S → Γx(S) and W ′ → Γ′(W ′). Assuming the random
variable S and W ′ to be independent, a belief function BelY on Y can
be obtained by combining BelΘx and BelY×Θ using Dempster’s rule and
marginalizing on Y,

BelYx =
(
BelΘx ⊕BelY×Θ

)↓Y
. (8.46)

The corresponding multi-valued mapping is

Γ∩(S,W ′) =
[
(Y × Γx(S)) ∩ Γ′(W ′)

]↓Y (8.47a)
= ϕ′(Γx(S),W ′). (8.47b)

We then have, for any measurable A ⊆ Y,

BelYx (A) = PS,W ′
(
ϕ′(Γx(S),W ′) ⊆ A

)
, (8.48a)

PlYx (A) = PS,W ′
(
ϕ′(Γx(S),W ′) ∩A 6= ∅

)
, (8.48b)

where PS,W ′ is the product measure PS ⊗ PW ′ .
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Figure 8.4: Three cases in the computation of the predictive belief function
on Y in the Bernoulli example.

8.4.2 Bernoulli example

Let us return to the Bernoulli example considered in Sections 8.2.2 and
8.3.2 and let us address the problem of predicting a new value Y drawn
independently from the Bernoulli B(θ) distribution. We have

Y = ϕ′(θ,W ′) =

{
1 if W ′ ≤ θ
0 otherwise,

(8.49)

where W ′ has a standard uniform distribution.
Each of the two estimation methods studied in Sections 8.2 and 8.3 pro-

vides a random interval Γx(S) = [U(S), V (S)] on Θ. Therefore, (8.47) be-
comes

[
({0, 1} × [U, V ]) ∩ Γ(W ′)

]↓{0,1}
=


{0} if [U, V ] ⊆ [0,W ),

{1} if [U, V ] ⊆ [W, 1],

{0, 1} otherwise.
(8.50)

The three cases in (8.50) are illustrated in Figures (8.4(a)), (8.4(b)) and
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(8.4(c)). It follows from (8.50) that the predictive mass function mY is

mY({0}) = P ([U, V ] ⊆ [0,W ′)) (8.51a)

=

∫
P (V < W ′|V = v)f(v)dv (8.51b)

=

∫
(1− v)f(v)dv = 1− E(V ), (8.51c)

mY({1}) = P ([U, V ] ⊆ [W ′, 1]) (8.52a)

=

∫
P (U ≥W ′|U = u)f(u)du (8.52b)

=

∫
uf(v)dv = E(U), (8.52c)

and
mY({0, 1}) = E(V )− E(U). (8.53)

Equivalently, we have

BelY({1}) = mY({1}) = E(U) (8.54)

and
PlY({1}) = mY({1}) +mY({0, 1}) = E(V ). (8.55)

When [U, V ] is computed using Dempster’s method, the expectations of
U and V are given by (8.31). We then have

BelY({1}) =
N

n+ 1
, (8.56)

PlY({1}) =
N + 1

n+ 1
, (8.57)

and the mass on Y = {0, 1} is m({0, 1}) = 1/(n+ 1).
When [U, V ] are computed using the likelihood-based approach, the pre-

dictive mass function has a more complicated expression. However, it has a
very simple graphical representation in relation to the normalized likelihood
function. As P(U ≥ 0) = P(V ≥ 0) = 1, we can write, using (??),

E(U) =

∫ +∞

0
(1− FU (u))du (8.58a)

=

∫ θ̂

0
(1− plx(u))du (8.58b)

= θ̂ −
∫ θ̂

0
plx(u)du (8.58c)



8.4. PREDICTION 117

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

pl
x(θ

)

Bel({1})

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

pl
x(θ

)

Pl({1})

(b)

Figure 8.5: Predictive belief and plausibility of success for a Bernoulli trial
based on the contour function plx(θ) on the probability of success θ.

and

E(U) =

∫ +∞

0
(1− FV (v))du (8.58d)

= θ̂ +

∫ 1

θ̂
plx(v)dv. (8.58e)

These two quantities can be represented as the areas of regions delimited
by the contour function, as shown in Figure 8.5. The difference PlYx ({1})−
BelYx ({1}), which is the mass mYx ({0, 1}) assigned to ignorance, is simply
the area under the contour function plx. It tends to zero as the sample size
n tends to infinity.

8.4.3 Monte Carlo approximation

In practice, the analytical expression of the predictive belief function in-
duced by the multi-valued mapping (8.47) may be intractable. We can then
resort to Monte Carlo approximation, by drawing independently n pairs
(S1,W1), . . . , (Sn,W

′
n) from the continuous uniform distribution in [0, 1]2.

For any measurable A ⊆ R, we may then approximate BelYx (A) and PlYx (A)
in (8.48) by, respectively,

B̂el
Y
x (A) =

1

n
#{ϕ′(Γx(Si),W

′
i ) ⊆ A}, (8.59a)

P̂ l
Y
x (A) =

1

n
#{ϕ′(Γx(Si),W

′
i ) ∩A 6= ∅}. (8.59b)
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If the mapping θ → ϕ′(θ, w) is continuous for any w and if the sets
Γx(Si) are closed and convex, then ϕ′(Γx(Si),W

′
i ) is an interval [ai, bi], whose

bounds can be computed by solving the following optimization problems:

ai = minϕ′(θ,Wi) (8.60a)

and
bi = maxϕ′(θ,Wi) (8.60b)

under the constraint
Lx(θ) ≥ Si. (8.60c)

The lower and upper expectations of Y with respect to the predictive
belief function can then be approximated by the mean of the ai’s and bi’s,

E∗(Y ) ≈ 1

n

n∑
i=1

ai, E∗(Y ) ≈ 1

n

n∑
i=1

bi. (8.61)

Similarly, the lower and lower predictive quantiles of Y (see Section 6.2.2)
can be approximated by the empirical quantiles of the ai’s and bi’s.

8.4.4 Relationship with the Bayesian posterior predictive dis-
tribution

To conclude this section, we can remark that the predictive belief function
BelYx boils down to the Bayesian posterior predictive distribution of Y given
X = x when a prior probability distribution π(θ) is available and combined
with the belief function BelΘx by Dempster’s rule. As mentioned in Section
8.3.1, the combined belief function BelΘx ⊕ π is then, by construction, the
posterior probability distribution fx(θ) of θ given X = x and we then have,
for any measurable subset A ⊆ Y:

BelYx (A) = P(ϕ′(θ,W ′) ∈ A|x) (8.62a)

=

∫
Θ
P(ϕ′(θ,W ′) ∈ A|θ, x)fx(θ)dθ (8.62b)

=

∫
Θ

(∫
A
gx,θ(y)dy

)
fx(θ)dθ (8.62c)

=

∫
A

(∫
Θ
gx,θ(y)fx(θ)dθ

)
dy (8.62d)

=

∫
A
gx(y)dy, (8.62e)
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which is the posterior predictive probability that Y belongs to A, given x.
The forecasting method introduced in this chapter is thus a proper gen-

eralization of the Bayesian approach. The two methods coincide when a
prior probability distribution of the parameter is provided. However, this is
not required in the belief function approach, making it less arbitrary than
the Bayesian approach in the absence of prior knowledge about the data
distribution.
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