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Machine Learning
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(From Le Cun et al., Nature, 2015)

@ In recent years, applications of Machine Learning (ML) have been
flourishing following new developments in deep learning technology.

@ A lot of progress has been made in extracting high-order features from
data, so as to solve very complex classification problems.
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-
Making Machine Learning more Transparent

@ ML algorithms (and especially deep learning models) are essentially
black boxes.

@ Major challenge: make ML algorithms more transparent so that machine
predictions can be interpreted (and trusted) by humans.

@ To meet this challenge, we need new perspectives on how classification
algorithms actually work.

@ One such perspective is provided by the Dempster-Shafer (DS) theory of
evidence.
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The DS perspective
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@ Dempster-Shafer theory
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Dempster-Shafer (DS) theory

@ Also referred to as evidence theory, theory of belief functions

@ A formal framework for reasoning with partial (uncertain, imprecise)
information.

@ Originates from Arthur Dempster’s seminal work of statistical inference in
the late 1960’s

@ Formalized by Glenn Shafer in his seminal 1976 book

@ Has been applied in may areas: statistical inference, knowledge
representation, information fusion, machine learning, etc.
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General philosophy

@ We consider some question with (unknown) answer Y.

@ We collect evidence about Y (measurements, expert opinions,
observations, etc.)

@ Each piece of evidence is modeled by a mass function.
@ The mass functions are combined using Dempster’s rule of combination.
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Dempster-Shafer theory Mass, belief and plausibility functions
Outline
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Simple Mass Function
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@ Let © be the set of possible answers to some question (frame of
discernment), Y the true answer.

@ A source of information (sensor, expert, etc.) tells us that Y € A, for some
subset AC ©.

@ There is probability p that the source is reliable.
@ Representation: m(A) = p, m(©) =1 — p, m(B) = 0 for all other B.

@ Meaning: with probability p we know that Y € A, and with probability
1 — p we know nothing.
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Mass Function

General Definition

Definition

A mass function is a mapping m : 2° — [0, 1] such that
> m(A) =1
ACO

and
m(@)=0

@ Every subset A of © such that m(A) > 0 is a focal set.

@ Interpretation: m(A) is the probability of knowing only that Y € A, and
nothing more specific.

@ A simple mass function has at most two focal sets, one of which is ©.
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Mass, belief and plausibility functions
Belief and plausibility functions

Definition

Given a mass function m on ©, the belief and plausibility functions are
defined, respectively, as

Bel(A) := > m(B)
BCA
PI(A):= Y m(B)=1- Bel(A),
BNA#)D
forall AC ©

@ Interpretation:

o Bel(A) is a measure of the supportin A
e PI(A) is a measure of the lack of support in A.

@ Total ignorance: Bel(A) = 0 for all A # © and PI/(A) = 1 for all A # (.
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Dempster-Shafer theory Dempster’s rule
Outline

@ Dempster-Shafer theory

@ Dempster’s rule
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Combining Mass Functions
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Dempster’s rule

Definition (Dempster’s rule)
Let my and m. be two mass functions. Their orthogonal sum is the mass
function defined by

(M & m)(A) = —— 3 m(B)m(C), VA0

BNC=A
and (my @ my)(0) = 0, where « is the degree of conflict defined as

K= Z m1(B)m2(C)

BNC=0

Remark: my @ m, exists iff K < 1.

Thierry Denceux ML and DS theory CGCKD 2018

16/67



Dempster’s rule

Properties

Proposition

@ The operator ® is commutative, associative.

@ Let m; be the vacuous mass function m, defined by m,(©) = 1. For all
mass function m, m& m; = m; & m=m.
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Weights of evidence

Dempster’s rule can often be easily computed by adding weights of evidence.

Definition (Weight of evidence)
Given a simple mass function of the form

m(A)=s
m@)=1-s,
the quantity w = — In(1 — s) is called the weight of evidence for A. Mass

function m is denoted by A" .

Proposition
The orthogonal sum of two simple mass functions A** and A"z js

AV @ A2 = AWt
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e Linear and nonlinear classifiers
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Linear and nonlinear classifiers Logistic regression
Outline

e Linear and nonlinear classifiers
@ Logistic regression
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Binomial Logistic regression

@ Consider a binary classification problem with d-dimensional feature
vector X = (Xi,...,Xy) and class variable Y € © = {64, 6>}. Let p(x)
denote the probability that Y = 64 given that X = x.

@ (Binomial) Logistic Regression (LR) model:

p(x)
"= p(x)

with 8 € R? and 5y € R. Equivalently,
p(x) = o(B"x + Bo),

where o(u) = (1 + exp(—u))~" is the logistic function.

=B"x + Bo,
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Binomial Logistic Regression (continued)

— p(x)

Logistic
transformation

Given a learning set {(x;, i)}, parameters 8 and 3, are usually estimated
by minimizing the cross-entropy error function:

C(8,Bo) = Z{/y,—emnp(x,) I(y; = 62) In[1 — p(x;)]}
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Multinomial Logistic Regression

@ Multinomial logistic regression (MLR) extends binomial LR to K > 2 by
assuming the following model:

In p(X) = B X + Bro + 7

where px(x) = P(Y = 0x|X = x), Bx €RY, Byo € Rand y c Ris a
constant that does not depend on k.

@ The posterior probability of class 6, can then be expressed using the
softmax transformation as

exp(Bix + Bro)
X) = .
pe) S exp(8] x + Bio)
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Multinomial Logistic Regression (continued)
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Parameters (8, ko), K = 1..., K can be estimated by minimizing the
cross-entropy as in the binomial case.
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Linear and nonlinear classifiers Nonlinear extensions
Outline

e Linear and nonlinear classifiers

@ Nonlinear extensions
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Nonlinear generalized LR classifiers

pl(x)
% pL(X)
p;<(X)

@ LR can be applied to transformed features ¢;(x), j=1,...,J, where the
¢j’s are nonlinear mappings from RY to R. We get nonlinear generalized
LR classifiers.

@ Both the new features ¢;(x) and the coefficients (5, Sko) are usually
learnt simultaneously by minimizing some cost function.
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Generalized LR models

@ Generalized additive models:
oi(x) = vj(x))
@ Radial basis function networks
oi(x) = e(llx — vll)
@ Support vector machines
oj(x) = K(x, X;)

@ Multilayer feedforward neural networks (NNs)
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Multilayer feedforward neural networks

hidden layer 1 hidden laver 2 hidden layer 3

input layer

@ Feedforward NNs are models composed of elementary computing units
(or “neurons”) arranged in layers. Each layer computes a vector of new
features as functions of the outputs from the previous layer as

o = b (wj(”%"’” I W,-(é)) c =1, d

where ¢!=") € RY-1 is the vector of outputs from the previous layer.
@ For classification, the output layer is typically a softmax layer with K
output units.
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Relation with DS theory?

@ LR and NN models seem totally unrelated to DS theory.
@ Yet...
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© Ds interpretation of GLR classifiers
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DS interpretation of GLR classifiers Binomial case
Outline

© Ds interpretation of GLR classifiers
@ Binomial case
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Feature values as evidence

@ Consider a binary classification problem with K = 2 classes in
© = {61,02}. Let ¢(x) = (¢1(x), ..., py(x)) be a vector of J features.

@ Each feature value ¢;(x) is a piece of evidence about the class Y € © of
the instance under consideration.

@ Assume that this evidence points to 64 or 6> depending on the sign of
w; = Bjgj(X) + «j,

where 3 and o, are two coefficients:

o If w; > 0, feature ¢; supports class ¢; with weight of evidence w;
e If w; <0, feature ¢; supports class ¢, with weight of evidence —w;
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Feature values as evidence (continued)

w;=p; ¢;(x) + oy

weight of evidence

support of 0, ’ support of 0,
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Feature-based latent mass function

Under this model, the consideration of feature ¢, induces a feature-based
latent mass function

m; = {91}W1’Jr S5 {Gg}wf_,
where
° W/+ = max(0, w;) is the positive part of w; and

® w; = max(0, —w;) is the negative part.
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DS interpretation of GLR classifiers Binomial case

Combined latent mass function

Assuming that the values of the J features can be considered as independent

pieces of evidence, the feature-based latent mass functions can be combined
by Dempster’s rule:

3
@L

(16 @ {62}
:

J J
= (@{91}"”?) ® (@{ez}wf)
j=1 j=1

={0}" @ {02},

-
Il

where

o wh = 2,4:1 Wj+ is the total weight of evidence supporting 61

o w~ =Y/ w is the total weight of evidence supporting 6,.
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Expression of m

[1 —exp(—w")]exp(—w")

m({0:}) = .
mi{s)) = L= R lexpCw)
m(©) = exp(—1wjﬁ— wo)

where & is the degree of conflict:

k=1 —exp(—w")][1 —exp(—w")]
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m({61}) and m(©) vs. weights of evidence
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Degree of conflict vs. weights of evidence
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DS interpretation of GLR classifiers Binomial case

Normalized plausibilities

The normalized plausibility of class 64 as

PI({61}) _ m({61}) + m(©)
PI({6:}) + PI({62}) — m({6:1}) + m({62}) + 2m(©)
1
1t exp[-(87¢(x) + fo)]
= p(x)
with 8 = (B1,...,8,) and o = Y0, .

Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the binomial LR model: the two models are equivalent.
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Two Views of Binomial Logistic Regression
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Parameter identification

@ As explained before, parameters fo, f1, . . ., 84 can be estimated by
maximizing the likelihood. Let 8y, 54, - . . , B4 be the corresponding MLEs.

@ However, the DS model has J more additional parameters aq, ..., ay
linked to By by the relation Z;’ﬂ aj = fp: the problem is underdetermined.

@ Solution: find the parameter values o7, ..., o that will give us the least
informative mass function.

@ The least informative mass function is defined as the one based on the
smallest weights of evidence.
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Minimizing the sum of squared weights of evidence

@ Let {(x;,yi)}7_, be the learning set and let o = (o1, ..., ay).

@ The values o} minimizing the sum of squared weights of evidence can be
found by solving the following minimization problem:

n J
min f(a) = Z Z (B\lqﬁ,(x,) + Oé/')z
i=1 j=1

subject to Y7 ; aj = fo.
@ Solution:

X B
Q= j Jzﬁqﬂq IB/M/

with Hj = %Qﬁj(X/).
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DS interpretation of GLR classifiers Binomial case

@ Data about the intensity of ischemic heart disease risk factors in a rural
area of South Africa. Population: white males between 15 and 64.
Response variable: presence or absence of myocardial infarction (Ml).

@ Two variables: age and LDL (“bad” cholesterol).
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DS interpretation of GLR classifiers Binomial case

Weights of evidence
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Feature mass functions
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Degrees of belief (positive class)
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Degrees of Plausibility (positive class)
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Mass on © and degree of conflict
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DS interpretation of GLR classifiers Binomial case

Decision regions
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DS interpretation of GLR classifiers Multinomial case
Outline

© Ds interpretation of GLR classifiers

@ Multinomial case
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DS interpretation of GLR classifiers Multinomial case

@ Let© ={0y,...,0k} with K > 2.

@ Each feature ¢; now induces K mass functions mj, ..., my.

@ Mass function my points either to the singleton {64} or to its complement
{6k}, depending on the sign of

Wik = Bikdj(X) + ok,
where (Bi, k), k=1,...,K,j=1,...,J are parameters.
@ Expression of my:
mi = {0} & [0
@ The latent mass function induced by feature ¢; is

K

m =P <{9k}w,; @{9k}w’*> :

k=1
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Combined latent mass function

@ We thus have JK elementary mass functions mj = {Hk}wf; ® {Qk}vv’;.

@ The combined mass function can be written as

J -
m=D (MW o {0 " )

j=1 k=1

- (1o e AT ).

k=1

where

o wi =37, wj is the total weight of evidence for class 6k
oW, = 14:1 w, is the total weight of evidence against class 6«
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Link with multinomial logistic regression

The normalized plausibility of class 6 is:

PI({0k}) exp (Z}/:1 Bikdji(X) + BOk)
Y PILO) S exp (27:1 Birj(x) + ﬁm)
Pr ()
with
J
ﬁok - Z Q.
j=1
Proposition

The normalized plausibilities are equal to the posterior class probabilities of
the multinomial LR model: the two models are equivalent.
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Multinomial Logistic Regression: DS view
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DS interpretation of GLR classifiers Multinomial case

Dataset: 900 instances, 3 equiprobable classes with Gaussian distributions
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DS interpretation of GLR classifiers Multinomial case

@ NN with 2 layers of 20 and 10 neurons

@ RelLU activation functions in hidden layers, softmax output layer
@ Batch learning, minibatch size=100

@ L, regularization in the last layer (A = 1).

Thierry Denceux ML and DS theory CGCKD 2018 56 /67



DS interpretation of GLR classifiers Multinomial case

Mass on {61}
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Mass on {60>}
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Mass on {603}

m({8s})
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Mass on {61,602}

m({61,62})

] 0.04
0.95 5708
007 7508

o

o

- _|

]

o

]

Thierry Denceux ML and DS theory CGCKD 2018 60/67



Mass on {61, 03}

m({61,03})
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Mass on {65, 03}

m({6,,63})
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DS interpretation of GLR classifiers Multinomial case

m(©)
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Hidden unit 2
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DS interpretation of GLR classifiers Multinomial case

Decision regions
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Summary

@ The theory of belief functions has great potential in machine learning to
e combine classifiers
e design specific classifiers, called evidential classifiers
@ Logistic regression, neural networks, and other nonlinear classifiers such
as SVMs can be viewed as evidential classifiers: they are based on
@ a model relating feature values to weights of evidence, and
o Dempster’s rule of combination.
@ Viewing neural network classifiers as evidential classifiers has important
implications in terms of

@ interpretation

@ decision strategies

o classifier fusion

e handling missing or uncertain inputs, etc.

These implications are currently being investigated.
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