
Bagging Improves Unertainty Representationin Evidential Pattern Classi�ationJ�er�emie Fran�ois1;2, Yves Grandvalet1, Thierry Den�ux1, and Jean-MihelRoger21 Universit�e de Tehnologie de Compi�egne, Heudiasy, UMR CNRS 6599,F-60205 Compi�egne, Frane2 Cemagref, GIQUAL Researh Unit, 361 rue Jean-Fran�ois Breton,F-34033 Montpellier, FraneAbstrat. Unertainty representation is a major issue in pattern reognition whenthe outputs of a lassi�er do not lead diretly to a �nal deision, but are used inombination with other systems, or as input to an interative deision proess. Insuh ontexts, it may be advantageous to resort to rih and exible formalisms forrepresenting and manipulating unertain information, suh as the Dempster-Shafertheory of Evidene. In this paper, it is shown that the quality and reliability ofthe outputs from an evidene-theoreti lassi�er may be improved using an adapta-tion from a resample-and-ombine approah introdued by Breiman and known as\bagging". This approah is explained and studied experimentally using simulateddata. In partiular, results show that bagging improves lassi�ation auray andlimits the inuene of outliers and ambiguous training patterns.Keywords: Supervised Pattern Reognition, K-Nearest Neighbor Rule, DeisionFusion, Dempster-Shafer Theory, Evidene Theory, Bootstrap, Bagging.1 IntrodutionIn the last thirty years, the issue of unertainty representation and manage-ment in supervised pattern reognition has reeived onsiderable attention.New theoretial frameworks have been proposed as alternatives to BayesianProbability theory to desribe, manipulate, and reason with partial knowl-edge and unreliable information. In partiular, the so-alled Dempster-Shafer(D-S) theory of Evidene, �rst proposed by Shafer [10℄ and further elaboratedby many authors has been shown to onstitute a rih and exible framework,in whih the onepts of a probability and possibility measures are reoveredas speial ases of the more general onept of belief funtion. This theory hasbeen suessfully applied in many areas suh as diagnosis [12℄, sensor fusion[1℄ and pattern lassi�ation [9,3℄.When applying D-S theory to lassi�ation tasks, the onstrution of be-lief funtions from observation data is a ruial step. Typially, a trainingset of patterns with known lassi�ation is given, and one wishes to quanti-fy one's beliefs onerning the ategory of a new pattern submitted to the



2 J�er�emie Fran�ois et al.system. The evidential K-NN rule, previously introdued by one of the au-thors [3,15℄, is suh a method for inferring a belief funtion by pooling theevidene from the nearest neighbors in the training set. In this paper, it isproposed to improve this method using a new variant of a tehnique, knownas \bagging", proposed by Breiman [2℄ in a onventional statistial ontext toimprove the stability of lassi�ation rules. This method is shown experimen-tally to provide a more \realisti" desription of the unertainty pertainingto the lassi�ation task, leading to improved lassi�ation performanes.The paper is organized as follows. Setion 2 introdues the main oneptsof Evidene Theory and their use in pattern reognition. Setion 3 depitsthe adaption of the bagging approah to evidential lassi�ers, followed bythe presentation and disussion of experimental results obtained in an arti�-ial learning task (Setions 4-6). Finally, Setion 7 onludes the paper andpresents diretions for further researh.2 Bakground2.1 Theory of Belief FuntionsOnly the main onepts of the Dempster-Shafer theory of belief funtions thatwe use in this paper will be realled here. The reader is referred to Shafer'sbook [10℄ for a detailed exposition of the mathematial bakground, and tomore reent papers suh as, e.g., Refs. [14,13℄ for up-to-date presentations ofthe latest developments in both the theoretial aspets and pratial appli-ations of belief funtions. Although our approah is not tied to a partiularinterpretation of belief funtions, we shall adopt the non-probabilisti viewof Smets' Transferable Belief Model (TBM), whih onstitutes a partiularlyoherent and justi�ed approah [14,13℄.In short, the main assumptions underlying the TBM are that (1) degreesof belief are quanti�ed by numbers between 0 and 1; (2) there exists a two-level struture omposed of a redal level where beliefs are entertained, anda pignisti level where deisions are made; (3) beliefs at the redal level arequanti�ed by belief funtions, while deisions at the pignisti level are basedon probability funtions; (4) when a deision has to be made, beliefs aretransformed into probabilities using the so-alled pignisti transformation.The Credal Level Let 
 = f!1; : : : ; !Mg be a �nite possibility spae on-taining all the possible answers to a ertain question (the truth lies neessarilysomewhere in 
). In the type of appliations envisaged here, 
 is the set ofpossible lasses for an objet with unknown lass membership. It is assumedthat any item of evidene an be represented by a belief struture, or basibelief assignment, de�ned as a funtion m from 2
 (the power set of 
) to



Bagging in evidential pattern reognition 3the [0,1℄ interval, verifying: XA�
m(A) = 1: (1)and m(;) = 0. The value of m(A) an be interpreted as the \mass" of beliefthat is given to A and that annot be given to any other subset withoutfurther information; if m(A) > 0, A is alled a foal element. For example,m(
) = 1 represents total ignorane (m is then alled the vauous beliefstruture), m(f!1g) = 0:5 stands for a moderated belief in hypothesis 1, andm(f!1; !2g) = 1 means omplete ertainty that either hypothesis 1 or hy-pothesis 2 is true (with no evidene in favor of any of one them individually).A new reliable piee of information an be inorporated by use of theDempster's rule of ombination [11℄, if and only if the two soures of belief(denoted m1 and m2) are independent and non-totally ontraditory. Theombination results in a new belief struture m = m1 �m2 on 
 that repre-sents the new state of knowledge.The pignisti level Given a belief struture, di�erent riteria an be usedto hoose one hypothesis. We will use here the pignisti risk minimization asde�ned and justi�ed by Smets [14℄ on an axiomati basis.Let Pbet be the so-alled pignisti probability distribution, de�ned byuniformly distributing the mass of belief given to eah subset of 
 among itselements: Pbet(!) = XfA�
j!2Ag m(A)jAj 8! 2 
; (2)where jAj is the number of elements in A.In the TBM, the pignisti probability funtion is used for deision makingaording to the Bayes deision theory. Let A denote a set of ations, and�(�j!) the loss inurred if ation � 2 A is seleted, ! 2 
 being the true stateof nature. Then, the expeted ost (or risk) of hoosing ation �, relative tothe pignisti distribution, is:Rbet(�) = X!2
 �(�j!) Pbet(!) (3)= XA�
 m(A)jAj X!2A�(�j!): (4)The Bayes deision theory then reommends the ation � with the lowestexpeted ost Rbet(�).



4 J�er�emie Fran�ois et al.2.2 Appliation to pattern lassi�ationReently, Den�ux proposed an evidene-theoreti distane-based lassi�er[3℄ whih takes fully advantage of the evidene theory, by staying free ofany intermediate probabilisti representation. The outline of this approah issummarized below.Let x be the sample to be lassi�ed, and let L = f(xi; yi)gNi=1 be thelearning set of known patterns, where yi 2 
 is the lass of pattern xi.First, the K-nearest neighbors of x in fxigNi=1 are seleted aording tothe Eulidean distane. Eah neighbor xk is then onsidered as an item ofevidene about the lass of x. If yk = !q , this evidene indues a beliefstruture mk with foal elements f!qg and 
 [3,5℄:mk(A) = 8<:� exp(�qkxk � xk2) if A = f!qg1� � exp(�qkxk � xk2) if A = 
0 otherwise (5)where kxk � xk is the Eulidean distane between xk and x. Parameter � 2[0; 1℄ sets the minimum belief mass given to 
, thus limits the ertaintyexpressed by training patterns. Parameters q 2 R+ adjust the inuene ofthe patterns of lass q aording to their distane to x. These oeÆients anbe determined from the data using a learning sheme proposed in Ref. [15℄.Then, as they are independent from eah other, the K belief struturesmk are ombined into a single struture m by means of Dempster's rule. Thisstruture summarizes the available information about the lass of x, providedby its neighborhood in the training set.Finally, m is used to ompute pignisti probabilities Pbet(!kjx), fromwhih lass assignment an be performed, using the approah desribed inSetion 2.1 [4℄. We de�ne A = f�0; �1; : : : ; �Mg the set of ations, where�i for i = 1; : : : ;M is the deision to lassify x in lass !i, and �0 denotesrejetion. The loss is assumed to be 1 in ase of a wrong lassi�ation and0 for orret lassi�ation. The rejetion loss is assumed to be onstant, andequal to some value �0 2 [0; 1℄. We thus have:�(�ij!j) = 1� Æij 8i; j 2 f1; : : : ;Mg (6)�(�0j!j) = �0 8j 2 f1; : : : ;Mg; (7)where Æij is the Kroneker symbol (Æij = 1 if i = j, and 0 otherwise).With these osts, the risks are de�ned, for eah ation, as follows :Rbet(�i) = 1� Pbet(!i); i = 1; : : : ;M (8)Rbet(�0) = �0 (9)Eah pattern is thus assigned to the lass with highest pignisti probability,provided that this probability is greater than 1� �0. Otherwise, it is rejet-ed. Consequently, parameter �0 allows to ontrol the rejetion rate of thelassi�er.



Bagging in evidential pattern reognition 53 Sampling, Learning and UnertaintyProblem The basi belief assignment de�ned by Eq. 5 handles the uner-tainty that stems from the possibly novel harateristis of the query sample.However, additional auses of unertainty exist. First, the known instanes xkare usually not \prototypial" patterns, suh as measurements obtained fromsome areful experimental design. They are reords of past solved ases, whihare supposed to be representative of future unsolved ases. In probabilistiterms, they may be onsidered as randomly sampled from the distribution offuture ases. This random sampling is responsible for some unertainty in theglobal belief assignment whih annot be taken into aount by the basi be-lief assignment whih is onditioned on a given realization of the training set.Additionally, when the parameters of the basi belief assignment are tunedby minimizing some performane riterion on the training set, the learnedparameters are also random variables, whose variability is responsible foranother part of unertainty.This is why we propose here the use of bagging, introdued in the proba-bilisti framework by Breiman [2℄ to limit the e�ets of sampling on a learneddeision rule.Bagging Deision Rules Bagging is a proedure for improving a lassi-�ation using a resample-and-ombine tehnique. Breiman argues that itsmain e�et is to derease the variane of the estimator, and advoates itsuse for unstable lassi�ation methods, i.e. methods whih are sensitive toperturbations of the training set.From the original deision rule, the bagged estimator is produed by ag-gregating using a majority vote on several repliates of the rule, trainedon bootstrap resamples of the learning set. A bootstrap sample [7℄ is re-ated by drawing with replaement N examples from the learning set L =f(xi; yi)gNi=1. It has thus the same size as the original sample but may on-tain repliates of some given examples, while other ones are not represented.The drawing with replaement in L simulates the original sampling from thedistribution that generated L. Empirial evaluations showed that the methodalmost systematially ompares favorably with the original preditor [2,6℄.Bagging in the TBM In pattern lassi�ation, bagging is usually appliedto the deisions. In this paper, however, we propose to use it upstream, atthe redal level.The main goal is to better take into aount the unertainty attahed tothe �nite training set, in order to allow steadier deisions and, onsequently,to improve the result of further ombinations when new soures are available.Pratially, as in deision rule bagging, B bootstrap learning sets Lb (b =1; : : : ; B) are obtained by drawing with replaement N examples from theoriginal learning set L. Here, the bootstrap is balaned, whih means that



6 J�er�emie Fran�ois et al.eah sample (xi; yi) is globally drawnB times over the B resamples. Then, fora given unknown sample x, eah training set Lb produes a belief struturemb through a given K-NN lassi�er. These are �nally aggregated into theaverage struture mB, de�ned as:8A � 
; mB(A) = 1B Xb=1;Bmb(A): (10)In ontrast to the usual bagging by majority vote on the B deision rules,aggregation thus takes plae at the redal level, using the average operator.While it is lear that aggregation should operate on beliefs, other operatorsould be used, suh as weighted averaging, or the seletion of the median orsome other partiular element among the B strutures1. Averaging was ho-sen as a good simple andidate as it is idempotent, ommutative and linear:�rst, getting B times the same struture should lead to this same strutureafter aggregation (idempoteny), seond, the resulting struture should beindependent from the aggregation order (ommutativity), and third, the lin-ear relationship between redal and probabilisti levels, introdued by Smets[14℄ in the deision proess, also supports linear aggregation (linearity).Remark: In our method, eah bootstrap resample of the training set generatesa belief struture for eah x. These B strutures are �rst aggregated byaveraging, and the deision is then based on this average belief struture.The faithful transposition of the original proposition of Breiman would havebeen to perform a majority vote between the deisions provided by the Blassi�ers. Experimental results (not shown here) show that this strategy is apoor hoie in the TBM framework. This suggests that the evidential K-NNproedure already provides stable deision rules, a �nding in agreement withBreiman's results onerning the standard K-NN [2℄.4 Experimental SettingsSo as to investigate the bene�ts of bagging, we will fous on an arti�iallearning task. For easy problems, with well-separated lasses and large train-ing sets, many di�erent algorithms yield similar results. A learning task ofinterest should therefore involve overlapping lass distributions and a smalllearning set. Additionally, it should ontain outliers as frequently enounteredin real data sets. Finally, a bidimensional problem allows lear representationand interpretation of the results.We thus onsider three bidimensional Gaussian distributions with om-mon ovariane matrix � = 2:25I and mean vetors (0; 0), (3; 0) and (0; 5).1 The Dempster's rule of ombination annot be used beause the belief souresare not independent.



Bagging in evidential pattern reognition 7Eah training set L is onstruted by drawing 15 points from eah distri-bution. Additionally, to simulate the ontamination of the training set byoutliers, 6 points with randomly seleted lass labels are drawn from a uni-form distribution on [�5; 9℄� [�3; 8℄. To exhibit general trends, 15 trainingsets were generated from the same distribution. Fig. 1 shows an example ofsuh a generated set.
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Fig. 1. Example of a generated learning set. The intersetions of dotted lines indi-ate the lass means.Evaluation For eah training set, the deision rule is evaluated on a singleindependent test set T generated from the same distribution as L with NT =2000 � 3 + 800 items. The mean lassi�ation ost C is estimated by theaverage of the lassi�ation osts on the NT test points of T :C = 1NT X(x;y)2T �(D(x)jy) (11)where D(x) 2 A = f�0; : : : ; �Mg denotes the deision made by the lassi�erfor pattern x. The osts are de�ned aording to Eqs. 6 and 7.The lassi�ation error rate E is estimated by the proportion of bad pre-ditions (rejetion is not an error) and the rejetion rate R is de�ned as theproportion of rejeted items. We thus have the relation C = E+ �0R.Finally, we will also make use of the mean quadrati di�erene between thepignisti probabilities Pbet(!i) and the lass posterior probabilities p(!ijx):Q = Z Xi (Pbet(!ijx)� p(!ijx))2p(x)dx; (12)The mean lassi�ation ost and the error rate are also omputed for theBayes lassi�er, whose optimal solution provides a baseline to ompare resultswith and without bagging. Its performanes also haraterize the intrinsi



8 J�er�emie Fran�ois et al.diÆulty of the task. For instane, the minimal rejetion rates to ahievelassi�ation error rates of 10% and 5% are here respetively 23% (for �0 =0:34) and 42% (for �0 = 0:19).Results are reported aording to two deision strategies. In the �rst one,the rejetion ost �0 is �xed and may orrespond, e.g., to the ost of the infor-mation needed to resolve the ambiguity. The performane is then measuredby the mean lassi�ation ost C. In the seond one, a given lassi�ationerror rate is required. Pratially, the tuning parameter is still �0, but theinteresting quantity is now the minimum rejetion rate required to meet theriterion.Implementation The method proposed by Den�ux bears some resem-blane with the Parzen method when the neighborhood is extended to thewhole training set (K = N), beause the inuene of a neighboring vetordereases with its distane to the query point. Setting K = 8 ahieves anear-asymptoti behavior while limiting the omputational expense.The inuene of training patterns depends on parameters � and  (seeEq. 5). As the inuene of � on the lassi�ation is low [3℄, and in order toredue the omplexity of the analysis, it was set to the \standard" 0:95 value.Regarding , we will proeed here in two steps. First, all q are �xed (Setion5); they are set to the same value (0.5) sine the three lasses have the sameshape and the same number of items. Then, di�erent learning strategies aretested in Setion 6.Finally, the average struture mB estimates the expeted struture overtraining sets. The expetation over training samples is ideally estimated bythe expetation over bootstrap samples. Hene, the number B of bootstrapsamples should tend towards in�nity. In fat, the e�et of bagging is quitevisible for values as low as B = 10. We used B = 50, as the small improve-ment ahieved by higher values is not worth the omputation ost. Note thatBreiman reommends values around 25.5 Results without LearningIn this setion, the results with and without bagging will be ompared fromtwo viewpoints: �rst, the quality of the deisions (measured by the meanlassi�ation ost or by the rejetion rate needed to ahieve a given errorrate), and then the loseness of the pignisti probabilities to the lass posteriorprobabilities.5.1 Deision LevelThe �rst plot of �gure 2 shows mean lassi�ation osts vs. rejetion osts forthe 15 experiments. The horizontal segments in boxplots represent the lowerquartile, median, and upper quartile results. Minimal and maximal values



Bagging in evidential pattern reognition 9are indiated by the whiskers, and the plotted urve itself is the averageover experiments. Bagging learly improves lassi�ation for low lassi�ationosts �0 < 0:3, i.e. higher rejetion rates. Its ost is half-way between theoriginal algorithm and the Bayes lassi�er. However, this bene�t vanishes forhigh values of �0 (low rejetion rates). The improvement due to bagging isthus linked to its higher apaity to rejet truly ambiguous patterns. but thepignisti probabilities values may be signi�antly modi�ed so that rejetionis more ommon.
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Fig. 2. Mean lassi�ation ost (left) and rejetion rate (right) as a funtion ofrejetion ost for lassi (thin line) and bagged (bold line) methods. The dottedline orresponds to the Bayes lassi�er
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Fig. 3. Rejetion rate R as a funtion of lassi�ation error rate E for original(thin line) and bagged (bold line) methods. The dotted line orresponds to theBayes lassi�erThe seond plot of Fig. 2 shows that the rejetion rate of the bagged rule ismuh higher than that of the original rule. This means that bagging inreases



10 J�er�emie Fran�ois et al.the unertainty attahed to the lassi�ation, that is, the unertainty aboutonlusions. Rejetion rate with bagging is also muh loser to the Bayeslassi�er rate (for low �0 values), but however still lower. Bagging thus weak-ens the tendeny of the original algorithm to over-estimate the on�dene inlassi�ation.These observations are on�rmed when looking at the �xed error ratestrategy in Fig. 3, where lassi�ation is visibly improved for the most strin-gent error rates requirements. Table 1 displays the mean rejetion rates ob-tained with and without bagging for several error rates. The improvementsare higher than what the boxplot in Fig. 3 suggests, beause the boxplotsshow the global variability in performane for di�erent training sets. The in-dividual omparisons for eah training set are summarized in Table 1. In thistable, the seond olumn (S-0-F) reports the number of trials for whih thebagged version performed signi�antly better or signi�antly worse (�rst andthird �gure, respetively) than the non-bagged version at the 5 % signi�anelevel, aording to the exat MNemar test for mathed samples (see, for in-stane, [8℄). The middle �gure is the remaining number of ases, for whihdi�erenes between the two methods were not signi�ant. These results showthat bagging never performs worse than the original lassi�er for error ratesbelow 15%, and that it signi�antly improves the mean results for all errorrates below 20%.Table 1. Mean Rejetion rates R (in %) for some given target error rates E (in%). Column S{0{F reports the number of signi�ant suess and failures (at the5% level) of bagging for eah training set. The p-values reporting the smallest levelfor whih mean rejetion rates di�er signi�antly are all below 0.02%E S{0-F Original Bagged2.5 12{3{0 74.2 68.95.0 15{0{0 57.0 51.510.0 15{0{0 32.3 29.615.0 7{8{0 16.4 15.920.0 6{6{3 5.8 5.6For a lassi�ation task with a small number of lasses, taking into a-ount the unertainty due to the �nite size of the training sample hardlymodi�es the rank of the highest pignisti probability. Its value is howeverduly lowered, whih is interpreted as a more unertain outome. Bagging isthus bene�ial when the values attahed to belief assignments are of interest.Besides rejetion, all appliations where a measure of unertainty should beattahed to the deision are onerned.



Bagging in evidential pattern reognition 115.2 Pignisti LevelWhile it may be possible to display the e�et of bagging at the redal level,there is no satisfatory riterion for measuring the relevane of a belief stru-ture. We thus resort to the study of pignisti probabilities whih give moreinformation on beliefs than the deisions themselves. Results of the previoussetions provided hints suggesting that, with bagging, the pignisti probabil-ities Pbet should be loser to the posterior probabilities p. Indeed, the meanquadrati errors Q on posterior lass probabilities (Eq. 12) are about 40%lower on the whole spae when bagging is applied to the K-NN rule.
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Fig. 4. Posterior probability p(!2jx) (top) and pignisti probability Pbet(!2jx)without bagging (bottom left) and with bagging (bottom right). Vertial lines loatethe enters of the three lass distributionsWe an easily illustrate situations where bagging is the most bene�ialby plotting the probability surfaes, An example is given in Fig. 4, whihshows that the main improvements our at lass boundaries and for outliers(one is situated in the lower-left orner of the graph). Bagging thus yield-s a better representation of unertainties, stemming either from ambiguity(where lasses overlap) or from lak of information (in regions of low densityof training patterns).The orretion of these two types of unertainties does not have the sameimpat on the estimation of posterior lass probabilities, and on the mean
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Fig. 5. Contours of the quadrati error on p(!2jx), weighted by the mixture densityp(x) (�10�4). left: without bagging; right: with bagging.lassi�ation rate (deision level). This is illustrated in Fig. 5, whih givesthe quadrati error ontours weighted by the mixture density p(x). For ex-ample, as the outlier is situated in a region of low density, the weakening ofits inuene by the bagging proedure results in a negligible ontribution tothe mean error rate improvement. However, this e�et ould be muh morenotieable with other mislassi�ation osts : in a medial diagnosis applia-tion, for example, an outlier in the \healthy" lass an ause an absene ofillness detetion.6 Remarks about LearningIn the previous setions, the parameters � and  of the basi belief assignmentwere set at arbitrary values. The e�et of bagging regarding unertainty dueto the �nite sample size was thus isolated. This setion depits the e�et ofbagging regarding the unertainty pertaining to the learning of parameters.Here, � is kept at 0.95 as it was shown to have only marginal inuene onthe lassi�ation results [3,15℄.As explained in Setion 2.2, the inuene regions of training patterns areontrolled by  (Eq. 5). Fig. 6 shows the mean lassi�ation ost as a funtionof  for the original lassi�er and its bagged version.The bagged K-NN mean lassi�ation ost aording to  is always lowerthan that of the original algorithm for any given rejetion ost. Thus, theresults presented in the previous setions are representative of what wouldbe obtained for any value of . The omparison of the two plots in Fig. 6also shows that the di�erenes between the two methods are larger for smallrejetion osts, regardless of .Bagging is more e�etive in improving the original method for small valuesof , i.e., when all neighbors have the same inuene, regardless of theirdistane to the query sample. In this ase, the resulting belief is too on�dent,and bagging neatly orrets it.
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