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Abstract. Uncertainty representation is a major issue in pattern recognition when
the outputs of a classifier do not lead directly to a final decision, but are used in
combination with other systems, or as input to an interactive decision process. In
such contexts, it may be advantageous to resort to rich and flexible formalisms for
representing and manipulating uncertain information, such as the Dempster-Shafer
theory of Evidence. In this paper, it is shown that the quality and reliability of
the outputs from an evidence-theoretic classifier may be improved using an adapta-
tion from a resample-and-combine approach introduced by Breiman and known as
“bagging”. This approach is explained and studied experimentally using simulated
data. In particular, results show that bagging improves classification accuracy and
limits the influence of outliers and ambiguous training patterns.
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1 Introduction

In the last thirty years, the issue of uncertainty representation and manage-
ment in supervised pattern recognition has received considerable attention.
New theoretical frameworks have been proposed as alternatives to Bayesian
Probability theory to describe, manipulate, and reason with partial knowl-
edge and unreliable information. In particular, the so-called Dempster-Shafer
(D-S) theory of Evidence, first proposed by Shafer [10] and further elaborated
by many authors has been shown to constitute a rich and flexible framework,
in which the concepts of a probability and possibility measures are recovered
as special cases of the more general concept of belief function. This theory has
been successfully applied in many areas such as diagnosis [12], sensor fusion
[1] and pattern classification [9,3].

When applying D-S theory to classification tasks, the construction of be-
lief functions from observation data is a crucial step. Typically, a training
set of patterns with known classification is given, and one wishes to quanti-
fy one’s beliefs concerning the category of a new pattern submitted to the
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system. The evidential K-NN rule, previously introduced by one of the au-
thors [3,15], is such a method for inferring a belief function by pooling the
evidence from the nearest neighbors in the training set. In this paper, it is
proposed to improve this method using a new variant of a technique, known
as “bagging”, proposed by Breiman [2] in a conventional statistical context to
improve the stability of classification rules. This method is shown experimen-
tally to provide a more “realistic” description of the uncertainty pertaining
to the classification task, leading to improved classification performances.

The paper is organized as follows. Section 2 introduces the main concepts
of Evidence Theory and their use in pattern recognition. Section 3 depicts
the adaption of the bagging approach to evidential classifiers, followed by
the presentation and discussion of experimental results obtained in an artifi-
cial learning task (Sections 4-6). Finally, Section 7 concludes the paper and
presents directions for further research.

2 Background

2.1 Theory of Belief Functions

Only the main concepts of the Dempster-Shafer theory of belief functions that
we use in this paper will be recalled here. The reader is referred to Shafer’s
book [10] for a detailed exposition of the mathematical background, and to
more recent papers such as, e.g., Refs. [14,13] for up-to-date presentations of
the latest developments in both the theoretical aspects and practical appli-
cations of belief functions. Although our approach is not tied to a particular
interpretation of belief functions, we shall adopt the non-probabilistic view
of Smets’ Transferable Belief Model (TBM), which constitutes a particularly
coherent and justified approach [14,13].

In short, the main assumptions underlying the TBM are that (1) degrees
of belief are quantified by numbers between 0 and 1; (2) there exists a two-
level structure composed of a credal level where beliefs are entertained, and
a pignistic level where decisions are made; (3) beliefs at the credal level are
quantified by belief functions, while decisions at the pignistic level are based
on probability functions; (4) when a decision has to be made, beliefs are
transformed into probabilities using the so-called pignistic transformation.

The Credal Level Let 2 = {wy,... ,wa} be a finite possibility space con-
taining all the possible answers to a certain question (the truth lies necessarily
somewhere in (2). In the type of applications envisaged here, (2 is the set of
possible classes for an object with unknown class membership. It is assumed
that any item of evidence can be represented by a belief structure, or basic
belief assignment, defined as a function m from 2% (the power set of 2) to
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the [0,1] interval, verifying:

> m(A) =1. (1)

and m()) = 0. The value of m(A) can be interpreted as the “mass” of belief
that is given to A and that cannot be given to any other subset without
further information; if m(A) > 0, A is called a focal element. For example,
m(f2) = 1 represents total ignorance (m is then called the vacuous belief
structure), m({w; }) = 0.5 stands for a moderated belief in hypothesis 1, and
m({wi,w2}) = 1 means complete certainty that either hypothesis 1 or hy-
pothesis 2 is true (with no evidence in favor of any of one them individually).

A new reliable piece of information can be incorporated by use of the
Dempster’s rule of combination [11], if and only if the two sources of belief
(denoted m; and ms) are independent and non-totally contradictory. The
combination results in a new belief structure m = my ® ms on (2 that repre-
sents the new state of knowledge.

The pignistic level Given a belief structure, different criteria can be used
to choose one hypothesis. We will use here the pignistic risk minimization as
defined and justified by Smets [14] on an axiomatic basis.

Let Pbet be the so-called pignistic probability distribution, defined by
uniformly distributing the mass of belief given to each subset of {2 among its
elements:

Phet(w)= Y. # Vw € 2, (2)
{ACQ|wEA)} |

where |A| is the number of elements in A.

In the TBM, the pignistic probability function is used for decision making
according to the Bayes decision theory. Let A denote a set of actions, and
A(ajw) the loss incurred if action a € A is selected, w € {2 being the true state
of nature. Then, the expected cost (or risk) of choosing action «, relative to
the pignistic distribution, is:

Rbet(a) = Y  A(ajw) Pbet(w) (3)
wEeSN
= # 3" Mafw). (4)
ACR | | wEA

The Bayes decision theory then recommends the action a with the lowest
expected cost Rbet(a).
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2.2 Application to pattern classification

Recently, Denceux proposed an evidence-theoretic distance-based classifier
[3] which takes fully advantage of the evidence theory, by staying free of
any intermediate probabilistic representation. The outline of this approach is
summarized below.

Let = be the sample to be classified, and let £ = {(z;, y:)}X; be the
learning set of known patterns, where y; € (2 is the class of pattern z;.

First, the K-nearest neighbors of z in {z;}}¥, are selected according to
the Euclidean distance. Each neighbor zj is then considered as an item of
evidence about the class of z. If y;, = w,, this evidence induces a belief
structure my, with focal elements {w,} and 2 [3,5]:

aexp(—yglley —xl]?) if A= {w,}
mi(A4) = { 1= aexp(—yqlles — o2) if A= 2 (5)
0 otherwise

where ||z — || is the Euclidean distance between z; and z. Parameter o €
[0,1] sets the minimum belief mass given to 2, thus limits the certainty
expressed by training patterns. Parameters v, € Rt adjust the influence of
the patterns of class ¢ according to their distance to x. These coefficients can
be determined from the data using a learning scheme proposed in Ref. [15].

Then, as they are independent from each other, the K belief structures
my, are combined into a single structure m by means of Dempster’s rule. This
structure summarizes the available information about the class of z, provided
by its neighborhood in the training set.

Finally, m is used to compute pignistic probabilities Pbet(wy|z), from
which class assignment can be performed, using the approach described in
Section 2.1 [4]. We define A = {ap, a1,...,an} the set of actions, where
a; for i = 1,..., M is the decision to classify z in class w;, and g denotes
rejection. The loss is assumed to be 1 in case of a wrong classification and
0 for correct classification. The rejection loss is assumed to be constant, and
equal to some value Ag € [0,1]. We thus have:

)\(ai|w]~) =1 _51']' Vi, j € {1, ,M} (6)
)\(a0|w]~) = )\0 \V/] S {1, ,M}, (7)

where d;; is the Kronecker symbol (d;; = 1 if i = j, and 0 otherwise).
With these costs, the risks are defined, for each action, as follows :

Rbet(q;) =1 —Pbet(w;), i=1,..., M (8)
Rbet(ao) =X (9)

Each pattern is thus assigned to the class with highest pignistic probability,
provided that this probability is greater than 1 — Ag. Otherwise, it is reject-
ed. Consequently, parameter )y allows to control the rejection rate of the
classifier.
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3 Sampling, Learning and Uncertainty

Problem The basic belief assignment defined by Eq. 5 handles the uncer-
tainty that stems from the possibly novel characteristics of the query sample.
However, additional causes of uncertainty exist. First, the known instances xj,
are usually not “prototypical” patterns, such as measurements obtained from
some careful experimental design. They are records of past solved cases, which
are supposed to be representative of future unsolved cases. In probabilistic
terms, they may be considered as randomly sampled from the distribution of
future cases. This random sampling is responsible for some uncertainty in the
global belief assignment which cannot be taken into account by the basic be-
lief assignment which is conditioned on a given realization of the training set.
Additionally, when the parameters of the basic belief assignment are tuned
by minimizing some performance criterion on the training set, the learned
parameters are also random variables, whose variability is responsible for
another part of uncertainty.

This is why we propose here the use of bagging, introduced in the proba-
bilistic framework by Breiman [2] to limit the effects of sampling on a learned
decision rule.

Bagging Decision Rules Bagging is a procedure for improving a classi-
fication using a resample-and-combine technique. Breiman argues that its
main effect is to decrease the variance of the estimator, and advocates its
use for unstable classification methods, i.e. methods which are sensitive to
perturbations of the training set.

From the original decision rule, the bagged estimator is produced by ag-
gregating using a majority vote on several replicates of the rule, trained
on bootstrap resamples of the learning set. A bootstrap sample [7] is cre-
ated by drawing with replacement N examples from the learning set £ =
{(zi, yi)}V,. Tt has thus the same size as the original sample but may con-
tain replicates of some given examples, while other ones are not represented.
The drawing with replacement in £ simulates the original sampling from the
distribution that generated £. Empirical evaluations showed that the method
almost systematically compares favorably with the original predictor [2,6].

Bagging in the TBM In pattern classification, bagging is usually applied
to the decisions. In this paper, however, we propose to use it upstream, at
the credal level.

The main goal is to better take into account the uncertainty attached to
the finite training set, in order to allow steadier decisions and, consequently,
to improve the result of further combinations when new sources are available.

Practically, as in decision rule bagging, B bootstrap learning sets £, (b =
1,...,B) are obtained by drawing with replacement N examples from the
original learning set L. Here, the bootstrap is balanced, which means that
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each sample (z;, y;) is globally drawn B times over the B resamples. Then, for
a given unknown sample z, each training set £, produces a belief structure
my through a given K-NN classifier. These are finally aggregated into the
average structure mp, defined as:

VAC 2, ms(A) :% > my(A). (10)

b=1,B

In contrast to the usual bagging by majority vote on the B decision rules,
aggregation thus takes place at the credal level, using the average operator.
While it is clear that aggregation should operate on beliefs, other operators
could be used, such as weighted averaging, or the selection of the median or
some other particular element among the B structures'. Averaging was cho-
sen as a good simple candidate as it is idempotent, commutative and linear:
first, getting B times the same structure should lead to this same structure
after aggregation (idempotency), second, the resulting structure should be
independent from the aggregation order (commutativity), and third, the lin-
ear relationship between credal and probabilistic levels, introduced by Smets
[14] in the decision process, also supports linear aggregation (linearity).

Remark: In our method, each bootstrap resample of the training set generates
a belief structure for each z. These B structures are first aggregated by
averaging, and the decision is then based on this average belief structure.
The faithful transposition of the original proposition of Breiman would have
been to perform a majority vote between the decisions provided by the B
classifiers. Experimental results (not shown here) show that this strategy is a
poor choice in the TBM framework. This suggests that the evidential K-NN
procedure already provides stable decision rules, a finding in agreement with
Breiman’s results concerning the standard K-NN [2].

4 Experimental Settings

So as to investigate the benefits of bagging, we will focus on an artificial
learning task. For easy problems, with well-separated classes and large train-
ing sets, many different algorithms yield similar results. A learning task of
interest should therefore involve overlapping class distributions and a small
learning set. Additionally, it should contain outliers as frequently encountered
in real data sets. Finally, a bidimensional problem allows clear representation
and interpretation of the results.

We thus consider three bidimensional Gaussian distributions with com-
mon covariance matrix X = 2.25I and mean vectors (0,0), (3,0) and (0, 5).

! The Dempster’s rule of combination cannot be used because the belief sources
are not independent.
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Each training set £ is constructed by drawing 15 points from each distri-
bution. Additionally, to simulate the contamination of the training set by
outliers, 6 points with randomly selected class labels are drawn from a uni-
form distribution on [—5,9] x [—3,8]. To exhibit general trends, 15 training
sets were generated from the same distribution. Fig. 1 shows an example of
such a generated set.

Fig. 1. Example of a generated learning set. The intersections of dotted lines indi-
cate the class means.

Evaluation For each training set, the decision rule is evaluated on a single
independent test set 7 generated from the same distribution as £ with Ny =
2000 x 3 + 800 items. The mean classification cost C is estimated by the
average of the classification costs on the N test points of 7T

1
C=1 3 D@ (11)
-
(z,y)eT
where D(z) € A= {ay,...,an} denotes the decision made by the classifier

for pattern z. The costs are defined according to Eqs. 6 and 7.

The classification error rate E is estimated by the proportion of bad pre-
dictions (rejection is not an error) and the rejection rate R is defined as the
proportion of rejected items. We thus have the relation C = E + AgR.

Finally, we will also make use of the mean quadratic difference between the
pignistic probabilities Pbet(w;) and the class posterior probabilities p(w;|z):

Q= / S (Poet(uife) — pleile)*p(e)da, (12)

The mean classification cost and the error rate are also computed for the
Bayes classifier, whose optimal solution provides a baseline to compare results
with and without bagging. Its performances also characterize the intrinsic
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difficulty of the task. For instance, the minimal rejection rates to achieve
classification error rates of 10% and 5% are here respectively 23% (for \g =
0.34) and 42% (for Ao = 0.19).

Results are reported according to two decision strategies. In the first one,
the rejection cost Ag is fixed and may correspond, e.g., to the cost of the infor-
mation needed to resolve the ambiguity. The performance is then measured
by the mean classification cost C. In the second one, a given classification
error rate is required. Practically, the tuning parameter is still Ao, but the
interesting quantity is now the minimum rejection rate required to meet the
criterion.

Implementation The method proposed by Denceux bears some resem-
blance with the Parzen method when the neighborhood is extended to the
whole training set (K = N), because the influence of a neighboring vector
decreases with its distance to the query point. Setting K = 8 achieves a
near-asymptotic behavior while limiting the computational expense.

The influence of training patterns depends on parameters a and ~y (see
Eq. 5). As the influence of a on the classification is low [3], and in order to
reduce the complexity of the analysis, it was set to the “standard” 0.95 value.
Regarding +y, we will proceed here in two steps. First, all v, are fixed (Section
5); they are set to the same value (0.5) since the three classes have the same
shape and the same number of items. Then, different learning strategies are
tested in Section 6.

Finally, the average structure mp estimates the expected structure over
training sets. The expectation over training samples is ideally estimated by
the expectation over bootstrap samples. Hence, the number B of bootstrap
samples should tend towards infinity. In fact, the effect of bagging is quite
visible for values as low as B = 10. We used B = 50, as the small improve-
ment achieved by higher values is not worth the computation cost. Note that
Breiman recommends values around 25.

5 Results without Learning

In this section, the results with and without bagging will be compared from
two viewpoints: first, the quality of the decisions (measured by the mean
classification cost or by the rejection rate needed to achieve a given error
rate), and then the closeness of the pignistic probabilities to the class posterior
probabilities.

5.1 Decision Level

The first plot of figure 2 shows mean classification costs vs. rejection costs for
the 15 experiments. The horizontal segments in boxplots represent the lower
quartile, median, and upper quartile results. Minimal and maximal values
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are indicated by the whiskers, and the plotted curve itself is the average
over experiments. Bagging clearly improves classification for low classification
costs Ao < 0.3, i.e. higher rejection rates. Its cost is half-way between the
original algorithm and the Bayes classifier. However, this benefit vanishes for
high values of A9 (low rejection rates). The improvement due to bagging is
thus linked to its higher capacity to reject truly ambiguous patterns. but the
pignistic probabilities values may be significantly modified so that rejection
is more common.

0.351 100p.
0.3f
0.25¢

0.2

R (%)

o
0.15¢

0.1r

0.05r/¢.""

ot
0 0.1 0.2 0.3)\ 0.4 0.5 0.6 0] 0.1 0.2 0.?)\ 0.4 0.5 0.6
0 0o

Fig. 2. Mean classification cost (left) and rejection rate (right) as a function of
rejection cost for classic (thin line) and bagged (bold line) methods. The dotted
line corresponds to the Bayes classifier
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Fig. 3. Rejection rate R as a function of classification error rate E for original
(thin line) and bagged (bold line) methods. The dotted line corresponds to the
Bayes classifier

The second plot of Fig. 2 shows that the rejection rate of the bagged rule is
much higher than that of the original rule. This means that bagging increases
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the uncertainty attached to the classification, that is, the uncertainty about
conclusions. Rejection rate with bagging is also much closer to the Bayes
classifier rate (for low \g values), but however still lower. Bagging thus weak-
ens the tendency of the original algorithm to over-estimate the confidence in
classification.

These observations are confirmed when looking at the fixed error rate
strategy in Fig. 3, where classification is visibly improved for the most strin-
gent error rates requirements. Table 1 displays the mean rejection rates ob-
tained with and without bagging for several error rates. The improvements
are higher than what the boxplot in Fig. 3 suggests, because the boxplots
show the global variability in performance for different training sets. The in-
dividual comparisons for each training set are summarized in Table 1. In this
table, the second column (S-0-F) reports the number of trials for which the
bagged version performed significantly better or significantly worse (first and
third figure, respectively) than the non-bagged version at the 5 % significance
level, according to the exact McNemar test for matched samples (see, for in-
stance, [8]). The middle figure is the remaining number of cases, for which
differences between the two methods were not significant. These results show
that bagging never performs worse than the original classifier for error rates
below 15%, and that it significantly improves the mean results for all error
rates below 20%.

Table 1. Mean Rejection rates R (in %) for some given target error rates E (in
%). Column S-0-F reports the number of significant success and failures (at the
5% level) of bagging for each training set. The p-values reporting the smallest level
for which mean rejection rates differ significantly are all below 0.02%

E S-0-F Original Bagged
2.5 12-3-0 74.2 68.9
5.0 15-0-0 57.0 51.5
10.0 15-0-0 32.3 29.6
15.0 7-8-0 16.4 15.9
20.0 6-6-3 5.8 5.6

For a classification task with a small number of classes, taking into ac-
count the uncertainty due to the finite size of the training sample hardly
modifies the rank of the highest pignistic probability. Its value is however
duly lowered, which is interpreted as a more uncertain outcome. Bagging is
thus beneficial when the values attached to belief assignments are of interest.
Besides rejection, all applications where a measure of uncertainty should be
attached to the decision are concerned.
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5.2 Pignistic Level

While it may be possible to display the effect of bagging at the credal level,
there is no satisfactory criterion for measuring the relevance of a belief struc-
ture. We thus resort to the study of pignistic probabilities which give more
information on beliefs than the decisions themselves. Results of the previous
sections provided hints suggesting that, with bagging, the pignistic probabil-
ities Pbet should be closer to the posterior probabilities p. Indeed, the mean
quadratic errors Q on posterior class probabilities (Eq. 12) are about 40%
lower on the whole space when bagging is applied to the K-NN rule.

Pbet(w2|x)

Pbet(w2|x)
(without bagging) l
[N

(with bagging)
1 -
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Fig. 4. Posterior probability p(wz|z) (top) and pignistic probability Pbet(w:|z)
without bagging (bottom left) and with bagging (bottom right). Vertical lines locate
the centers of the three class distributions

We can easily illustrate situations where bagging is the most beneficial
by plotting the probability surfaces, An example is given in Fig. 4, which
shows that the main improvements occur at class boundaries and for outliers
(one is situated in the lower-left corner of the graph). Bagging thus yield-
s a better representation of uncertainties, stemming either from ambiguity
(where classes overlap) or from lack of information (in regions of low density
of training patterns).

The correction of these two types of uncertainties does not have the same
impact on the estimation of posterior class probabilities, and on the mean
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Fig. 5. Contours of the quadratic error on p(w2|z), weighted by the mixture density
p(z) (x107). left: without bagging; right: with bagging.

classification rate (decision level). This is illustrated in Fig. 5, which gives
the quadratic error contours weighted by the mixture density p(x). For ex-
ample, as the outlier is situated in a region of low density, the weakening of
its influence by the bagging procedure results in a negligible contribution to
the mean error rate improvement. However, this effect could be much more
noticeable with other misclassification costs : in a medical diagnosis applica-
tion, for example, an outlier in the “healthy” class can cause an absence of
illness detection.

6 Remarks about Learning

In the previous sections, the parameters o and «y of the basic belief assignment
were set, at arbitrary values. The effect of bagging regarding uncertainty due
to the finite sample size was thus isolated. This section depicts the effect of
bagging regarding the uncertainty pertaining to the learning of parameters.
Here, « is kept at 0.95 as it was shown to have only marginal influence on
the classification results [3,15].

As explained in Section 2.2, the influence regions of training patterns are
controlled by v (Eq. 5). Fig. 6 shows the mean classification cost as a function
of v for the original classifier and its bagged version.

The bagged K-NN mean classification cost according to v is always lower
than that of the original algorithm for any given rejection cost. Thus, the
results presented in the previous sections are representative of what would
be obtained for any value of . The comparison of the two plots in Fig. 6
also shows that the differences between the two methods are larger for small
rejection costs, regardless of +.

Bagging is more effective in improving the original method for small values
of v, i.e., when all neighbors have the same influence, regardless of their
distance to the query sample. In this case, the resulting belief is too confident,
and bagging neatly corrects it.
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Fig. 6. Mean classification cost C as a function of v for A\g = 0.15 (top) and Ao = 0.3
(bottom). The dotted line represents the Bayes classification cost, thin lines and
bold lines represent respectively classic and bagged K-NN classifications

In comparing the two graphs, it may be noted that, for the bagged al-
gorithm, the optimal -y value is identical for both rejection costs, while it
depends on g for the standard algorithm. Indeed, these two values should
ideally not interact, as beliefs should not be affected by the consequences of
actions. These consequences should only be taken into account in the decision
process.

Finally, the lower variability of C provides a steadier optimal v value and
a lower sensitivity to errors in v, in terms of misclassification cost.

7 Conclusion

Standard classifiers are sensitive to ambiguous training items such as mis-
labeled patterns or outliers. Regarding this point, the evidential K-NN rule
improves upon the original probabilistic rule, as the certainty expressed by
training patterns can be limited to weaken the influence of ambiguous items.
In this paper, we show that bagging the belief structure construction process
further improves this robustness.

Classification error is shown to be significantly reduced for high to in-
termediate rejection rates, and is always observed to be lower than that of
the non-bagged K-NN rule. Pignistic probabilities are much closer to poste-
rior probabilities, which in turns supports the idea that bagging defines more
relevant belief structures.

Beyond the evidential K-NN, this paper illustrates the necessity to build
generic tools for inferring beliefs. It is probably the first attempt to take
into account the uncertainty due to the presence/absence of an information
source upon which beliefs are constructed. In the classical pattern recognition
paradigm, where information sources are points assumed to be sampled from
some fixed distribution, resample and combine techniques provide a fully
automatic means to correct undue certainty in inferred beliefs.
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Work in progress shows that the gain is more important for classifiers

that make a more intensive use of data (with more learning parameters).
More sophisticated inference methods such as decision trees or fuzzy K-means
should thus also be improved. Investigations could be done on other operators
to combine the belief structures in the bagging procedure in order to further
improve the quality of belief representation at the credal level.
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