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eAbstra
t. Un
ertainty representation is a major issue in pattern re
ognition whenthe outputs of a 
lassi�er do not lead dire
tly to a �nal de
ision, but are used in
ombination with other systems, or as input to an intera
tive de
ision pro
ess. Insu
h 
ontexts, it may be advantageous to resort to ri
h and 
exible formalisms forrepresenting and manipulating un
ertain information, su
h as the Dempster-Shafertheory of Eviden
e. In this paper, it is shown that the quality and reliability ofthe outputs from an eviden
e-theoreti
 
lassi�er may be improved using an adapta-tion from a resample-and-
ombine approa
h introdu
ed by Breiman and known as\bagging". This approa
h is explained and studied experimentally using simulateddata. In parti
ular, results show that bagging improves 
lassi�
ation a

ura
y andlimits the in
uen
e of outliers and ambiguous training patterns.Keywords: Supervised Pattern Re
ognition, K-Nearest Neighbor Rule, De
isionFusion, Dempster-Shafer Theory, Eviden
e Theory, Bootstrap, Bagging.1 Introdu
tionIn the last thirty years, the issue of un
ertainty representation and manage-ment in supervised pattern re
ognition has re
eived 
onsiderable attention.New theoreti
al frameworks have been proposed as alternatives to BayesianProbability theory to des
ribe, manipulate, and reason with partial knowl-edge and unreliable information. In parti
ular, the so-
alled Dempster-Shafer(D-S) theory of Eviden
e, �rst proposed by Shafer [10℄ and further elaboratedby many authors has been shown to 
onstitute a ri
h and 
exible framework,in whi
h the 
on
epts of a probability and possibility measures are re
overedas spe
ial 
ases of the more general 
on
ept of belief fun
tion. This theory hasbeen su

essfully applied in many areas su
h as diagnosis [12℄, sensor fusion[1℄ and pattern 
lassi�
ation [9,3℄.When applying D-S theory to 
lassi�
ation tasks, the 
onstru
tion of be-lief fun
tions from observation data is a 
ru
ial step. Typi
ally, a trainingset of patterns with known 
lassi�
ation is given, and one wishes to quanti-fy one's beliefs 
on
erning the 
ategory of a new pattern submitted to the
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ois et al.system. The evidential K-NN rule, previously introdu
ed by one of the au-thors [3,15℄, is su
h a method for inferring a belief fun
tion by pooling theeviden
e from the nearest neighbors in the training set. In this paper, it isproposed to improve this method using a new variant of a te
hnique, knownas \bagging", proposed by Breiman [2℄ in a 
onventional statisti
al 
ontext toimprove the stability of 
lassi�
ation rules. This method is shown experimen-tally to provide a more \realisti
" des
ription of the un
ertainty pertainingto the 
lassi�
ation task, leading to improved 
lassi�
ation performan
es.The paper is organized as follows. Se
tion 2 introdu
es the main 
on
eptsof Eviden
e Theory and their use in pattern re
ognition. Se
tion 3 depi
tsthe adaption of the bagging approa
h to evidential 
lassi�ers, followed bythe presentation and dis
ussion of experimental results obtained in an arti�-
ial learning task (Se
tions 4-6). Finally, Se
tion 7 
on
ludes the paper andpresents dire
tions for further resear
h.2 Ba
kground2.1 Theory of Belief Fun
tionsOnly the main 
on
epts of the Dempster-Shafer theory of belief fun
tions thatwe use in this paper will be re
alled here. The reader is referred to Shafer'sbook [10℄ for a detailed exposition of the mathemati
al ba
kground, and tomore re
ent papers su
h as, e.g., Refs. [14,13℄ for up-to-date presentations ofthe latest developments in both the theoreti
al aspe
ts and pra
ti
al appli-
ations of belief fun
tions. Although our approa
h is not tied to a parti
ularinterpretation of belief fun
tions, we shall adopt the non-probabilisti
 viewof Smets' Transferable Belief Model (TBM), whi
h 
onstitutes a parti
ularly
oherent and justi�ed approa
h [14,13℄.In short, the main assumptions underlying the TBM are that (1) degreesof belief are quanti�ed by numbers between 0 and 1; (2) there exists a two-level stru
ture 
omposed of a 
redal level where beliefs are entertained, anda pignisti
 level where de
isions are made; (3) beliefs at the 
redal level arequanti�ed by belief fun
tions, while de
isions at the pignisti
 level are basedon probability fun
tions; (4) when a de
ision has to be made, beliefs aretransformed into probabilities using the so-
alled pignisti
 transformation.The Credal Level Let 
 = f!1; : : : ; !Mg be a �nite possibility spa
e 
on-taining all the possible answers to a 
ertain question (the truth lies ne
essarilysomewhere in 
). In the type of appli
ations envisaged here, 
 is the set ofpossible 
lasses for an obje
t with unknown 
lass membership. It is assumedthat any item of eviden
e 
an be represented by a belief stru
ture, or basi
belief assignment, de�ned as a fun
tion m from 2
 (the power set of 
) to



Bagging in evidential pattern re
ognition 3the [0,1℄ interval, verifying: XA�
m(A) = 1: (1)and m(;) = 0. The value of m(A) 
an be interpreted as the \mass" of beliefthat is given to A and that 
annot be given to any other subset withoutfurther information; if m(A) > 0, A is 
alled a fo
al element. For example,m(
) = 1 represents total ignoran
e (m is then 
alled the va
uous beliefstru
ture), m(f!1g) = 0:5 stands for a moderated belief in hypothesis 1, andm(f!1; !2g) = 1 means 
omplete 
ertainty that either hypothesis 1 or hy-pothesis 2 is true (with no eviden
e in favor of any of one them individually).A new reliable pie
e of information 
an be in
orporated by use of theDempster's rule of 
ombination [11℄, if and only if the two sour
es of belief(denoted m1 and m2) are independent and non-totally 
ontradi
tory. The
ombination results in a new belief stru
ture m = m1 �m2 on 
 that repre-sents the new state of knowledge.The pignisti
 level Given a belief stru
ture, di�erent 
riteria 
an be usedto 
hoose one hypothesis. We will use here the pignisti
 risk minimization asde�ned and justi�ed by Smets [14℄ on an axiomati
 basis.Let Pbet be the so-
alled pignisti
 probability distribution, de�ned byuniformly distributing the mass of belief given to ea
h subset of 
 among itselements: Pbet(!) = XfA�
j!2Ag m(A)jAj 8! 2 
; (2)where jAj is the number of elements in A.In the TBM, the pignisti
 probability fun
tion is used for de
ision makinga

ording to the Bayes de
ision theory. Let A denote a set of a
tions, and�(�j!) the loss in
urred if a
tion � 2 A is sele
ted, ! 2 
 being the true stateof nature. Then, the expe
ted 
ost (or risk) of 
hoosing a
tion �, relative tothe pignisti
 distribution, is:Rbet(�) = X!2
 �(�j!) Pbet(!) (3)= XA�
 m(A)jAj X!2A�(�j!): (4)The Bayes de
ision theory then re
ommends the a
tion � with the lowestexpe
ted 
ost Rbet(�).
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ois et al.2.2 Appli
ation to pattern 
lassi�
ationRe
ently, Den�ux proposed an eviden
e-theoreti
 distan
e-based 
lassi�er[3℄ whi
h takes fully advantage of the eviden
e theory, by staying free ofany intermediate probabilisti
 representation. The outline of this approa
h issummarized below.Let x be the sample to be 
lassi�ed, and let L = f(xi; yi)gNi=1 be thelearning set of known patterns, where yi 2 
 is the 
lass of pattern xi.First, the K-nearest neighbors of x in fxigNi=1 are sele
ted a

ording tothe Eu
lidean distan
e. Ea
h neighbor xk is then 
onsidered as an item ofeviden
e about the 
lass of x. If yk = !q , this eviden
e indu
es a beliefstru
ture mk with fo
al elements f!qg and 
 [3,5℄:mk(A) = 8<:� exp(�
qkxk � xk2) if A = f!qg1� � exp(�
qkxk � xk2) if A = 
0 otherwise (5)where kxk � xk is the Eu
lidean distan
e between xk and x. Parameter � 2[0; 1℄ sets the minimum belief mass given to 
, thus limits the 
ertaintyexpressed by training patterns. Parameters 
q 2 R+ adjust the in
uen
e ofthe patterns of 
lass q a

ording to their distan
e to x. These 
oeÆ
ients 
anbe determined from the data using a learning s
heme proposed in Ref. [15℄.Then, as they are independent from ea
h other, the K belief stru
turesmk are 
ombined into a single stru
ture m by means of Dempster's rule. Thisstru
ture summarizes the available information about the 
lass of x, providedby its neighborhood in the training set.Finally, m is used to 
ompute pignisti
 probabilities Pbet(!kjx), fromwhi
h 
lass assignment 
an be performed, using the approa
h des
ribed inSe
tion 2.1 [4℄. We de�ne A = f�0; �1; : : : ; �Mg the set of a
tions, where�i for i = 1; : : : ;M is the de
ision to 
lassify x in 
lass !i, and �0 denotesreje
tion. The loss is assumed to be 1 in 
ase of a wrong 
lassi�
ation and0 for 
orre
t 
lassi�
ation. The reje
tion loss is assumed to be 
onstant, andequal to some value �0 2 [0; 1℄. We thus have:�(�ij!j) = 1� Æij 8i; j 2 f1; : : : ;Mg (6)�(�0j!j) = �0 8j 2 f1; : : : ;Mg; (7)where Æij is the Krone
ker symbol (Æij = 1 if i = j, and 0 otherwise).With these 
osts, the risks are de�ned, for ea
h a
tion, as follows :Rbet(�i) = 1� Pbet(!i); i = 1; : : : ;M (8)Rbet(�0) = �0 (9)Ea
h pattern is thus assigned to the 
lass with highest pignisti
 probability,provided that this probability is greater than 1� �0. Otherwise, it is reje
t-ed. Consequently, parameter �0 allows to 
ontrol the reje
tion rate of the
lassi�er.



Bagging in evidential pattern re
ognition 53 Sampling, Learning and Un
ertaintyProblem The basi
 belief assignment de�ned by Eq. 5 handles the un
er-tainty that stems from the possibly novel 
hara
teristi
s of the query sample.However, additional 
auses of un
ertainty exist. First, the known instan
es xkare usually not \prototypi
al" patterns, su
h as measurements obtained fromsome 
areful experimental design. They are re
ords of past solved 
ases, whi
hare supposed to be representative of future unsolved 
ases. In probabilisti
terms, they may be 
onsidered as randomly sampled from the distribution offuture 
ases. This random sampling is responsible for some un
ertainty in theglobal belief assignment whi
h 
annot be taken into a

ount by the basi
 be-lief assignment whi
h is 
onditioned on a given realization of the training set.Additionally, when the parameters of the basi
 belief assignment are tunedby minimizing some performan
e 
riterion on the training set, the learnedparameters are also random variables, whose variability is responsible foranother part of un
ertainty.This is why we propose here the use of bagging, introdu
ed in the proba-bilisti
 framework by Breiman [2℄ to limit the e�e
ts of sampling on a learnedde
ision rule.Bagging De
ision Rules Bagging is a pro
edure for improving a 
lassi-�
ation using a resample-and-
ombine te
hnique. Breiman argues that itsmain e�e
t is to de
rease the varian
e of the estimator, and advo
ates itsuse for unstable 
lassi�
ation methods, i.e. methods whi
h are sensitive toperturbations of the training set.From the original de
ision rule, the bagged estimator is produ
ed by ag-gregating using a majority vote on several repli
ates of the rule, trainedon bootstrap resamples of the learning set. A bootstrap sample [7℄ is 
re-ated by drawing with repla
ement N examples from the learning set L =f(xi; yi)gNi=1. It has thus the same size as the original sample but may 
on-tain repli
ates of some given examples, while other ones are not represented.The drawing with repla
ement in L simulates the original sampling from thedistribution that generated L. Empiri
al evaluations showed that the methodalmost systemati
ally 
ompares favorably with the original predi
tor [2,6℄.Bagging in the TBM In pattern 
lassi�
ation, bagging is usually appliedto the de
isions. In this paper, however, we propose to use it upstream, atthe 
redal level.The main goal is to better take into a

ount the un
ertainty atta
hed tothe �nite training set, in order to allow steadier de
isions and, 
onsequently,to improve the result of further 
ombinations when new sour
es are available.Pra
ti
ally, as in de
ision rule bagging, B bootstrap learning sets Lb (b =1; : : : ; B) are obtained by drawing with repla
ement N examples from theoriginal learning set L. Here, the bootstrap is balan
ed, whi
h means that
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h sample (xi; yi) is globally drawnB times over the B resamples. Then, fora given unknown sample x, ea
h training set Lb produ
es a belief stru
turemb through a given K-NN 
lassi�er. These are �nally aggregated into theaverage stru
ture mB, de�ned as:8A � 
; mB(A) = 1B Xb=1;Bmb(A): (10)In 
ontrast to the usual bagging by majority vote on the B de
ision rules,aggregation thus takes pla
e at the 
redal level, using the average operator.While it is 
lear that aggregation should operate on beliefs, other operators
ould be used, su
h as weighted averaging, or the sele
tion of the median orsome other parti
ular element among the B stru
tures1. Averaging was 
ho-sen as a good simple 
andidate as it is idempotent, 
ommutative and linear:�rst, getting B times the same stru
ture should lead to this same stru
tureafter aggregation (idempoten
y), se
ond, the resulting stru
ture should beindependent from the aggregation order (
ommutativity), and third, the lin-ear relationship between 
redal and probabilisti
 levels, introdu
ed by Smets[14℄ in the de
ision pro
ess, also supports linear aggregation (linearity).Remark: In our method, ea
h bootstrap resample of the training set generatesa belief stru
ture for ea
h x. These B stru
tures are �rst aggregated byaveraging, and the de
ision is then based on this average belief stru
ture.The faithful transposition of the original proposition of Breiman would havebeen to perform a majority vote between the de
isions provided by the B
lassi�ers. Experimental results (not shown here) show that this strategy is apoor 
hoi
e in the TBM framework. This suggests that the evidential K-NNpro
edure already provides stable de
ision rules, a �nding in agreement withBreiman's results 
on
erning the standard K-NN [2℄.4 Experimental SettingsSo as to investigate the bene�ts of bagging, we will fo
us on an arti�
iallearning task. For easy problems, with well-separated 
lasses and large train-ing sets, many di�erent algorithms yield similar results. A learning task ofinterest should therefore involve overlapping 
lass distributions and a smalllearning set. Additionally, it should 
ontain outliers as frequently en
ounteredin real data sets. Finally, a bidimensional problem allows 
lear representationand interpretation of the results.We thus 
onsider three bidimensional Gaussian distributions with 
om-mon 
ovarian
e matrix � = 2:25I and mean ve
tors (0; 0), (3; 0) and (0; 5).1 The Dempster's rule of 
ombination 
annot be used be
ause the belief sour
esare not independent.



Bagging in evidential pattern re
ognition 7Ea
h training set L is 
onstru
ted by drawing 15 points from ea
h distri-bution. Additionally, to simulate the 
ontamination of the training set byoutliers, 6 points with randomly sele
ted 
lass labels are drawn from a uni-form distribution on [�5; 9℄� [�3; 8℄. To exhibit general trends, 15 trainingsets were generated from the same distribution. Fig. 1 shows an example ofsu
h a generated set.
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Fig. 1. Example of a generated learning set. The interse
tions of dotted lines indi-
ate the 
lass means.Evaluation For ea
h training set, the de
ision rule is evaluated on a singleindependent test set T generated from the same distribution as L with NT =2000 � 3 + 800 items. The mean 
lassi�
ation 
ost C is estimated by theaverage of the 
lassi�
ation 
osts on the NT test points of T :C = 1NT X(x;y)2T �(D(x)jy) (11)where D(x) 2 A = f�0; : : : ; �Mg denotes the de
ision made by the 
lassi�erfor pattern x. The 
osts are de�ned a

ording to Eqs. 6 and 7.The 
lassi�
ation error rate E is estimated by the proportion of bad pre-di
tions (reje
tion is not an error) and the reje
tion rate R is de�ned as theproportion of reje
ted items. We thus have the relation C = E+ �0R.Finally, we will also make use of the mean quadrati
 di�eren
e between thepignisti
 probabilities Pbet(!i) and the 
lass posterior probabilities p(!ijx):Q = Z Xi (Pbet(!ijx)� p(!ijx))2p(x)dx; (12)The mean 
lassi�
ation 
ost and the error rate are also 
omputed for theBayes 
lassi�er, whose optimal solution provides a baseline to 
ompare resultswith and without bagging. Its performan
es also 
hara
terize the intrinsi
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ulty of the task. For instan
e, the minimal reje
tion rates to a
hieve
lassi�
ation error rates of 10% and 5% are here respe
tively 23% (for �0 =0:34) and 42% (for �0 = 0:19).Results are reported a

ording to two de
ision strategies. In the �rst one,the reje
tion 
ost �0 is �xed and may 
orrespond, e.g., to the 
ost of the infor-mation needed to resolve the ambiguity. The performan
e is then measuredby the mean 
lassi�
ation 
ost C. In the se
ond one, a given 
lassi�
ationerror rate is required. Pra
ti
ally, the tuning parameter is still �0, but theinteresting quantity is now the minimum reje
tion rate required to meet the
riterion.Implementation The method proposed by Den�ux bears some resem-blan
e with the Parzen method when the neighborhood is extended to thewhole training set (K = N), be
ause the in
uen
e of a neighboring ve
torde
reases with its distan
e to the query point. Setting K = 8 a
hieves anear-asymptoti
 behavior while limiting the 
omputational expense.The in
uen
e of training patterns depends on parameters � and 
 (seeEq. 5). As the in
uen
e of � on the 
lassi�
ation is low [3℄, and in order toredu
e the 
omplexity of the analysis, it was set to the \standard" 0:95 value.Regarding 
, we will pro
eed here in two steps. First, all 
q are �xed (Se
tion5); they are set to the same value (0.5) sin
e the three 
lasses have the sameshape and the same number of items. Then, di�erent learning strategies aretested in Se
tion 6.Finally, the average stru
ture mB estimates the expe
ted stru
ture overtraining sets. The expe
tation over training samples is ideally estimated bythe expe
tation over bootstrap samples. Hen
e, the number B of bootstrapsamples should tend towards in�nity. In fa
t, the e�e
t of bagging is quitevisible for values as low as B = 10. We used B = 50, as the small improve-ment a
hieved by higher values is not worth the 
omputation 
ost. Note thatBreiman re
ommends values around 25.5 Results without LearningIn this se
tion, the results with and without bagging will be 
ompared fromtwo viewpoints: �rst, the quality of the de
isions (measured by the mean
lassi�
ation 
ost or by the reje
tion rate needed to a
hieve a given errorrate), and then the 
loseness of the pignisti
 probabilities to the 
lass posteriorprobabilities.5.1 De
ision LevelThe �rst plot of �gure 2 shows mean 
lassi�
ation 
osts vs. reje
tion 
osts forthe 15 experiments. The horizontal segments in boxplots represent the lowerquartile, median, and upper quartile results. Minimal and maximal values



Bagging in evidential pattern re
ognition 9are indi
ated by the whiskers, and the plotted 
urve itself is the averageover experiments. Bagging 
learly improves 
lassi�
ation for low 
lassi�
ation
osts �0 < 0:3, i.e. higher reje
tion rates. Its 
ost is half-way between theoriginal algorithm and the Bayes 
lassi�er. However, this bene�t vanishes forhigh values of �0 (low reje
tion rates). The improvement due to bagging isthus linked to its higher 
apa
ity to reje
t truly ambiguous patterns. but thepignisti
 probabilities values may be signi�
antly modi�ed so that reje
tionis more 
ommon.
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Fig. 2. Mean 
lassi�
ation 
ost (left) and reje
tion rate (right) as a fun
tion ofreje
tion 
ost for 
lassi
 (thin line) and bagged (bold line) methods. The dottedline 
orresponds to the Bayes 
lassi�er
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Fig. 3. Reje
tion rate R as a fun
tion of 
lassi�
ation error rate E for original(thin line) and bagged (bold line) methods. The dotted line 
orresponds to theBayes 
lassi�erThe se
ond plot of Fig. 2 shows that the reje
tion rate of the bagged rule ismu
h higher than that of the original rule. This means that bagging in
reases
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ois et al.the un
ertainty atta
hed to the 
lassi�
ation, that is, the un
ertainty about
on
lusions. Reje
tion rate with bagging is also mu
h 
loser to the Bayes
lassi�er rate (for low �0 values), but however still lower. Bagging thus weak-ens the tenden
y of the original algorithm to over-estimate the 
on�den
e in
lassi�
ation.These observations are 
on�rmed when looking at the �xed error ratestrategy in Fig. 3, where 
lassi�
ation is visibly improved for the most strin-gent error rates requirements. Table 1 displays the mean reje
tion rates ob-tained with and without bagging for several error rates. The improvementsare higher than what the boxplot in Fig. 3 suggests, be
ause the boxplotsshow the global variability in performan
e for di�erent training sets. The in-dividual 
omparisons for ea
h training set are summarized in Table 1. In thistable, the se
ond 
olumn (S-0-F) reports the number of trials for whi
h thebagged version performed signi�
antly better or signi�
antly worse (�rst andthird �gure, respe
tively) than the non-bagged version at the 5 % signi�
an
elevel, a

ording to the exa
t M
Nemar test for mat
hed samples (see, for in-stan
e, [8℄). The middle �gure is the remaining number of 
ases, for whi
hdi�eren
es between the two methods were not signi�
ant. These results showthat bagging never performs worse than the original 
lassi�er for error ratesbelow 15%, and that it signi�
antly improves the mean results for all errorrates below 20%.Table 1. Mean Reje
tion rates R (in %) for some given target error rates E (in%). Column S{0{F reports the number of signi�
ant su

ess and failures (at the5% level) of bagging for ea
h training set. The p-values reporting the smallest levelfor whi
h mean reje
tion rates di�er signi�
antly are all below 0.02%E S{0-F Original Bagged2.5 12{3{0 74.2 68.95.0 15{0{0 57.0 51.510.0 15{0{0 32.3 29.615.0 7{8{0 16.4 15.920.0 6{6{3 5.8 5.6For a 
lassi�
ation task with a small number of 
lasses, taking into a
-
ount the un
ertainty due to the �nite size of the training sample hardlymodi�es the rank of the highest pignisti
 probability. Its value is howeverduly lowered, whi
h is interpreted as a more un
ertain out
ome. Bagging isthus bene�
ial when the values atta
hed to belief assignments are of interest.Besides reje
tion, all appli
ations where a measure of un
ertainty should beatta
hed to the de
ision are 
on
erned.
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ognition 115.2 Pignisti
 LevelWhile it may be possible to display the e�e
t of bagging at the 
redal level,there is no satisfa
tory 
riterion for measuring the relevan
e of a belief stru
-ture. We thus resort to the study of pignisti
 probabilities whi
h give moreinformation on beliefs than the de
isions themselves. Results of the previousse
tions provided hints suggesting that, with bagging, the pignisti
 probabil-ities Pbet should be 
loser to the posterior probabilities p. Indeed, the meanquadrati
 errors Q on posterior 
lass probabilities (Eq. 12) are about 40%lower on the whole spa
e when bagging is applied to the K-NN rule.
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Fig. 4. Posterior probability p(!2jx) (top) and pignisti
 probability Pbet(!2jx)without bagging (bottom left) and with bagging (bottom right). Verti
al lines lo
atethe 
enters of the three 
lass distributionsWe 
an easily illustrate situations where bagging is the most bene�
ialby plotting the probability surfa
es, An example is given in Fig. 4, whi
hshows that the main improvements o

ur at 
lass boundaries and for outliers(one is situated in the lower-left 
orner of the graph). Bagging thus yield-s a better representation of un
ertainties, stemming either from ambiguity(where 
lasses overlap) or from la
k of information (in regions of low densityof training patterns).The 
orre
tion of these two types of un
ertainties does not have the sameimpa
t on the estimation of posterior 
lass probabilities, and on the mean
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Fig. 5. Contours of the quadrati
 error on p(!2jx), weighted by the mixture densityp(x) (�10�4). left: without bagging; right: with bagging.
lassi�
ation rate (de
ision level). This is illustrated in Fig. 5, whi
h givesthe quadrati
 error 
ontours weighted by the mixture density p(x). For ex-ample, as the outlier is situated in a region of low density, the weakening ofits in
uen
e by the bagging pro
edure results in a negligible 
ontribution tothe mean error rate improvement. However, this e�e
t 
ould be mu
h morenoti
eable with other mis
lassi�
ation 
osts : in a medi
al diagnosis appli
a-tion, for example, an outlier in the \healthy" 
lass 
an 
ause an absen
e ofillness dete
tion.6 Remarks about LearningIn the previous se
tions, the parameters � and 
 of the basi
 belief assignmentwere set at arbitrary values. The e�e
t of bagging regarding un
ertainty dueto the �nite sample size was thus isolated. This se
tion depi
ts the e�e
t ofbagging regarding the un
ertainty pertaining to the learning of parameters.Here, � is kept at 0.95 as it was shown to have only marginal in
uen
e onthe 
lassi�
ation results [3,15℄.As explained in Se
tion 2.2, the in
uen
e regions of training patterns are
ontrolled by 
 (Eq. 5). Fig. 6 shows the mean 
lassi�
ation 
ost as a fun
tionof 
 for the original 
lassi�er and its bagged version.The bagged K-NN mean 
lassi�
ation 
ost a

ording to 
 is always lowerthan that of the original algorithm for any given reje
tion 
ost. Thus, theresults presented in the previous se
tions are representative of what wouldbe obtained for any value of 
. The 
omparison of the two plots in Fig. 6also shows that the di�eren
es between the two methods are larger for smallreje
tion 
osts, regardless of 
.Bagging is more e�e
tive in improving the original method for small valuesof 
, i.e., when all neighbors have the same in
uen
e, regardless of theirdistan
e to the query sample. In this 
ase, the resulting belief is too 
on�dent,and bagging neatly 
orre
ts it.
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Fig. 6.Mean 
lassi�
ation 
ostC as a fun
tion of 
 for �0 = 0:15 (top) and �0 = 0:3(bottom). The dotted line represents the Bayes 
lassi�
ation 
ost, thin lines andbold lines represent respe
tively 
lassi
 and bagged K-NN 
lassi�
ationsIn 
omparing the two graphs, it may be noted that, for the bagged al-gorithm, the optimal 
 value is identi
al for both reje
tion 
osts, while itdepends on �0 for the standard algorithm. Indeed, these two values shouldideally not intera
t, as beliefs should not be a�e
ted by the 
onsequen
es ofa
tions. These 
onsequen
es should only be taken into a

ount in the de
isionpro
ess.Finally, the lower variability of C provides a steadier optimal 
 value anda lower sensitivity to errors in 
, in terms of mis
lassi�
ation 
ost.7 Con
lusionStandard 
lassi�ers are sensitive to ambiguous training items su
h as mis-labeled patterns or outliers. Regarding this point, the evidential K-NN ruleimproves upon the original probabilisti
 rule, as the 
ertainty expressed bytraining patterns 
an be limited to weaken the in
uen
e of ambiguous items.In this paper, we show that bagging the belief stru
ture 
onstru
tion pro
essfurther improves this robustness.Classi�
ation error is shown to be signi�
antly redu
ed for high to in-termediate reje
tion rates, and is always observed to be lower than that ofthe non-bagged K-NN rule. Pignisti
 probabilities are mu
h 
loser to poste-rior probabilities, whi
h in turns supports the idea that bagging de�nes morerelevant belief stru
tures.Beyond the evidential K-NN, this paper illustrates the ne
essity to buildgeneri
 tools for inferring beliefs. It is probably the �rst attempt to takeinto a

ount the un
ertainty due to the presen
e/absen
e of an informationsour
e upon whi
h beliefs are 
onstru
ted. In the 
lassi
al pattern re
ognitionparadigm, where information sour
es are points assumed to be sampled fromsome �xed distribution, resample and 
ombine te
hniques provide a fullyautomati
 means to 
orre
t undue 
ertainty in inferred beliefs.
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ois et al.Work in progress shows that the gain is more important for 
lassi�ersthat make a more intensive use of data (with more learning parameters).More sophisti
ated inferen
e methods su
h as de
ision trees or fuzzyK-meansshould thus also be improved. Investigations 
ould be done on other operatorsto 
ombine the belief stru
tures in the bagging pro
edure in order to furtherimprove the quality of belief representation at the 
redal level.Referen
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