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Abstract

A new clustering method for relational data is proposed, based on Evi-
dence theory. In this approach, masses of belief assigned to subsets of classes
are used to compute the plausibility that two objects belong to the same
class. It is then required that these plausibilities be compatible with the
observed dissimilarities between objects. Experiments illustrate the ability
of the method to handle noisy or non Euclidean data.
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1 Introduction

Whereas evidence theory has been applied to supervised classification problems for
a long time (see, e.g., [4]), the work presented in this paper is, to our knowledge,
the first incursion of belief functions into the cluster analysis domain. Cluster
analysis is concerned with methods for finding groups in data, groups (or classes)
being defined as subsets of more or less “similar” objects [11]. The two most
frequent data types are object data, in which each object is described explicitly
by a list of attributes, and proximity (or relational) data, in which only pairwise
similarities, or dissimilarities are given. A quite extensive review of crisp and fuzzy
relational clustering models can by found in [1, chapter 3]. These methods can
be classified into three broad categories: hierarchical methods, methods based on
the decomposition of fuzzy relations, and methods based on the optimization of
an objective function. Given n objects to be classified in c classes, methods in the
latter category aim at finding a fuzzy partition matrix U = (uik) of size n× c such
that:

c
∑

k=1

uik = 1 ∀ i ∈ {1, . . . , n}

and
n

∑

i=1

uik > 0 ∀ k ∈ {1, . . . , c} .



Each number uik ∈ [0, 1] is interpreted as a degree of membership of object i to
cluster k.

Examples of such methods are the fuzzy non metric (FNM) model [16], the
assignment-prototype (AP) model [20] and the relational fuzzy c-means (RFCM)
model [9] (a similar approach may be found in [12]). The latter approach was later
extended by Hathaway and Bezdek [8] to cope with non-Euclidean dissimilarity
data, leading to the non-Euclidean relational fuzzy c-means (NERFCM) model.
Finally, robust versions of the FNM and RFCM algorithms were proposed by Davé
[3].

In this paper, a novel approach to clustering proximity data is presented, based
on Dempster-Shafer (DS) theory of belief functions, also referred to as “Evidence
theory”. In this approach, the allocation of objects to classes is performed using
the concept of basic belief asignment (bba), whereby a “mass of belief” is assigned
to each possible subset of classes. Using a suitable noninteractivity assumption,
it is possible to compute, for each two objects, the plausibility that they belong
to the same class. It is then required that these plausibilities be, in some sense,
compatible with the observed pairwise dissimilarities between objects. The rest of
this paper is organized as follows. The necessary background on belief functions
will be recalled in Section 2. Our method will then be exposed in Section 3, and
experimental results will be presented in Section 4. Section 5 will conclude the
paper.

2 Evidence theory

Let us consider a variable x taking values in a finite and unordered set Ω. Partial
knowledge regarding the actual value taken by x can be represented by a basic belief

assignment (bba) [18, 19], defined as a function m from 2Ω to [0, 1], verifying:

∑

A⊆Ω

m(A) = 1. (1)

The subsets A of Ω such that m(A) > 0 are the focal sets of m. Each focal set A is
a set of possible values for x, and the number m(A) can be interpreted as a fraction
of a unit mass of belief, which is allocated to A on the basis of a given evidential
corpus. Complete ignorance corresponds to m(Ω) = 1, and perfect knowledge of
the value of x is represented by the allocation of the whole mass of belief to a
unique singleton of Ω (m is then called a certain bba). Another particular case is
that where all focal sets of m are singletons: m is then equivalent to a probability
function, and is called a Bayesian bba.

A bba m such that m(∅) = 0 is said to be normal. This condition was origi-
nally imposed by Shafer [18], but it may be relaxed if one accepts the open-world

assumption stating that the set Ω might not be complete, and x might take its
value outside Ω [19]. The quantity m(∅) is then interpreted as a mass of belief
given to the hypothesis that x might not lie in Ω.

A bba m can be equivalently represented by any of two non additive fuzzy



measures: a belief function (BF) bel : 2Ω 7→ [0, 1], defined as

bel(A) ,
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

and a plausibility function pl : 2Ω 7→ [0, 1], defined as

pl(A) , bel(Ω) − bel(A) ∀A ⊆ Ω , (3)

where A denotes the complement of A. Whereas bel(A) represents the amount of
support given to A, the potential amount of support that could be given to A is
measured by pl(A). Note that both bel and pl boil down to a unique probability
measure when m is a Bayesian bba.

Let us now assume that we have two bba’s m1 and m2 representing distinct
items of evidence concerning the value of x. The standard way of combining them
is through the conjunctive sum operation ∩ defined as:

(m1 ∩ m2)(A) ,
∑

B∩C=A

m1(B)m2(C) , (4)

for all A ⊆ Ω. The quantity K = (m1 ∩ m2)(∅) is called the degree of conflict

between m1 and m2. It may be seen as a degree of disagreement between the
two information sources. If necessary, the normality condition m(∅) = 0 may be
recovered by dividing each mass (m1 ∩m2)(A) by 1−K. The resulting operation
is noted ⊕ and is called Dempster’s rule of combination [18]:

(m1 ⊕ m2)(A) ,
1

1 − K

∑

B∩C=A

m1(B)m2(C) . (5)

Consider now a bba mΩ defined on the Cartesian product Ω = Ω1 × Ω2 (from
now on, the domain of a bba will be indicated as superscript when necessary).
The marginal bba mΩ1 on Ω1 is defined for all A ⊆ Ω1 as

mΩ1(A) ,
∑

{B⊆Ω | Proj(B↓Ω1)=A}

mΩ(B), (6)

where Proj(B ↓ Ω1) denotes the projection of B onto Ω1, defined as

Proj(B ↓ Ω1) ,

{ω1 ∈ Ω1 | ∃ω2 ∈ Ω2, (ω1, ω2) ∈ B} . (7)

The two marginal bba’s mΩ1 and mΩ2 are said to be noninteractive iff for all
A ⊆ Ω1 and for all B ⊆ Ω2

mΩ(A × B) = mΩ1(A)mΩ2(B) . (8)

These definitions can be easily extended to bba’s defined over the Cartesian prod-
uct of n sets Ω1, . . . , Ωn.



3 The method

3.1 Credal partition of a set of n objects

Let us consider a collection O = {o1, . . . , on} of n objects, and a set Ω = {ω1, . . . , ωc}
of c classes forming a partition of O. Let us assume that we have only partial knowl-
edge concerning the class membership of each object oi, and that this knowledge
is represented by a bba mi on the set Ω. We recall that mi(Ω) stands for complete
ignorance of the class of object i, whereas mi({ωk}) = 1 corresponds to full cer-
tainty that object i belongs to class k. All other situations correspond to partial
knowledge of the class of oi. For instance, the following bba:

mi({ωk, ωℓ}) = 0.7

mi(Ω) = 0.3

means that we have some belief that object i belongs either to class ωk or to class
ωℓ, and the weight of this belief is equal to 0.7.

Let M = (m1, . . . , mn) denote the n-tuple of bba’s related to the n objects.
We shall call M a credal partition of O. Two particular cases are of interest:

• when each mi is a certain bba, then M defines a conventional, crisp partition
of Ω; this corresponds to a situation of complete knowledge;

• when each mi is a Bayesian bba, then M specifies a fuzzy partition of Ω, as
defined by Bezdek [1].

A credal c-partition (or partition of size c) will be defined as a credal partition
M = (m1, . . . , mn) such that, for all ω ∈ Ω, we have

pli({ω}) > 0

for some i ∈ {1, . . . , n}, pli being the plausibility function associated to mi.

Example 1 Let us consider a collection O of n = 4 objects and c = 3 classes. A
credal partition M of O is given in Table 1. The class of object o2 is known with
certainty, whereas the class of o4 is completely unknown. The two other cases
correspond to situations of partial knowledge. The plausibilities pli({ω}) of each
singleton are given in Table 2. Since each class is plausible for at least one object,
M is a credal 3-partition of O. Note that the matrix given in Table 2 defines a
possibilistic partition as defined in [1].

3.2 Compatibility of an evidential partition with a dissimilarity matrix

In this section, we propose a principle that will provide the basis for inferring a
credal partition from proximity data.

Without loss of generality, let us assume the available data to consist of a n×n

dissimilarity matrix D = (dij), where dij ≥ 0 measures the degree of dissimilarity
between objects oi and oj . Matrix D will be supposed to be symmetric, with null
diagonal elements.



Table 1: Credal partition of Example 1
F m1(F ) m2(F ) m3(F ) m4(F )

∅ 0 0 0 0
{ω1} 0 0 0 0
{ω2} 0 1 0 0

{ω1, ω2} 0.7 0 0 0
{ω3} 0 0 0.2 0

{ω1, ω3} 0 0 0.5 0
{ω2, ω3} 0 0 0 0

Ω 0.3 0 0.3 1

Table 2: Plausibilities of the singletons for the credal partition of Example 1
i pl1({ωi}) pl2({ωi}) pl3({ωi}) pl4({ωi})
1 1 0 0.8 1
2 1 1 0.3 1
3 0.3 0 1 1

It is reasonable to assume that two similar objects are more likely to be in the
same class, than two dissimilar ones. The more similar, the more plausible it is
that they belong to the same group. To formalize this idea, we need to calculate
the plausibility, based on a credal partition, that two objects oi and oj are in
the same group. This will then allow us to formulate a criterion of compatibility
between a dissimililarity matrix D and a credal partition M .

Consider two objects oi and oj , and two bba’s mi and mj quantifying one’s
beliefs regarding the class of objects i and j. To compute the plausibility that these
two objects belong to the same class, we have to place ourselves in the Cartesian
product Ω2 = Ω × Ω, and to consider the joint bba mi×j on Ω2 related to the
vector variable (yi, yj). If mi and mj are assumed to be noninteractive, then mi×j

is completely determined by mi and mj , and we have ∀A, B ⊆ Ω:

mi×j(A × B) = mi(A)mj(B). (9)

In Ω2, the event “Objects oi and oj belong to the same class” corresponds to
the following subset of Ω2:

S = {(ω1, ω1), (ω2, ω2), . . . , (ωc, ωc)}



Let pli×j be the plausibility function associated to mi×j . We have

pli×j(S) =
∑

(A×B)∩S 6=∅

mi×j(A × B)

=
∑

A∩B 6=∅

mi(A)mj(B)

= 1 −
∑

A∩B=∅

mi(A)mj(B)

= 1 − Kij , (10)

where Kij is the degree of conflict between mi and mj .
Hence, the plausibility that objects oi and oj belong to the same class is simply

equal to one minus the degree of conflict between the bba’s mi and mj associated
to the two objects. Given any two pairs of objects (oi, oj) and (oi′ , oj′ ), it is natural
to impose the following condition:

dij > di′j′ ⇒ pli×j(S) ≤ pli′×j′ (S) (11)

or, equivalently:
dij > di′j′ ⇒ Kij ≥ Ki′j′ , (12)

i.e., the more dissimilar the objects, the less plausible it is that they belong to the
same class, and the higher the conflict between the bba’s. A credal partition M

verifying this condition will be said to be compatible with D.

3.3 Learning a credal partition from data

To extract a credal partition from dissimilarity data, we need a method that, given
a dissimilarity matrix D, generates a credal partition M that is either compatible
with D, or at least “almost compatible” (in a sense to be defined).

This problem happens to be quite similar to the one addressed by multidi-
mensional scaling (MDS) methods [2]. The purpose of MDS methods is, given a
dissimilarity matrix D, to find a configuration of points in a p-dimensional space,
such that the distances between points approximate the dissimilarities. There is
a large literature on MDS methods, which are used extensively in sensory data
analysis for interpreting subjectively assessed dissimilarities, and more generally
in exploratory analysis for visualizing proximity data as well as high dimensional
attribute data (in this case, the dissimilarities are computed as distances in the
original feature space).

In our problem, each object is represented as a bba, which can be seen as a
point in a 2c-dimensional space. Hence, the concept of “credal partition” parallels
that of “configuration” in MDS. The degree of conflict Kij between two bba’s mi

and mj may be seen as a form of “distance” between the representations of objects
oi and oj . This close connection allows us to transpose MDS algorithms to our
problem.

MDS algorithms generally consist in the iterative minimization of a stress

function measuring the discrepancies between observed dissimilarities and recon-
structed distances in the configuration space. The various methods available differ



by the choice of the stress function, and the optimization algorithm used. The
simplest one is obtained by imposing a linear relationship between “distances”
(i.e., degrees of conflict in our case) and dissimilarities, which is referred to as
metric MDS. The stress function used in our case is:

σ(M, a, b) ,

∑

i<j(aKij + b − dij)
2

∑

i<j d2
ij

, (13)

where a and b are two coefficients, and the denominator is a normalizing constant.
This stress function can be minimized iteratively with respect to M , a and b using
a gradient-based procedure. Note that this method is invariant under any affine
transformation of the dissimilarities.

Remark 1 Each bba mi must satisfy Eq. (1). Hence, the optimization of σ

with respect to M is a constrained optimization problem. However, the contraints
vanish if one uses the following parameterization:

mi(Al) =
exp(αil)

∑2c

k=1 exp(αik)
, (14)

where Al, l = 1, . . . , 2c are the subsets of Ω, and the αil for i = 1, . . . , n and
l = 1, . . . , 2c are n2c real parameters.

3.4 Controlling the number of parameters

An important issue is the dimension of the non linear optimization problem to
be solved. The number of parameters to be optimized is linear in the number of
objects but exponential in the number of clusters. If c is large, the number of free
parameters has to be controlled. This can be achieved in two ways:

First, the number of parameters may be drastically decreased by considering
only a subclass of bba’s with a limited number of focal sets. For example, we may
constrain the focal sets to be either Ω, the empty set, or a singleton. In this way,
the total number of parameters is reduced to n(c+2), without sacrificing too much
of the flexibility of belief functions.

Another very efficient means of reducing the number of free parameters is to
add a penalization term to the stress function. This approach does not reduce the
number of parameters to be optimized but limits the effective number of parame-
ters of the method. It is thus a way to control the complexity of the classification
model. In our case, we would like to extract as much information as possible
from the data, so that it is reasonable to require the bba’s to be as “informative”
as possible. The definition of the “quantity of information” contained in a belief
function has been the subject of a lot of research in the past few years [14, 13], and
it is still, to some extent, an open question. However, several entropy measures
have been proposed. The total uncertainty introduced by Pal et al. [15] satisfies
natural requirements and has interesting properties. It is defined, for a normal
bba m, as:

H(m) ,
∑

A∈F(m)

m(A) log2

(

|A|

m(A)

)

, (15)



where F(m) denotes the set of focal sets of m. H(m) is minimized when the
mass is assigned to few focal sets, with small cardinality (it is proved in [15] that
H(m) = 0 iff m({ω}) = 1 for some ω ∈ Ω).

To apply (15) to a subnormal bba m (i.e., such that m(∅) > 0), some normaliza-
tion has to be performed. Two common normalization procedures are Dempster’s
normalization (in which the mass given to ∅ is deleted and all other belief masses
are divided by 1 − m(∅) [18], and Yager’s normalization, in which the mass m(∅)
is transferred to Ω [21]. The latter approach has been preferred in our approach,
because it allows to penalize subnormal bba’s more efficiently. The expression of
total uncertainty for a subnormal bba m then becomes:

H(m) =
∑

A∈F(m)\{∅}

m(A) log2

(

|A|

m(A)

)

+ m(∅) log2

(

|Ω|

m(∅)

)

. (16)

Finally, the objective function to be minimized is:

J(M, a, b) , σ(M, a, b) + λ

n
∑

i=1

H(mi). (17)

3.5 From credal clustering to fuzzy or hard clustering

Although we believe that a lot of information may be gained in analyzing a credal
partition, it is always possible to transform it into a fuzzy or hard partition.
This conversion is based on the concept of pignistic probability [19] defined, for a
normalized bba m, by:

BetP (A) ,
∑

∅6=B⊆Ω

m(B)
|A ∩ B|

|B|
(18)

To obtain a fuzzy partition, one calculates the pignistic probability of each single-
ton ωk. In the case where these singletons, Ω and the empty set are the only focal
sets of the bba, the expression of the pignistic probabilities is given by:

BetP ({ωk}) = m({ωk}) +
m(Ω) + m(∅)

c
, (19)

for all k = 1, c (we assume that Yager’s normalization is used). A hard partition
can then be easily obtained from the values of pignistic probabilities. In this sense,
a credal partition may be viewed as a general model of partionning, including fuzzy
and hard partitions.

4 Results

4.1 Synthetic dataset

This first example is inspired from a classical dataset [20]. A (13 × 13) dissimilar-
ity matrix was generated by computing the squared Euclidean distances of a two
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Figure 1: Synthetic dataset.

dimensional object dataset represented in figure 1. The 13th object, an outlier,
is useful to study the robustness of the method. The first object is assumed to
be close to all other objets, and is not represented in this figure. The dissimi-
larity between this point and objects 2 to 12 is arbitrarily set to 1 and to 200
with the 13th object. This object is intended to reflect either noisy, unreliable
data, or imprecise evaluations coming from subjective assessments. We compare
the results obtained with our method and five classical clustering methods based
on relationnal data: Windham’s assignment-prototype algorithm (AP) [20], the
Fuzzy Non Metric algorithm (FNM) [16], the Relational Fuzzy c-means algorithm
(RFCM) [9], and its “Noise” version (NRFCM) [3], and the non-Euclidean RFCM
algorithm (NERF) [8]. NRFCM, by using a “noise” cluster, is well-adapted to
datasets containing noise and outliers, whereas NERF is intended to cope with
non-Euclidean dissimilarities. The task is to find a reasonable 2-partition of ob-
ject 2 to 12 and to detect the particularity of objects 1 and 13. The figure 2
shows the resulting fuzzy membership functions for the five classical algorithms,
and the bba obtained with evidential clustering. Note that only 4 focal elements
were considered: {ω1, ω2, Ω, ∅}. As could be expected, among the five algorithms,
only NRFCM is able to detect the outlier but the method fails with the first ob-
ject (which is classified in class 2). The evidential clustering method (EVCLUS)
provides a clear understanding of the data by allocating an important mass to the
empty set for the outlier and to Ω for the first point.

4.2 “Cat cortex” data set

This real data set consists of a matrix of connection strengths between 65 cortical
areas of the cat. It was collected by Scannell [17] and used by several authors to
test visualization, discrimination or clustering algorithms based on proximity data
[6, 7, 10]. The proximity values range from 0 (self-connection), to 4 (absent or
unreported connection) with intermediate values : 1 (dense connection), 2 (inter-
mediate connection) and 3 (weak connection). The cortex has been divided into
four functional areas: auditory (A), visual (V), somatosensory (S), and frontolim-
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Figure 2: Synthetic dataset. Results of the six algorithms.

bic (F). The clustering task is to find a four-class partition of the 65 cortical areas,
based on the dissimilarity data, which is consistent with the functional regions.
Six focal elements were considered for applying the evidential clustering method:
4 singletons {ωi} (i = 1, 4), Ω and ∅. In order to provide a simple display of
the results with EVCLUS, a two dimensional representation of the cortical areas
has been obtained from the proximity matrix using a classical MDS algorithm [2].
The classification displayed on figure 3 is done according to the maximum of the
pignistic probabilities. The clusters are represented by different symbols and the
size of the symbols is proportional to the maximum of the pignistic probabilities.
It can be seen that the four functional areas of the cortex are well-recovered. The
error rate (only three points among 65 are misclassified), competes honourably
with those reported in discrimination studies [6, 7].

5 Conclusion

In this paper we have suggested a new way of classifying relational data based
on the theory of evidence. The classification task is performed in a very natural
way, by only imposing that, the more two objects are similar, the more likely they
belong to the same cluster. The concept of credal partition can be considered
as a generalization of a probabilistic or possibilistic partition and offers a very
flexible framework to handle noisy, imprecise or non-Euclidean data. Experiments
on various datasets, which are not all reported here, have shown the efficiency of
this approach.
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Figure 3: Cat cortex data set. Pignistic probabilities and hard assignments.
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