Computational Statistics Chapter 4: Classical simulation

- 1. Suppose we ten observations (8,3,4,3,1,7,2,6,2,7) are observed from a Poisson distribution $\mathcal{P}(\lambda)$. A lognorm prior distribution for λ is assumed: $\log \lambda \sim \mathcal{N}(\log(4), 0.5^2)$. Denote the likelihood as $L(\lambda; \mathbf{x})$ and the prior as $\pi(\lambda)$. The MLE of λ is $\hat{\lambda} = \overline{x}$.
 - (a) Plot $q(\lambda | \mathbf{x}) = \pi(\lambda) L(\lambda; \mathbf{x})$ and $e(\lambda) = \pi(\lambda) L(\widehat{\lambda}; \mathbf{x})$ as a function of λ .
 - (b) Generate a sample of size n = 1000 from the posterior distribution $f(\lambda | \mathbf{x})$ using the rejection sampling method. Draw a histogram of this sample and plot the prior distribution on the same graph.
 - (c) Compute a 95% confidence interval on the posterior expectation $\mathbb{E}(\lambda | \mathbf{x})$.
 - (d) Repeat the same operations as in the two previous questions, using now the SIR method.
 - (e) Compare graphically the two samples using the functions qqplot and boxplot.