Computational Statistics Chapter 4: Classical simulation

1. Suppose we ten observations ($8,3,4,3,1,7,2,6,2,7$) are observed from a Poisson distribution $\mathcal{P}(\lambda)$. A lognorm prior distribution for λ is assumed: $\log \lambda \sim \mathcal{N}\left(\log (4), 0.5^{2}\right)$. Denote the likelihood as $L(\lambda ; \mathbf{x})$ and the prior as $\pi(\lambda)$. The MLE of λ is $\widehat{\lambda}=\bar{x}$.
(a) Plot $q(\lambda \mid \mathbf{x})=\pi(\lambda) L(\lambda ; \mathbf{x})$ and $e(\lambda)=\pi(\lambda) L(\widehat{\lambda} ; \mathbf{x})$ as a function of λ.
(b) Generate a sample of size $n=1000$ from the posterior distribution $f(\lambda \mid \mathbf{x})$ using the rejection sampling method. Draw a histogram of this sample and plot the prior distribution on the same graph.
(c) Compute a 95% confidence interval on the posterior expectation $\mathbb{E}(\lambda \mid \mathbf{x})$.
(d) Repeat the same operations as in the two previous questions, using now the SIR method.
(e) Compare graphically the two samples using the functions qqplot and boxplot.
