Computational Statistics Chapter 4: Classical simulation

- 1. Suppose we ten observations (8,3,4,3,1,7,2,6,2,7) are observed from a Poisson distribution $\mathcal{P}(\lambda)$. A lognorm prior distribution for λ is assumed: $\log \lambda \sim \mathcal{N}(\log(4), 0.5^2)$. Denote the likelihood as $L(\lambda; \mathbf{x})$ and the prior as $\pi(\lambda)$. The MLE of λ is $\hat{\lambda} = \overline{x}$.
 - (a) Plot $q(\lambda|\mathbf{x}) = \pi(\lambda)L(\lambda;\mathbf{x})$ and $e(\lambda) = \pi(\lambda)L(\widehat{\lambda};\mathbf{x})$ as a function of λ .
 - (b) Generate a sample of size n = 1000 from the posterior distribution $f(\lambda | \mathbf{x})$ using the rejection sampling method. Draw a histogram of this sample and plot the prior distribution on the same graph.
 - (c) Compute a 95% confidence interval on the posterior expectation $\mathbb{E}(\lambda | \mathbf{x})$.
 - (d) Repeat the same operations as in the two previous questions, using now the SIR method.
 - (e) Compare graphically the two samples using the functions qqplot and boxplot.
- 2. Suppose we want to approximate $\mu = \mathbb{E}[(1 + X^2)^{-1}]$, where X has an exponential distribution $\mathcal{E}(1)$ truncated to [0, 1]; that is, we want to approximate the integral

$$\mu = \frac{1}{1 - 1/e} \int_0^1 \frac{1}{1 + x^2} e^{-x} dx.$$

- (a) Plot function $h(x) = (1+x^2)^{-1}$ and the probability density function of X on the interval [0, 1].
- (b) Method 1: generate a sample X_1, \ldots, X_n from X using the probability integral transformation method and compute the Monte Carlo approximation $\hat{\mu}_1$ of X and its standard error.
- (c) Method 2: generate a sample Y_1, \ldots, Y_n from the uniform distribution $\mathcal{U}([0,1])$ and compute the importance sampling approximation $\hat{\mu}_2$ of X and its standard error.
- (d) Repeat the previous operations 100 times and compare the distributions of $\hat{\mu}_1$ and $\hat{\mu}_2$ using boxplots.