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Clustering

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data)

Goals:
1 Discover groups in the data
2 Assess the uncertainty in group

membership
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Hard and soft clustering concepts

Hard clustering: no representation of uncertainty. Each object is assigned to
one and only one group. Group membership is represented by
binary variables uik such that uik = 1 if object i belongs to group
k and uik = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uik ∈ [0,1] to each
group, with

∑c
k=1 uik = 1. The uik ’s can be interpreted as

probabilities.
Fuzzy clustering with noise cluster: the above equality is replaced by∑c

k=1 uik ≤ 1. The number 1−
∑c

k=1 uik is interpreted as a
degree of membership (or probability of belonging to) to a noise
cluster.
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Hard and soft clustering concepts

Possibilistic clustering: the uik are free to take any value in [0,1]c . Each
number uik is interpreted as a degree of possibility that object i
belongs to group k .

Rough clustering: each cluster ωk is characterized by a lower approximation
ωk and an upper approximation ωk , with ωk ⊆ ωk ; the
membership of object i to cluster k is described by a pair
(uik ,uik ) ∈ {0,1}2, with uik ≤ uik ,

∑c
k=1 uik ≤ 1 and∑c

k=1 uik ≥ 1.
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Clustering and belief functions

clustering structure uncertainty framework
fuzzy partition probability theory

possibilistic partition possibility theory
rough partition (rough) sets

? belief functions

As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework
for cluster analysis?
Objectives:

Unify the various approaches to clustering
Achieve a richer and more accurate representation of uncertainty
New clustering algorithms and new tools to compare and combine clustering
results.
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Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS
Ek -NNclus

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Evidential clustering Credal partition

Evidential clustering

Let O = {o1, . . . ,on} be a set of n objects and Ω = {ω1, . . . , ωc} be a set
of c groups (clusters).
Each object oi belongs to at most one group.
Evidence about the group membership of object oi is represented by a
mass function mi on Ω:

for any nonempty set of clusters A ⊆ Ω, mi (A) is the probability of knowing
only that oi belong to one of the clusters in A.
mi (∅) is the probability of knowing that oi does not belong to any of the c
groups.

The n-tuple M = (m1, . . . ,mn) is called a credal partition.
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Evidential clustering Credal partition

Example
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Credal partition

∅ {ω1} {ω2} {ω1, ω2}
m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Evidential clustering Credal partition

Relationship with other clustering structures
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Evidential clustering Credal partition

Rough clustering as a special case

Assume that each mi is logical, i.e., mi (Ai ) = 1 for some Ai ⊆ Ω, Ai 6= ∅.
We can then define the lower and upper approximations of cluster ωk as

ωk = {oi ∈ O|Ai = {ωk}}, ωk = {oi ∈ O|ωk ∈ Ai}.

The membership values to the lower and upper approximations of cluster
ωk are uik = Beli ({ωk}) and uik = Pli ({ωk}).

m({ω1})=1( m({ω1, ω2})=1( m({ω2})=1(

Lower(
approxima4ons(

Upper(
approxima4ons(

ω1
L( ω2

L( ω2
U(ω1

U(
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Evidential clustering Summarization of a credal partition
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Evidential clustering Summarization of a credal partition

Summarization of a credal partition
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Evidential clustering Summarization of a credal partition

From evidential to rough clustering

For each i , let Ai ⊆ Ω be the set of non dominated clusters

Ai = {ω ∈ Ω|∀ω′ ∈ Ω,Bel∗i ({ω′}) ≤ Pl∗i ({ω})},

where Bel∗i and Pl∗i are the normalized belief and plausibility functions.
Lower approximation:

uik =

{
1 if Ai = {ωk}
0 otherwise.

Upper approximation:

uik =

{
1 if ωk ∈ Ai

0 otherwise.

The outliers can be identified separately as the objects for which
mi (∅) ≥ mi (A) for all A 6= ∅.
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Evidential clustering Relational representation of a credal partition
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Evidential clustering Relational representation of a credal partition

Relational representation of a hard partition

A hard partition can be represented equivalently by
the n × c membership matrix U = (uik ) or
an n × n relation matrix R = (rij ) representing the equivalence relation

rij =

{
1 if oi and oj belong to the same group
0 otherwise.

The relational representation R is invariant under renumbering of the
clusters, and is thus more suitable to compare or combine several
partitions.
What is the counterpart of matrix R in the case of a credal partition?
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Evidential clustering Relational representation of a credal partition

Relational representation

Let M = (m1, . . . ,mn) be a credal partition.
For a pair of objects {oi ,oj}, let Qij be the question “Do oi and oj belong
to the same group?” defined on the frame Θ = {s,¬s}.
Θ is a coarsening of Ω2.

ω1	 ω2	 ω3	 ω4	

ω1	

ω2	

ω3	

ω4	

Ω	

Ω	

S	

Given mi and mj on Ω, a mass function mij on
Θ can be computed as follows:

1 Extend mi and mj to Ω2;
2 Combine the extensions of mi and mj by

the unnormalized Dempster’s rule;
3 Compute the restriction of the combined

mass function to Θ.
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Evidential clustering Relational representation of a credal partition

Pairwise mass function

Mass function:

mij (∅) = mi (∅) + mj (∅)−mi (∅)mj (∅)

mij ({s}) =
c∑

k=1

mi ({ωk})mj ({ωk})

mij ({¬s}) = κij −mij (∅)

mij (Θ) = 1− κij −
∑

k

mi ({ωk})mj ({ωk}).

where κij is the degree of conflict between mi and mj .
In particular,

plij (s) = 1− κij .

Return to CECM
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Evidential clustering Relational representation of a credal partition

Special cases

Hard partition:
mij ({s}) = rij , mij ({¬s}) = 1− rij with rij ∈ {0,1}

Fuzzy partition:

mij ({s}) = rij , mij ({¬s}) = 1− rij with rij ∈ [0,1]

Rough partition: Assume mi (Ai ) = 1 and mj (Aj ) = 1.

mij ({s}) = 1 if Ai = Aj = {ωk}
mij ({¬s}) = 1 if Ai ∩ Aj = ∅

mij (Θ) = 1 otherwise.
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Evidential clustering Relational representation of a credal partition

Relational representation of a credal partition

Let M = (m1, . . . ,mn) be a credal partition.
The tuple R = (mij )1≤i<j≤n is called the relational representation of credal
partition M.

M = (m1,m2,m3,m4,m5) −→ R =


1 2 3 4 5

1 · m12 m13 m14 m15
2 · · m23 m24 m25
3 · · · m34 m35
4 · · · · m45
5 · · · · ·


Open question: given a relational representation R, can we uniquely
recover the credal partition M, up to a permutation of the cluster indices?
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Evidential clustering Relational representation of a credal partition

Example

Credal partition:

A ∅ {ω1} {ω2} {ω1, ω2}
m1(A) 0.3 0.6 0.1 0.0
m2(A) 0.0 0.7 0.1 0.2
m3(A) 0.0 0.1 0.6 0.3

Relational representation:

A ∅ {s} {¬s} {s,¬s}
m12(A) 0.30 0.43 0.13 0.14
m13(A) 0.30 0.12 0.37 0.21
m23(A) 0.00 0.13 0.43 0.44
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Evidential clustering algorithms

Main approaches

1 Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data
HCM, FCM family

2 EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):
Attribute or proximity (possibly non metric) data
Multidimensional scaling approach

3 EK-NNclus (Denoeux et al, 2015)
Attribute or proximity data
Searches for the most plausible partition of a dataset
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Evidential clustering algorithms Evidential c-means
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Evidential clustering algorithms Evidential c-means

Principle

Problem: generate a credal partition M = (m1, . . . ,mn) from attribute data
X = (x1, ...,xn), x i ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each cluster is represented by a prototype.
Cyclic coordinate descent algorithm: optimization of a cost function
alternatively with respect to the prototypes and to the credal partition.
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Evidential clustering algorithms Evidential c-means

Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβik d2
ik

with dik = ||x i − vk || subject to the constraints
∑

k uik = 1 for all i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβik x i∑n

i=1 uβik

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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Evidential clustering algorithms Evidential c-means

ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each cluster ωk represented by a prototype vk .
Each nonempty set of clusters Aj represented
by a prototype v̄ j defined as the center of
mass of the vk for all ωk ∈ Aj .
Basic ideas:

For each nonempty Aj ⊆ Ω, mij = mi (Aj )
should be high if x i is close to v̄ j .
The distance to the empty set is defined as a
fixed value δ.
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Evidential clustering algorithms Evidential c-means

ECM algorithm: objective criterion

Define the nonempty focal sets F = {A1, . . . ,Af} ⊆ 2Ω \ {∅}.
Minimize

JECM(M,V ) =
n∑

i=1

f∑
j=1

|Aj |αmβ
ij d2

ij +
n∑

i=1

δ2mβ
i∅

subject to the constraints
∑f

j=1 mij + mi∅ = 1 for all i .

Parameters:
α controls the specificity of mass functions (default: 1)
β controls the hardness of the credal partition (default: 2)
δ controls the proportion of data considered as outliers

JECM(M,V ) can be iteratively minimized with respect to M and to V .
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Evidential clustering algorithms Evidential c-means

ECM algorithm: update equations

Update of M:

mij =
c−α/(β−1)

j d−2/(β−1)
ij∑f

k=1 c−α/(β−1)
k d−2/(β−1)

ik + δ−2/(β−1)
,

for i = 1, . . . ,n and j = 1, . . . , f , and

mi∅ = 1−
f∑

j=1

mij , i = 1, . . . ,n

Update of V : solve a linear system of the form

HV = B,

where B is a matrix of size c × p and H a matrix of size c × c.
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Evidential clustering algorithms Evidential c-means

Butterfly dataset
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Evidential clustering algorithms Evidential c-means

4-class data set
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Evidential clustering algorithms Evidential c-means

Determining the number of groups

If a proper number of groups is chosen, the prototypes will cover the
clusters and most of the mass will be allocated to singletons of Ω.
On the contrary, if c is too small or too high, the mass will be distributed
to subsets with higher cardinality or to ∅.
Nonspecificity of a mass function:

N(m) ,
∑

A∈2Ω\∅

m(A) log2 |A|+ m(∅) log2 |Ω|

Proposed validity index of a credal partition:

N∗(c) ,
1

n log2(c)

n∑
i=1

 ∑
A∈2Ω\∅

mi (A) log2 |A|+ mi (∅) log2(c)
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Evidential clustering algorithms Evidential c-means

Results for the 4-class dataset
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Evidential clustering algorithms Evidential c-means

Constrained Evidential c-means

In some cases, we may have some prior knowledge about the group
membership of some objects.
Such knowledge may take the form of instance-level constraints of two
kinds:

1 Must-link (ML) constraints, which specify that two objects certainly belong to
the same cluster;

2 Cannot-link (CL) constraints, which specify that two objects certainly belong
to different clusters.

How to take into account such constraints?
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Evidential clustering algorithms Evidential c-means

Modified cost-function

To take into account ML and CL constraints, we can modify the cost
function of ECM as

JCECM(M,V ) = (1− ξ)JECM(M,V ) + ξJCONST(M)

with

JCONST(M) =
1

|M|+ |C|

 ∑
(xi ,xj )∈M

plij (¬S) +
∑

(xi ,xj )∈C

plij (S)


where

M and C are, respectively, the sets of ML and CL constraints.
plij (S) and plij (¬S) are computed from the pairwise mass function mij

Go back to pairwise mass functions

Minimizing JCECM(M,V ) w.r.t. M is a quadratic programming problem.
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Evidential clustering algorithms Evidential c-means

Active learning

ML and CL constraints are sometimes given in advance, but they can
sometimes be elicited from the user using an active learning strategy.
For instance, we may select pairs of object such that

The first object is classified with high uncertainty (e.g., an object such that
mi has high nonspecificity);
The second object is classified with low uncertainty (e.g., an object that is
close to a cluster center).

The user is then provided with this pair of objects, and enters either a ML
or a CL constraint.
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Evidential clustering algorithms Evidential c-means

Results

Glass data Ionosphere data
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Evidential clustering algorithms Evidential c-means

Other variants of ECM

Relational Evidential c-Means (RECM) for (metric) proximity data (Masson
and Denœux, 2009).

ECM with adaptive metrics to obtain non-spherical clusters (Antoine et al.,
2012). Specially useful with CECM.

Spatial Evidential C-Means (SECM) for image segmentation (Lelandais et al.,
2014).

Credal c-means (CCM) : different definition of the distance between a vector
and a meta-cluster (Liu et al., 2014).

Median evidential c-means (MECM) : different cost criterion, extension of the
median hard and fuzzy c-means (Zhou et al., 2015).
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Evidential clustering algorithms EVCLUS
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Evidential clustering algorithms EVCLUS

Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij ), how to build a
“reasonable” credal partition ?
We need a model that relates cluster membership to dissimilarities.
Basic idea: “The more similar two objects, the more plausible it is that
they belong to the same group”.
How to formalize this idea?
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Evidential clustering algorithms EVCLUS

Formalization

Let mi and mj be mass functions regarding the group membership of
objects oi and oj .
We have seen that the plausibility that objects oi and oj belong to the
same group is

plij (S) =
∑

A∩B 6=∅

mi (A)mj (B) = 1− κij

where κij = degree of conflict between mi and mj .
Problem: find a credal partition M = (m1, . . . ,mn) such that larger
degrees of conflict κij correspond to larger dissimilarities dij .
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Evidential clustering algorithms EVCLUS

Cost function

Approach: minimize the discrepancy between the dissimilarities dij and
the degrees of conflict κij .
Example of a cost (stress) function:

J(M) =
∑
i<j

(κij − ϕ(dij ))2

where ϕ is an increasing function from [0,+∞) to [0,1], for instance

ϕ(d) = 1− exp(−γd2).

γ can be determined by fixing α ∈ (0,1) and d0 such that, for any two
objects (oi ,oj ) with dij ≥ d0, the plausibility that they belong to the same
cluster is at leat 1− α.
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Evidential clustering algorithms EVCLUS

Butterfly example
Data and dissimilarities

Determination of γ in ϕ(d) = 1− exp(−γd2): fix α ∈ (0,1) and d0 such that,
for any two objects (oi ,oj ) with dij ≥ d0, the plausibility that they belong to the
same cluster is at least 1− α.
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Evidential clustering algorithms EVCLUS

Butterfly example
Credal partition
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Evidential clustering algorithms EVCLUS

Butterfly example
Shepard diagram
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Evidential clustering algorithms EVCLUS

Example with a four-class dataset (2000 objects)
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Advantages

Conceptually simple, clear interpretation.
EVCLUS can handle non metric dissimilarity data (even expressed on an
ordinal scale).
It was also shown to outperform some of the state-of-the-art relational
clustering techniques on a number of datasets (Denoeux and Masson,
2004).
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Limitations

Requires to store the whole dissimilarity matrix; the space complexity is
thus O(n2), where n is the number of objects. Restricts application to
datasets with n ∼ 102 − 103.
Each computation of the gradient requires O(f 3n2) operations, where f is
the number of focal sets of the mass functions. In the worst case, f = 2c .
To make the method usable even for moderate values of c, we need to
restrict the form of the mass functions so that masses are only assigned
to focal sets of size 0, 1 or c, which prevents us from fully exploiting the
potential generality of the method.
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Improvements of EVCLUS

1 Fast optimization algorithm
2 Sample dissimilarities
3 Carefully select the focal sets
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Fast optimization

The optimization algorithm initially used in EVCLUS is a gradient-based
procedure.
Here, we propose to use a cyclic coordinate descent algorithm that
minimizes J(M) with respect to each mi at a time.
The new method, called Iterative Row-wise Quadratic Programming
(IRQP), exploits the particular approach of the problem (a quadratic
programming problem is solved at each step), and it is thus much more
efficient.
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IRQP algorithm
Vector representation of the cost function

The stress function can be written as

J(M) =
∑
i<j

(mT
i Cmj − δij )

2.

where
δij = ϕ(dij ) are the scaled dissimilarities
mi and mj are vectors encoding mass functions mi and mj

C is a square matrix, with general term Ck` = 1 if Fk ∩ F` = ∅ and Ck` = 0
otherwise.

Fixing all mass functions except mi , the stress function becomes
quadratic. Minimizing J w.r.t. mi is a linearly constrained positive
least-squares problem, which can be solved using efficient algorithms.
By iteratively updating each mi , the algorithm converges to a local
minimum of the cost function.
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Experiment 1: Proteins dataset
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Experiment 1: Proteins dataset
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algorithms on the Protein data.
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Experiment 1: Proteins dataset
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Boxplots of computing time (left) and stress value at convergence (right) for
20 runs of the Gradient and IRQP algorithms on the Protein data.
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Experiment 2: simulated data (n = 200)
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Experiment 2: simulated data (n = 200)
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Experiment 2: simulated data (n = 200)
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Influence of n
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Sampling dissimilarities

EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable
to large proximity data.
However, there is usually some redundancy in a dissimilarity matrix.
In particular, if two objects o1 and o2 are very similar, then any object o3
that is dissimilar from o1 is usually also dissimilar from o2.
Because of such redundancies, it might be possible to compute the
differences between degrees of conflict and dissimilarities, for only a
subset of randomly sampled dissimilarities.
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New stress function

Let j1(i), . . . , jk (i) be k integers sampled at random from the set
{1, . . . , i − 1, i + 1, . . . ,n}, for i = 1, . . . ,n.
Let Jk the following stress criterion,

Jk (M) =
n∑

i=1

k∑
r=1

(κi,jr (i) − δi,jr (i))
2.

The calculation of Jk (M) requires only O(nk) operations.
If k can be kept constant as n increases, then time and space
complexities are reduced from quadratic to linear.
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Example with simulated data (n = 10,000)
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Zongker Digit dissimilarity data

Similarities between 2000 handwritten digits in 10 classes, based on
deformable template matching.
k -EVCLUS was run with c = 10 and differents following values of k .
Parameter d0 was fixed to the 0.3-quantile of the dissimilarities.
k -EVCLUS was run 10 times with random initializations.
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Zongker Digit dissimilarity data
Results
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Carefully selecting the focal sets

If no restriction is imposed on the focal sets, the number of parameters to
be estimated in evidential clustering grows exponentially with the number
c of clusters, which makes it intractable unless c is small.
If we allow masses to be assigned to all pairs of clusters, the number of
focal sets becomes proportional to c2, which is manageable for moderate
values of c (say, until 10), but still impractical for larger n.
Idea: assign masses only to pairs of contiguous clusters.
If each cluster has at most q neighbors, then the number of focal sets is
proportional to c.
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Example
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Method

Step1: Run a clustering algorithm (e.g., ECM or EVCLUS) with focal
sets of cardinalities 0, 1 and (optionally) c. A credal partition M0
is obtained.

Step 2: Compute the similarity between each pair of clusters (ωj , ω`) as

S(j , `) =
n∑

i=1

plijpli`,

where plij and pli` are the normalized plausibilities that object i
belongs, respectively, to clusters j and `. Determine the set PK
of pairs {ωj , ω`} that are mutual q nearest neighbors.

Step 3: Run the clustering algorithm again, starting from the previous
credal partition M0, and adding as focal sets the pairs in PK .
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Pairs of mutual neighbors with q = 1
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Pairs of mutual neighbors with q = 2

2e+05 4e+05 6e+05 8e+05 1e+060e
+0
0

2e
+0
5

4e
+0
5

6e
+0
5

8e
+0
5

1e
+0
6

x1

x 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 69 / 105



Evidential clustering algorithms EVCLUS

Initial credal partitionM0
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Final credal partition (q = 1)
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Evidential clustering algorithms Ek -NNclus

Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS
Ek -NNclus

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Reasoning in the space of all partitions

Assuming there is a true unknown partition, our frame of discernment
should be the set R of all equivalent relations (≡ partitions) of the set of n
objects.
But this set is huge!
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Number of partitions of n objects
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Can we implement evidential reasoning in such a large space?
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Model

Evidence: n × n matrix D = (dij ) of dissimilarities between the n objects.
Assumptions

1 Two objects have all the more chance to belong to the same group, that they
are more similar:

mij ({S}) = ϕ(dij ),

mij (Θ) = 1− ϕ(dij ),

where ϕ is a non-increasing mapping from [0,+∞) to [0, 1).
2 The mass functions mij are independent.

How to combine these n(n − 1)/2 mass functions to find the most
plausible partition of the n objects?
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Evidence combination

Let Rij denote the set of partitions of the n objects such that objects oi
and oj are in the same group (rij = 1).
Each mass function mij can be vacuously extended to the space R of
equivalence relations:

mij ({S}) −→ Rij
mij (Θ) −→ R

The extended mass functions can then be combined by Dempster’s rule.
Resulting contour function:

pl(R) ∝
∏
i<j

(1− ϕ(dij ))1−rij

for any R ∈ R.
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Decision

The logarithm of the contour function can be written as

log pl(R) = −
∑
i<j

rij log(1− ϕ(dij )) + C

Finding the most plausible partition is thus a binary linear programming
problem. It can be solves exactly only for small n.
However, the problem can be solved approximately using a heuristic
greedy search procedure: the Ek -NNclus algorithm.
This is a decision-directed clustering procedure, using the evidential
k -nearest neighbor (Ek -NN) rule as a base classifier.
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Example
Toy dataset
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Example
Iteration 1
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Example
Iteration 1 (continued)
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Example
Iteration 2
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Example
Iteration 2 (continued)

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 82 / 105



Evidential clustering algorithms Ek -NNclus

Example
Result
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Ek -NNclus

Starting from a random initial partition, classify each object in turn, using
the Ek -NN rule.
The algorithm converges to a local maximum of the contour function
pl(R) if k = n − 1.
With k < n − 1, the algorithm converges to a local maximum of an
objective function that approximates pl(R).
Implementation details:

Number k of neighbors: two to three times
√

n.
ϕ(d) = 1− exp(−γd2), with γ fixed to the inverse of the q-quantile of the
distances d2

ij between an object and its k NN. Typically, q ≥ 0.5.
The number of clusters does not need to be fixed in advance.
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Example
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Comparing and combining the results of soft clustering algorithms

Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS
Ek -NNclus

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Comparing and combining the results of soft clustering algorithms

Exploiting the generality of evidential clustering

We have seen that the concept of credal partition subsumes the main
hard and soft clustering structures.
Consequently, methods designed to evaluate or combine credal partitions
can be used to evaluate or combine the results of any hard or soft
clustering algorithms.
Two such methods will be described:

1 A generalization of the Rand index to compute the distance between two
credal partitions;

2 A method to combine credal partitions.
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Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS
Ek -NNclus

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Comparing and combining the results of soft clustering algorithms The credal Rand index

Rand index

The Rand index is a widely used measure of agreement (similarity)
tbetween two hard partitions.
It is defined as

RI =
a + b

n(n − 1)/2

with
a = number of pairs of objects that are grouped together in both partitions
b = number of pairs of objects that are assigned to different clusters in both
partitions.

How to generalize the Rand Index to credal partitions?
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Comparing and combining the results of soft clustering algorithms The credal Rand index

Jousselme’s distance

Let R = (mij ) and R′ = (m′ij ) be the relational representations of two
credal partitions.
The assess the distance between R and R′, we can average the
distances between the mij ’s and m′ij ’s.
A suitable measure is the squared Jousselme’s metric, defined as

dij =

(
1
2

(mij −m′ij )
T J(mij −m′ij )

)1/2

with mij = (mij (∅),mij ({s}),mij ({ns}),mij (Θ))T and

J =


1 0 0 0
0 1 0 1/2
0 0 1 1/2
0 1/2 1/2 1
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Comparing and combining the results of soft clustering algorithms The credal Rand index

Credal Rand index

We define the Credal Rand Index as

CRI = 1−
∑

i<j dij

n(n − 1)/2
.

Properties:
0 ≤ CRI ≤ 1
CRI is the Rand index when the two partitions are hard
Symmetry: CRI(R,R′) = CRI(R′,R)
If R = R′, then CRI(R,R′) = 1
1-CRI is a metric in the space of relational representations of credal
partitions (it is reflexive, symmetric, separable and it verifies the triangular
inequality).

The CRI can be used to compare the results of any two hard or soft
clustering algorithms.
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Comparing and combining the results of soft clustering algorithms The credal Rand index

Example: Seeds data
Seeds from three different varieties of wheat: Kama, Rosa and Canadian, 70
elements each, 7 features. First 4 principal components:
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Clustering algorithms

Evidential clustering (R package evclust)
ECM, F = {A ⊆ Ω, |A| ≤ 2}
EVCLUS (F = {A ⊆ Ω, |A| ≤ 1} ∪ {Ω}; F = 2Ω).

and their derived hard, fuzzy and rough partitions
Hard clustering: HCM (R package stats)
Fuzzy clustering (R package fclust)

FCM
Fuzzy K medoids

Rough clustering (R package SoftClustering)
Peter’s rough k -means P-RCM
Pi rough k -means π-RCM
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Result: MDS configuration
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Outline

1 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

2 Evidential clustering algorithms
Evidential c-means
EVCLUS
Ek -NNclus

3 Comparing and combining the results of soft clustering algorithms
The credal Rand index
Combining clustering structures
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Motivations for combining clustering structures

Let M1, . . . ,MN be an ensemble of N credal partitions generated by hard
or soft (fuzzy, rough, etc.) clustering structures.
It may be useful to combine these credal partitions:

to increase the chance of finding a good approximation to the true partition,
or
to highlight invariant patterns across the clustering structures.

Combination is easily carried out using relational representations.
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Combination method

M1	

M2	

…
	

Mk	

R1	
R2	

…
	

Rk	

combina/on	 R*	 M*	

Credal		
par//ons	

Pairwise	
representa/ons	

Combined	credal		
par//on	

The combined credal partition can be defined as

M∗ = arg max
M

CRI(R(M),R∗),

where R(M) denotes the relational representation of M.
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Example: seeds data
Hard clustering results
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Example: seeds data
Fuzzy clustering results

−4 −2 0 2

−
2

−
1

0
1

2

Variability explained by these two components: 71.61%
Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

FCM

−4 −2 0 2

−
2

−
1

0
1

2

Variability explained by these two components: 71.61%
Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

FKM.med

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 99 / 105



Comparing and combining the results of soft clustering algorithms Combining clustering structures

Example: seeds data
Combined credal partition (Dubois-Prade rule)
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Conclusions

Summary

The Dempster-Shafer theory of belief functions provides a rich and
flexible framework to represent uncertainty in clustering.
The concept of credal partition encompasses the main existing soft
clustering concepts (fuzzy, possibilistic, rough partitions).
Efficient algorithms exist, allowing one to generate credal partitions from
attribute or proximity datasets.
These algorithms can be applied to large datasets and large numbers of
clusters (by carefully selecting the focal sets).
Concepts from the theory of belief functions make it possible to compare
and combine clustering structures generated by various soft clustering
algorithms.
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Conclusions

Future research directions

Combining clustering structures in various settings
distributed clustering,
combination of different attributes, different algorithms,
etc.

Handling huge datasets (several millions of objects)
Criteria for selecting the number of clusters
Semi-supervised clustering
Clustering imprecise or uncertain data
Applications to image processing, social network analysis, process
monitoring, etc.
Etc...
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Conclusions

The evclust package

https://cran.r-project.org/web/packages
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