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Topic of this workshop

1 This workshop is about the theory of belief functions and its applications
to Computational Statistics and Econometrics.

2 What is the Theory of Belief Functions?
A formal framework for reasoning and making decisions under uncertainty.
Originates from Arthur Dempster’s seminal work on statistical inference with
lower and upper probabilities.
It was then further developed by Glenn Shafer who showed that belief
functions can be used as a general framework for representing and
reasoning with uncertain information.
Also known as Evidence theory or Dempster-Shafer theory.

3 Many applications in computer science (artificial intelligence, information
fusion, pattern recognition, etc.).

4 Recently, there has been a revived interested in its application to
Statistical Inference and Computational Statistics (classification,
clustering).
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Representation of evidence Mass functions

Mass function
Definition

Let X be a variable taking values in a finite set Ω (frame of discernment)
Evidence about X may be represented by a mass function m : 2Ω → [0,1]
such that ∑

A⊆Ω

m(A) = 1

Every A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
hereafter, unless otherwise specified
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Representation of evidence Mass functions

Example: the broken sensor

Let X be some physical quantity (e.g., a temperature), talking values in Ω.
A sensor returns a set of values A ⊂ Ω, for instance, A = [20,22].
However, the sensor may be broken, in which case the value it returns is
completely arbitrary.
There is a probability p = 0.1 that the sensor is broken.
What can we say about X? How to represent the available information
(evidence)?
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Representation of evidence Mass functions

Analysis

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	

A	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ A.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m(A) = 0.9, m(Ω) = 0.1
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Representation of evidence Mass functions

Source

A mass function m on Ω may be viewed as arising from
A set S = {s1, . . . , sr} of states (interpretations)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m
Meaning: under interpretation si , the evidence tells us that X ∈ Γ(si ), and
nothing more. The probability P({si}) is transferred to Ai = Γ(si )

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence
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Representation of evidence Mass functions

Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function mA such that mA(A) = 1

mA is equivalent to A
Special case: m?, the vacuous mass function, represents total ignorance

If each interpretation si of the evidence points to a single value of X , then
all focal sets are singletons and m is said to be Bayesian. It is equivalent
to a probability distribution
A Dempster-Shafer mass function can thus be seen as

a generalized set
a generalized probability distribution

Total ignorance is represented by the vacuous mass function m? such
that m?(Ω) = 1
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Representation of evidence Belief and plausibility functions

Degrees of support and consistency

Let m be a normalized mass function on Ω induced by a source
(S,2S,P, Γ).
Let A be a subset of Ω.
One may ask:

1 To what extent does the evidence support the proposition ω ∈ A?
2 To what extent is the evidence consistent with this proposition?

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!
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Representation of evidence Belief and plausibility functions

Belief function
Definition and interpretation

For any A ⊆ Ω, the probability that the evidence implies (supports) the
proposition X ∈ A is

Bel(A) = P({s ∈ S|Γ(s) ⊆ A}) =
∑
B⊆A

m(B).

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Bel : A→ Bel(A) is called a belief function.
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Representation of evidence Belief and plausibility functions

Plausibility function

The probability that the evidence is consistent with (does not contradict)
the proposition X ∈ A

Pl(A) = P({s ∈ S|Γ(s) ∩ A 6= ∅}) =
∑

B∩A6=∅

m(B) = 1− Bel(A)

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Pl : A→ Pl(A) is called a plausibility function.
The function pl : ω → Pl({ω}) is called a contour function.
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Representation of evidence Belief and plausibility functions

Two-dimensional representation

The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A)

The intervals [Bel(A),Pl(A)] have maximum length when m = m? is
vacuous: then, Bel(A) = 0 for all A 6= Ω, and Pl(A) = 1 for all A 6= ∅.
The intervals [Bel(A),Pl(A)] have minimum length when m is Bayesian.
Then, Bel(A) = Pl(A) for all A, and Bel is a probability measure.
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Representation of evidence Belief and plausibility functions

Broken sensor example

From
m(A) = 0.9, m(Ω) = 0.1

we get
Bel(A) = m(A) = 0.9, Pl(A) = m(A) + m(Ω) = 1

Bel(A) = 0, Pl(A) = m(Ω) = 0.1

Bel(Ω) = Pl(Ω) = 1

We observe that
Bel(A ∪ A) ≥ Bel(A) + Bel(A)

Pl(A ∪ A) ≤ Pl(A) + Pl(A)

Bel and Pl are non additive measures.

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 15 / 55



Representation of evidence Belief and plausibility functions

Characterization of belief functions

Function Bel : 2Ω → [0,1] is a completely monotone capacity: it verifies
Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Representation of evidence Belief and plausibility functions

Relations between m, Bel et Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel et Pl are thus three equivalent representations of
a piece of evidence or, equivalently
a state of belief induced by this evidence
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Relations with alternative theories Possibility theory

Consonant belief function

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant
The following relations then hold, for all A,B ⊆ Ω,

Pl(A ∪ B) = max (Pl(A),Pl(B))

Bel(A ∩ B) = min (Bel(A),Bel(B))

Pl is this a possibility measure, and Bel is the dual necessity measure
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Relations with alternative theories Possibility theory

Contour function

The contour function of a belief function Bel is defined by

pl(ω) = Pl({ω}), ∀ω ∈ Ω

When Bel is consonant, it can be recovered from its contour function,

Pl(A) = max
ω∈A

pl(ω).

The contour function is then a possibility distribution
The theory of belief function can thus be considered as more expressive
than possibility theory
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Relations with alternative theories Possibility theory

From the contour function to the mass function

Let pl be a contour on the frame Ω = {ω1, . . . , ωn}, with elements
arranged by decreasing order of plausibility, i.e.,

1 = pl(ω1) ≥ pl(ω2) ≥ . . . ≥ pl(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n.
Then, the corresponding mass function m is

m(Ai ) = pl(ωi )− pl(ωi+1), 1 ≤ i ≤ n − 1,
m(Ω) = pl(ωn).
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Relations with alternative theories Possibility theory

Example

Consider, for instance, the following contour distribution defined on the
frame Ω = {a,b, c,d}:

ω a b c d
pl(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c,d}) = 0.7− 0.5 = 0.2

m({c,d ,b}) = 0.5− 0.3 = 0.2
m({c,d ,b,a}) = 0.3.
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Relations with alternative theories Imprecise probabilities

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions

2 Relations with alternative theories
Possibility theory
Imprecise probabilities

3 Combination of evidence
Dempster’s rule
Some other rules
Marginalization, extension

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 24 / 55



Relations with alternative theories Imprecise probabilities

Credal set

A probability measure P on Ω is said to be compatible with Bel if

Bel(A) ≤ P(A)

for all A ⊆ Ω

Equivalently, P(A) ≤ Pl(A) for all A ⊆ Ω

The set P(Bel) of probability measures compatible with Bel is called the
credal set of Bel

P(Bel) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A)}
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Relations with alternative theories Imprecise probabilities

Construction of P(Bel)

An arbitrary element of P(Bel) can be obtained by distributing each mass
m(A) among the elements of A.
More precisely, let α(ω,A) be the fraction of m(A) allocated to the
element ω. (Function α is called an allocation of probability.) We have∑

ω∈A

α(ω,A) = m(A).

By summing up the numbers α(ω,A) for each ω, we get a probability
mass function on Ω,

pα(ω) =
∑
A3ω

α(ω,A).

It can be verified that

Pα(A) =
∑
ω∈A

pα(ω) ≥ Bel(A),

for all A ⊆ Ω.
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Relations with alternative theories Imprecise probabilities

Belief functions are coherent lower probabilities

It can be shown (Dempster, 1967) that any element of the credal set
P(Bel) can be obtained in that way.
Furthermore, the bounds in the inequalities Bel(A) ≤ P(A) and
P(A) ≤ Pl(A) are attained. We thus have, for all A ⊆ Ω,

Bel(A) = min
P∈P(Bel)

P(A)

Pl(A) = max
P∈P(Bel)

P(A)

We say that Bel is a coherent lower probability.
Not all lower envelopes of sets of probability measures are belief
functions!
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Relations with alternative theories Imprecise probabilities

A counterexample

Suppose a fair coin is tossed twice, in such a way that the outcome of the
second toss may depend on the outcome of the first toss.
The outcome of the experiment can be denoted by
Ω = {(H,H), (H,T ), (T ,H), (T ,T )}.
Let H1 = {(H,H), (H,T )} and H2 = {(H,H), (T ,H)} the events that we
get Heads in the first and second toss, respectively.
Let P be the set of probability measures on Ω which assign
P(H1) = P(H2) = 1/2 and have an arbitrary degree of dependence
between tosses.
Let P∗ be the lower envelope of P.
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Relations with alternative theories Imprecise probabilities

A counterexample – continued

It is clear that P∗(H1) = 1/2, P∗(H2) = 1/2 and P∗(H1 ∩ H2) = 0 (as the
occurrence Heads in the first toss may never lead to getting Heads in the
second toss).
Now, in the case of complete positive dependence,
P(H1 ∪ H2) = P(H1) = 1/2, hence P∗(H1 ∪ H2) ≤ 1/2.
We thus have

P∗(H1 ∪ H2) < P∗(H1) + P∗(H2)− P∗(H1 ∩ H2),

which violates the complete monotonicity condition for k = 2.
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Relations with alternative theories Imprecise probabilities

Two different theories

Mathematically, the notion of coherent lower probability is thus more
general than that of belief function.
However, the definition of the credal set associated with a belief function
is purely formal, as these probabilities have no particular interpretation in
our framework.
The theory of belief functions is not a theory of imprecise probabilities.
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Combination of evidence Dempster’s rule
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Combination of evidence Dempster’s rule

Broken sensor example continued

The first item of evidence gave us: m1(A) = 0.9, m1(Ω) = 0.1.
Another sensor returns another set of values B, and it is in working
condition with probability 0.8.
This second piece if evidence can be represented by the mass function:
m2(B) = 0.8, m2(Ω) = 0.2
How to combine these two pieces of evidence?
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Combination of evidence Dempster’s rule

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
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Combination of evidence Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) A ∩ B, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(A ∩ B) = 0.72
m(A) = 0.18
m(B) = 0.08
m(Ω) = 0.02
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Combination of evidence Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate such pairs
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Combination of evidence Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) ∅, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(∅) = 0
m(A) = 0.18/0.28 ≈ 0.64
m(B) = 0.08/0.28 ≈ 0.29
m(Ω) = 0.02/0.28 ≈ 0.07

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 37 / 55



Combination of evidence Dempster’s rule

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅

and (m1 ⊕m2)(∅) = 0
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Combination of evidence Dempster’s rule

Another example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 ∅,0.05 {b},0.2 ∅,0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 ∅,0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

The degree of conflict is κ = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is

(m1 ⊕m2)({a}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6
(m1 ⊕m2)({b}) = 0.2/0.6

(m1 ⊕m2)({a,b}) = 0.08/0.6
(m1 ⊕m2)({c}) = 0.15/0.6.
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Combination of evidence Dempster’s rule

Dempster’s rule
Properties

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if mA and mB are logical mass functions
and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Combination of evidence Dempster’s rule

Dempster’s conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function mA. Notation:

m ⊕mA = m(·|A)

It can be shown that
Pl(B|A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and mA is a logical mass function, then m ⊕mA is a Bayesian mass
function corresponding to the conditioning of m by A
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Combination of evidence Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Combination of evidence Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have

(Q1 ⊕Q2)(A) =
1

1− κ
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1

In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 ∝ (1− κ)−1pl1pl2.
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Combination of evidence Some other rules
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Combination of evidence Some other rules

Disjunctive rule
Definition and justification

Let (S1,P1, Γ1) and (S2,P2, Γ2) be sources associated to two pieces of
evidence
If interpretation sk ∈ Sk holds and piece of evidence k is reliable, then we
can conclude that X ∈ Γk (sk )

If interpretation s ∈ S1 and s2 ∈ S2 both hold and we assume that at least
one of the two pieces of evidence is reliable, then we can conclude that
X ∈ Γ1(s1) ∪ Γ2(s2)

This leads to the TBM disjunctive rule:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω
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Combination of evidence Some other rules

Disjunctive rule
Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {a,b},0.2 {b, c},0.25
m1 {a,b},0.2 {a,b},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a, c},0.03 {a,b, c},0.12 {a, c},0.15

The resulting mass function is

(m1 ∪m2)({a,b}) = 0.05 + 0.2 + 0.02 + 0.08 = 0.35
(m1 ∪m2)({b, c}) = 0.25
(m1 ∪m2)({a, c}) = 0.03 + 0.15 = 0.18

(m1 ∪m2)(Ω) = 0.1 + 0.12 = 0.22.
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Combination of evidence Some other rules

Disjunctive rule
Properties

Commutativity, associativity.
No neutral element.
m? is an absorbing element.
Expression using belief functions:

Bel1 ∪ Bel2 = Bel1 · Bel2
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Combination of evidence Some other rules

Definition

In general, the disjunctive rule may be preferred in case of heavy conflict
between the different pieces of evidence.
An alternative rule, which is somehow intermediate between the
disjunctive and conjunctive rules, has been proposed by Dubois and
Prade (1988). It is defined as follows:

(m1 ]m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}

m1(B)m2(C),

for all A ⊆ Ω, A 6= ∅, and (m1 ]m2)(∅) = 0.
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Example

A ∅ {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}
m1(A) 0 0 0.5 0.2 0 0.3 0 0
m2(A) 0 0.1 0 0.4 0.5 0 0 0

m2
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 {a,b},0.05 {b},0.2 {b, c},0.25
m1 {a,b},0.2 {a},0.02 {a,b},0.08 {a,b, c},0.1

{a, c},0.3 {a},0.03 {a},0.12 {c},0.15

(m1 ]m2)({a,b}) = 0.05 + 0.08 = 0.13
(m1 ]m2)({b}) = 0.2

(m1 ]m2)({b, c}) = 0.25
(m1 ]m2)({a}) = 0.02 + 0.03 + 0.12 = 0.17
(m1 ]m2)({c}) = 0.15

(m1 ]m2)(Ω) = 0.1.
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Properties

The DP rule boils down to the conjunctive and disjunctive rules when,
respectively, the degree of conflict is equal to zero and one.
In other cases, it has some intermediate behavior.
It is not associative. If several pieces of evidence are available, they
should be combined at once using an obvious n-ary extension of the
above formula.
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Combination of evidence Marginalization, extension

Outline

1 Representation of evidence
Mass functions
Belief and plausibility functions

2 Relations with alternative theories
Possibility theory
Imprecise probabilities

3 Combination of evidence
Dempster’s rule
Some other rules
Marginalization, extension
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Multidimensional belief functions

Let X and Y be two variables defined on frames ΩX and ΩY

Let ΩXY = ΩX × ΩY be the product frame
A mass function mXY on ΩXY can be seen as an generalized relation
between variables X and Y
Two basic operations on product frames

1 Express a joint mass function mXY in the coarser frame ΩX or ΩY

(marginalization)
2 Express a marginal mass function mX on ΩX in the finer frame ΩXY (vacuous

extension)
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Combination of evidence Marginalization, extension

Marginalization

Problem: express mXY in ΩX

Solution: transfer each mass mXY (A) to
the projection of A on ΩX

Marginal mass function

mXY↓X (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mXY (A) ∀B ⊆ ΩX

Generalizes both set projection and probabilistic marginalization
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Combination of evidence Marginalization, extension

Vacuous extension

Problem: express mX in ΩXY

Solution: transfer each mass mX (B) to
the cylindrical extension of B: B × ΩY

Vacuous extension:

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise
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Combination of evidence Marginalization, extension

Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX

A joint mass function mXY representing an uncertain relation between X and
Y

What can we say about Y ?
Solution:

mY = (mX↑XY ⊕mXY )↓Y

Simpler notation:
mY = (mX ⊕mXY )↓Y

Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 55 / 55


	Representation of evidence
	Mass functions
	Belief and plausibility functions

	Relations with alternative theories
	Possibility theory
	Imprecise probabilities

	Combination of evidence
	Dempster's rule
	Some other rules
	Marginalization, extension


