Workshop on belief functions Lecture 1 – Representation and Combination of Evidence

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

> Chiang Mai University July-August 2017

Topic of this workshop

- This workshop is about the theory of belief functions and its applications to Computational Statistics and Econometrics.
- What is the Theory of Belief Functions?
 - A formal framework for reasoning and making decisions under uncertainty.
 - Originates from Arthur Dempster's seminal work on statistical inference with lower and upper probabilities.
 - It was then further developed by Glenn Shafer who showed that belief functions can be used as a general framework for representing and reasoning with uncertain information.
 - Also known as Evidence theory or Dempster-Shafer theory.
- Many applications in computer science (artificial intelligence, information fusion, pattern recognition, etc.).
- Recently, there has been a revived interested in its application to Statistical Inference and Computational Statistics (classification, clustering).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Some other rules
 - Marginalization, extension

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Some other rules
 - Marginalization, extension

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment)
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

- Every A of Ω such that m(A) > 0 is a focal set of m
- *m* is said to be normalized if $m(\emptyset) = 0$. This property will be assumed hereafter, unless otherwise specified

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: the broken sensor

- Let X be some physical quantity (e.g., a temperature), talking values in Ω.
- A sensor returns a set of values $A \subset \Omega$, for instance, A = [20, 22].
- However, the sensor may be broken, in which case the value it returns is completely arbitrary.
- There is a probability p = 0.1 that the sensor is broken.
- What can we say about *X*? How to represent the available information (evidence)?

イロト イポト イヨト イヨト

Analysis

- Here, the probability *p* is not about *X*, but about the state of a sensor.
- Let *S* = {working, broken} the set of possible sensor states.
 - If the state is "working", we know that $X \in A$.
 - If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function *m* on Ω, such that

$$m(A) = 0.9, \quad m(\Omega) = 0.1$$

Image: Image:

Source

- A mass function *m* on Ω may be viewed as arising from
 - A set $S = \{s_1, \ldots, s_r\}$ of states (interpretations)
 - A probability measure P on S
 - A multi-valued mapping $\Gamma : S \rightarrow 2^{\Omega}$
- The four-tuple $(S, 2^S, P, \Gamma)$ is called a source for m
- Meaning: under interpretation s_i, the evidence tells us that X ∈ Γ(s_i), and nothing more. The probability P({s_i}) is transferred to A_i = Γ(s_i)
- *m*(*A*) is the probability of knowing that *X* ∈ *A*, and nothing more, given the available evidence

・ロ・・ (日・・ 日・・ 日・・

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some
 - $A \subseteq \Omega$, then we have a logical mass function m_A such that $m_A(A) = 1$
 - *m_A* is equivalent to *A*
 - Special case: m_?, the vacuous mass function, represents total ignorance
- If each interpretation s_i of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
 - a generalized set
 - a generalized probability distribution
- Total ignorance is represented by the vacuous mass function m₂ such that m₂(Ω) = 1

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Representation of evidence

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 - Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Some other rules
 - Marginalization, extension

4 3 4 4 3

Degrees of support and consistency

- Let *m* be a normalized mass function on Ω induced by a source $(S, 2^S, P, \Gamma)$.
- Let A be a subset of Ω .
- One may ask:
 - **(**) To what extent does the evidence support the proposition $\omega \in A$?
 - It what extent is the evidence consistent with this proposition?

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Belief function

Definition and interpretation

 For any A ⊆ Ω, the probability that the evidence implies (supports) the proposition X ∈ A is

$${\it Bel}({\it A})={\it P}(\{s\in {\it S}| {\it \Gamma}(s)\subseteq {\it A}\})=\sum_{{\it B}\subseteq {\it A}}{\it m}({\it B}).$$

• The function $Bel : A \rightarrow Bel(A)$ is called a belief function.

Plausibility function

 The probability that the evidence is consistent with (does not contradict) the proposition X ∈ A

$${\it Pl}({\it A})={\it P}(\{{\it s}\in {\it S}|\Gamma({\it s})\cap {\it A}
eq \emptyset\})=\sum_{B\cap {\it A}
eq \emptyset}{\it m}(B)=1-{\it Bel}(\overline{{\it A}})$$

- The function $PI : A \rightarrow PI(A)$ is called a plausibility function.
- The function $pl: \omega \to Pl(\{\omega\})$ is called a contour function.

イロト イヨト イヨト イヨト

Two-dimensional representation

- The uncertainty about a proposition A is represented by two numbers: Bel(A) and Pl(A), with $Bel(A) \le Pl(A)$
- The intervals [Bel(A), Pl(A)] have maximum length when m = m_? is vacuous: then, Bel(A) = 0 for all A ≠ Ω, and Pl(A) = 1 for all A ≠ Ø.
- The intervals [Bel(A), Pl(A)] have minimum length when *m* is Bayesian. Then, Bel(A) = Pl(A) for all *A*, and *Bel* is a probability measure.

イロト イポト イヨト イヨト

Broken sensor example

From

$$m(A) = 0.9, \quad m(\Omega) = 0.1$$

we get

$$\begin{split} & \textit{Bel}(A) = \textit{m}(A) = 0.9, \quad \textit{Pl}(A) = \textit{m}(A) + \textit{m}(\Omega) = 1 \\ & \textit{Bel}(\overline{A}) = 0, \quad \textit{Pl}(\overline{A}) = \textit{m}(\Omega) = 0.1 \\ & \textit{Bel}(\Omega) = \textit{Pl}(\Omega) = 1 \end{split}$$

We observe that

$$egin{aligned} & extsf{Bel}(A\cup\overline{A})\geq extsf{Bel}(A)+ extsf{Bel}(\overline{A})\ & extsf{Pl}(A\cup\overline{A})\leq extsf{Pl}(A)+ extsf{Pl}(\overline{A}) \end{aligned}$$

• Bel and Pl are non additive measures.

Characterization of belief functions

• Function $Bel : 2^{\Omega} \rightarrow [0, 1]$ is a completely monotone capacity: it verifies $Bel(\emptyset) = 0, Bel(\Omega) = 1$ and

$$\textit{Bel}\left(\bigcup_{i=1}^{k} \textit{A}_{i}\right) \geq \sum_{\emptyset \neq l \subseteq \{1, \dots, k\}} (-1)^{|l|+1} \textit{Bel}\left(\bigcap_{i \in I} \textit{A}_{i}\right).$$

for any $k \ge 2$ and for any family A_1, \ldots, A_k in 2^{Ω} .

• Conversely, to any completely monotone capacity *Bel* corresponds a unique mass function *m* such that:

$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \quad \forall A \subseteq \Omega.$$

Relations between *m*, *Bel* et *Pl*

- Let *m* be a mass function, *Bel* and *Pl* the corresponding belief and plausibility functions
- For all $A \subseteq \Omega$,

$$Bel(A) = 1 - Pl(\overline{A})$$
$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B)$$
$$m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B| + 1} Pl(\overline{B})$$

- m, Bel et Pl are thus three equivalent representations of
 - a piece of evidence or, equivalently
 - a state of belief induced by this evidence

Representation of evidence

- Mass functions
- Belief and plausibility functions

Relations with alternative theories

- Possibility theory
- Imprecise probabilities

Combination of evidence

- Dempster's rule
- Some other rules
- Marginalization, extension

・ロト ・同ト ・ヨト ・ヨ

- Mass functions
- Belief and plausibility functions
- Relations with alternative theoriesPossibility theory
 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Some other rules
- Marginalization, extension

4 3 4 4 3

Image: Image:

Consonant belief function

- When the focal sets of *m* are nested: A₁ ⊂ A₂ ⊂ ... ⊂ A_r, *m* is said to be consonant
- The following relations then hold, for all $A, B \subseteq \Omega$,

 $PI(A \cup B) = \max(PI(A), PI(B))$

 $Bel(A \cap B) = min(Bel(A), Bel(B))$

• *Pl* is this a possibility measure, and *Bel* is the dual necessity measure

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Contour function

• The contour function of a belief function Bel is defined by

$$pl(\omega) = Pl(\{\omega\}), \quad \forall \omega \in \Omega$$

• When Bel is consonant, it can be recovered from its contour function,

$$PI(A) = \max_{\omega \in A} pI(\omega).$$

- The contour function is then a possibility distribution
- The theory of belief function can thus be considered as more expressive than possibility theory

(日)

From the contour function to the mass function

Let *pl* be a contour on the frame Ω = {ω₁,..., ω_n}, with elements arranged by decreasing order of plausibility, i.e.,

$$1 = pl(\omega_1) \ge pl(\omega_2) \ge \ldots \ge pl(\omega_n),$$

and let A_i denote the set $\{\omega_1, \ldots, \omega_i\}$, for $1 \le i \le n$.

• Then, the corresponding mass function *m* is

$$m(A_i) = pl(\omega_i) - pl(\omega_{i+1}), \quad 1 \le i \le n-1,$$

$$m(\Omega) = pl(\omega_n).$$

Example

Consider, for instance, the following contour distribution defined on the frame Ω = {a, b, c, d}:

ω	а	b	С	d
$pl(\omega)$	0.3	0.5	1	0.7

The corresponding mass function is

$$m(\{c\}) = 1 - 0.7 = 0.3$$
$$m(\{c, d\}) = 0.7 - 0.5 = 0.2$$
$$m(\{c, d, b\}) = 0.5 - 0.3 = 0.2$$
$$m(\{c, d, b, a\}) = 0.3.$$

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities
- Combination of evidence
 - Dempster's rule
 - Some other rules
 - Marginalization, extension

Image: Image:

Credal set

A probability measure P on Ω is said to be compatible with Bel if

 $Bel(A) \leq P(A)$

for all $A \subseteq \Omega$

- Equivalently, $P(A) \leq PI(A)$ for all $A \subseteq \Omega$
- The set P(Bel) of probability measures compatible with Bel is called the credal set of Bel

$$\mathcal{P}(Bel) = \{ P : \forall A \subseteq \Omega, Bel(A) \le P(A) \}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Construction of $\mathcal{P}(Bel)$

- An arbitrary element of *P*(*Bel*) can be obtained by distributing each mass *m*(*A*) among the elements of *A*.
- More precisely, let α(ω, A) be the fraction of m(A) allocated to the element ω. (Function α is called an allocation of probability.) We have

$$\sum_{\omega \in A} \alpha(\omega, A) = m(A).$$

 By summing up the numbers α(ω, A) for each ω, we get a probability mass function on Ω,

$${\pmb p}_lpha(\omega) = \sum_{{\pmb A}
i \omega} lpha(\omega, {\pmb A}).$$

It can be verified that

$$\mathcal{P}_{lpha}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathcal{P}_{lpha}(\omega) \geq \mathcal{Bel}(\mathcal{A}),$$

for all $A \subseteq \Omega$.

・ロト ・同ト ・ヨト ・ヨト

Belief functions are coherent lower probabilities

- It can be shown (Dempster, 1967) that any element of the credal set $\mathcal{P}(Bel)$ can be obtained in that way.
- Furthermore, the bounds in the inequalities $Bel(A) \le P(A)$ and $P(A) \le Pl(A)$ are attained. We thus have, for all $A \subseteq \Omega$,

$$Bel(A) = \min_{P \in \mathcal{P}(Bel)} P(A)$$

$$PI(A) = \max_{P \in \mathcal{P}(Bel)} P(A)$$

- We say that *Bel* is a coherent lower probability.
- Not all lower envelopes of sets of probability measures are belief functions!

・ロト ・回ト ・ 回ト ・ ヨト

A counterexample

- Suppose a fair coin is tossed twice, in such a way that the outcome of the second toss may depend on the outcome of the first toss.
- The outcome of the experiment can be denoted by $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$
- Let $H_1 = \{(H, H), (H, T)\}$ and $H_2 = \{(H, H), (T, H)\}$ the events that we get Heads in the first and second toss, respectively.
- Let \mathcal{P} be the set of probability measures on Ω which assign $P(H_1) = P(H_2) = 1/2$ and have an arbitrary degree of dependence between tosses.
- Let P_* be the lower envelope of \mathcal{P} .

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

A counterexample – continued

- It is clear that P_{*}(H₁) = 1/2, P_{*}(H₂) = 1/2 and P_{*}(H₁ ∩ H₂) = 0 (as the occurrence Heads in the first toss may never lead to getting Heads in the second toss).
- Now, in the case of complete positive dependence, $P(H_1 \cup H_2) = P(H_1) = 1/2$, hence $P_*(H_1 \cup H_2) \le 1/2$.
- We thus have

$$P_*(H_1 \cup H_2) < P_*(H_1) + P_*(H_2) - P_*(H_1 \cap H_2),$$

which violates the complete monotonicity condition for k = 2.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Two different theories

- Mathematically, the notion of coherent lower probability is thus more general than that of belief function.
- However, the definition of the credal set associated with a belief function is purely formal, as these probabilities have no particular interpretation in our framework.
- The theory of belief functions is not a theory of imprecise probabilities.

3

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Some other rules
- Marginalization, extension

・ロト ・同ト ・ヨト ・ヨ

3

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilitie

Combination of evidence Dempster's rule

- Some other rules
- Marginalization, extension

4 3 4 4 3

Broken sensor example continued

- The first item of evidence gave us: $m_1(A) = 0.9$, $m_1(\Omega) = 0.1$.
- Another sensor returns another set of values *B*, and it is in working condition with probability 0.8.
- This second piece if evidence can be represented by the mass function: $m_2(B) = 0.8, m_2(\Omega) = 0.2$
- How to combine these two pieces of evidence?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Analysis

- If interpretations $s_1 \in S_1$ and $s_2 \in S_2$ both hold, then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$
- If the two pieces of evidence are independent, then the probability that s₁ and s₂ both hold is P₁({s₁})P₂({s₂})

Computation

	S ₂ working	S ₂ broken	
	(0.8)	(0.2)	
S_1 working (0.9)	<i>A</i> ∩ <i>B</i> , 0.72	A, 0.18	
S_1 broken (0.1)	<i>B</i> , 0.08	Ω, 0.02	

We then get the following combined mass function,

$$m(A \cap B) = 0.72$$
$$m(A) = 0.18$$
$$m(B) = 0.08$$
$$m(\Omega) = 0.02$$

э

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Case of conflicting pieces of evidence

- If $\Gamma_1(s_1) \cap \Gamma_2(s_2) = \emptyset$, we know that s_1 and s_2 cannot hold simultaneously
- The joint probability distribution on $S_1 \times S_2$ must be conditioned to eliminate such pairs

Dempster's rule

Computation

	S_2 working	S_2 broken
	(0.8)	(0.2)
S_1 working (0.9)	Ø, 0.72	A, 0.18
<i>S</i> ₁ broken (0.1)	<i>B</i> , 0.08	Ω, 0.02

We then get the following combined mass function,

$$m(\emptyset) = 0$$

 $m(A) = 0.18/0.28 \approx 0.64$
 $m(B) = 0.08/0.28 \approx 0.29$
 $m(\Omega) = 0.02/0.28 \approx 0.07$

3

・ロト ・回ト ・ヨト ・ヨト

Demoster's rule

Dempster's rule

Let m₁ and m₂ be two mass functions and

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict

• If $\kappa < 1$, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C=A} m_1(B)m_2(C), \quad \forall A \neq \emptyset$$

and $(m_1 \oplus m_2)(\emptyset) = 0$

Another example

A		Ø	{ a }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	{ C }	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	{ <i>a</i> , <i>b</i> , <i>c</i> }	
$m_1(A$	I)	0	0	0.5	0.2	0	0.3	0	0	
$m_2(A$	I)	0	0.1	0	0.4	0.5	0	0	0	
				1						
						<i>m</i> ₂				
					{ <i>a</i> },0.1	{	{ C },	0.5		
			{ <i>b</i> },0.5		Ø, 0.05		{ <i>b</i> },0.2	Ø, 0 .	25	
	m_1		{ <i>a</i> , <i>b</i> }	, 0.2	{ <i>a</i> },0.02	2 {a	, b }, 0.08	₿ Ø, 0	.1	
		{ <i>a</i> , <i>c</i> }	, 0.3	{ <i>a</i> },0.03	3 {	{ <i>a</i> },0.12).15		

The degree of conflict is $\kappa = 0.05 + 0.25 + 0.1 = 0.4.$ The combined mass function is

$$(m_1 \oplus m_2)(\{a\}) = (0.02 + 0.03 + 0.12)/0.6 = 0.17/0.6$$

 $(m_1 \oplus m_2)(\{b\}) = 0.2/0.6$
 $m_1 \oplus m_2)(\{a, b\}) = 0.08/0.6$
 $(m_1 \oplus m_2)(\{c\}) = 0.15/0.6.$

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: m₂
- Generalization of intersection: if m_A and m_B are logical mass functions and $A \cap B \neq \emptyset$, then

$$m_A \oplus m_B = m_{A \cap B}$$

If either m_1 or m_2 is Bayesian, then so is $m_1 \oplus m_2$ (as the intersection of a • singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

• Conditioning is a special case, where a mass function *m* is combined with a logical mass function *m_A*. Notation:

$$m \oplus m_A = m(\cdot|A)$$

It can be shown that

$$PI(B|A) = rac{PI(A \cap B)}{PI(A)}.$$

• Generalization of Bayes' conditioning: if *m* is a Bayesian mass function and m_A is a logical mass function, then $m \oplus m_A$ is a Bayesian mass function corresponding to the conditioning of *m* by *A*

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Commonality function

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

• *Q* is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_1 and Q_2 be the commonality functions associated to m_1 and m_2 .
- Let $Q_1 \oplus Q_2$ be the commonality function associated to $m_1 \oplus m_2$.
- We have

$$(Q_1 \oplus Q_2)(A) = \frac{1}{1-\kappa}Q_1(A) \cdot Q_2(A), \quad \forall A \subseteq \Omega, A \neq \emptyset$$

 $(Q_1 \oplus Q_2)(\emptyset) = 1$

• In particular, $pl(\omega) = Q(\{\omega\})$. Consequently,

$$pl_1 \oplus pl_2 \propto (1-\kappa)^{-1} pl_1 pl_2.$$

Outline

3

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Some other rules
- Marginalization, extension

- B - - B

Image: Image:

Some other rules

Disjunctive rule

Definition and justification

- Let (S_1, P_1, Γ_1) and (S_2, P_2, Γ_2) be sources associated to two pieces of evidence
- If interpretation $s_k \in S_k$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_k(s_k)$
- If interpretation $s \in S_1$ and $s_2 \in S_2$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_1(s_1) \cup \Gamma_2(s_2)$
- This leads to the TBM disjunctive rule:

$$(m_1 \cup m_2)(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega$$

イロト イヨト イヨト

Disjunctive rule

Example

Α	Ø	{ a }	{ b }	{ <i>a</i> , <i>b</i> }	{ C }	{ a , c }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }		
$m_1(A)$	0	0	0.5	0.2	0	0.3	0	0		
$m_2(A)$	0	0.1	0	0.4	0.5	0	0	0		
	m ₂									
			{ <i>a</i> },0.1			, <i>b</i> },0.4	{ <i>C</i>	{ <i>c</i> },0.5		
	{ <i>b</i> },0.5		{ a ,	{ <i>a</i> , <i>b</i> }, 0.05		{ <i>a</i> , <i>b</i> },0.2		{ <i>b</i> , <i>c</i> }, 0.25		
m_1	{ a ,	b},0.2	{ <i>a</i> ,	<i>b</i> },0.02	{ a ,	<i>b</i> },0.08	{ a , b	, <i>c</i> },0.1		
	{ a ,	<i>c</i> },0.3	{ a ,	<i>c</i> },0.03	{ a , b	o, c}, 0.12	2 { <i>a</i> , c	;},0.15		

The resulting mass function is

$$(m_1 \cup m_2)(\{a, b\}) = 0.05 + 0.2 + 0.02 + 0.08 = 0.35$$

 $(m_1 \cup m_2)(\{b, c\}) = 0.25$
 $(m_1 \cup m_2)(\{a, c\}) = 0.03 + 0.15 = 0.18$
 $(m_1 \cup m_2)(\Omega) = 0.1 + 0.12 = 0.22.$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Some other rules

Disjunctive rule Properties

- Commutativity, associativity.
- No neutral element.
- m_{γ} is an absorbing element.
- Expression using belief functions:

 $Bel_1 \cup Bel_2 = Bel_1 \cdot Bel_2$

Definition

- In general, the disjunctive rule may be preferred in case of heavy conflict between the different pieces of evidence.
- An alternative rule, which is somehow intermediate between the disjunctive and conjunctive rules, has been proposed by Dubois and Prade (1988). It is defined as follows:

$$(m_1 \uplus m_2)(A) = \sum_{B \cap C = A} m_1(B)m_2(C) + \sum_{\{B \cap C = \emptyset, B \cup C = A\}} m_1(B)m_2(C),$$

for all $A \subseteq \Omega$, $A \neq \emptyset$, and $(m_1 \uplus m_2)(\emptyset) = 0$.

Example

A	Ø	{ a }	{ <i>b</i>)} {a,b}	{ C }	{ a , c }	{ b , c }	{ <i>a</i> , <i>b</i> , <i>c</i> }		
$m_1(A)$	0	0	0.	5 0.2	0	0.3	0	0		
$m_2(A)$	0	0.1	0	0.4	0.5	0	0	0		
$ \begin{array}{c c} m_2 \\ \{a\}, 0.1 \{a, b\}, 0.4 \{c\}, 0.5 \end{array} $										
<i>m</i> ₁	$\{b\}, 0.5$ $\{a, b\}, 0.2$ $\{a, c\}, 0.3$		2	$\frac{\{a\}, 0.1}{\{a, b\}, 0.05}$ $\frac{\{a\}, 0.02}{\{a\}, 0.03}$	{ {a,	<i>b</i> },0.2 <i>b</i> },0.08 <i>a</i> },0.12	$\frac{\{c\}, 0.5}{\{b, c\}, 0.25}$ $\frac{\{a, b, c\}, 0.1}{\{c\}, 0.15}$			

$$(m_1 \uplus m_2)(\{a, b\}) = 0.05 + 0.08 = 0.13$$

$$(m_1 \uplus m_2)(\{b\}) = 0.2$$

$$(m_1 \uplus m_2)(\{b, c\}) = 0.25$$

$$(m_1 \uplus m_2)(\{a\}) = 0.02 + 0.03 + 0.12 = 0.17$$

$$(m_1 \uplus m_2)(\{c\}) = 0.15$$

$$(m_1 \uplus m_2)(\Omega) = 0.1.$$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Properties

- The DP rule boils down to the conjunctive and disjunctive rules when, respectively, the degree of conflict is equal to zero and one.
- In other cases, it has some intermediate behavior.
- It is not associative. If several pieces of evidence are available, they should be combined at once using an obvious *n*-ary extension of the above formula.

Outline

- Mass functions
- Belief and plausibility functions
- Relations with alternative theories
 Possibility theory
 - Improviso probabiliti
 - Imprecise probabilities

Combination of evidence

- Dempster's rule
- Some other rules
- Marginalization, extension

4 3 4 4 3

Multidimensional belief functions

- Let X and Y be two variables defined on frames Ω_X and Ω_Y
- Let $\Omega_{XY} = \Omega_X \times \Omega_Y$ be the product frame
- A mass function m_{XY} on Ω_{XY} can be seen as an generalized relation between variables X and Y
- Two basic operations on product frames
 - Express a joint mass function m_{XY} in the coarser frame Ω_X or Ω_Y (marginalization)
 - Subscript{Subsc

Marginalization

Marginal mass function

- Problem: express m_{XY} in Ω_X
- Solution: transfer each mass *m_{XY}(A)* to the projection of *A* on Ω_X

Image: Image:

$$m_{XY\downarrow X}(B) = \sum_{\{A\subseteq \Omega_{XY}, A\downarrow \Omega_X = B\}} m_{XY}(A) \quad \forall B \subseteq \Omega_X$$

Generalizes both set projection and probabilistic marginalization

- E

Vacuous extension

- Problem: express m_X in Ω_{XY}
- Solution: transfer each mass m_X(B) to the cylindrical extension of B: B × Ω_Y

Vacuous extension:

$$m_{X\uparrow XY}(A) = egin{cases} m_X(B) & ext{if } A = B imes \Omega_Y \ 0 & ext{otherwise} \end{cases}$$

(B)

Application to approximate reasoning

- Assume that we have:
 - Partial knowledge of X formalized as a mass function m_X
 - A joint mass function m_{XY} representing an uncertain relation between X and Y
- What can we say about Y?
- Solution:

$$m_Y = \left(m_{X\uparrow XY} \oplus m_{XY}\right)_{\downarrow Y}$$

Simpler notation:

$$m_Y = (m_X \oplus m_{XY})_{\downarrow Y}$$

 Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions

• □ ▶ • • □ ▶ • □ ▶ • □ ▶