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-
Topic of this workshop

@ This workshop is about the theory of belief functions and its applications
to Computational Statistics and Econometrics.
@ What is the Theory of Belief Functions?

e A formal framework for reasoning and making decisions under uncertainty.

e Originates from Arthur Dempster’s seminal work on statistical inference with
lower and upper probabilities.

o It was then further developed by Glenn Shafer who showed that belief
functions can be used as a general framework for representing and
reasoning with uncertain information.

@ Also known as Evidence theory or Dempster-Shafer theory.

@ Many applications in computer science (artificial intelligence, information
fusion, pattern recognition, etc.).

© Recently, there has been a revived interested in its application to
Statistical Inference and Computational Statistics (classification,
clustering).
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@ Representation of evidence
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.
Mass function

Definition

@ Let X be a variable taking values in a finite set Q (frame of discernment)
@ Evidence about X may be represented by a mass function m: 2% — [0, 1]

such that
> m(A) =1
ACQ
@ Every A of Q such that m(A) > 0 is a focal set of m

@ mis said to be normalized if m() = 0. This property will be assumed
hereafter, unless otherwise specified
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Example: the broken sensor

@ Let X be some physical quantity (e.g., a temperature), talking values in Q.
@ A sensor returns a set of values A C , for instance, A = [20, 22].

@ However, the sensor may be broken, in which case the value it returns is
completely arbitrary.

@ There is a probability p = 0.1 that the sensor is broken.

@ What can we say about X? How to represent the available information
(evidence)?
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.
Analysis

broken (0.1)
-

working (0.9)
o

@ Here, the probability p is not about X, but about the state of a sensor.

@ Let S = {working, broken} the set of possible sensor states.
o If the state is “working”, we know that X € A.

o If the state is “broken”, we just know that X € Q, and nothing more.
@ This uncertain evidence can be represented by a mass function mon Q,

such that
m(A)=0.9, m(Q)=0.1
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Source

@ A mass function m on Q may be viewed as arising from

o Aset S={sy,...,s} of states (interpretations)
@ A probability measure Pon S
e A multi-valued mapping I : S — 2°

@ The four-tuple (S, 25, P,T) is called a source for m

@ Meaning: under interpretation s;, the evidence tells us that X € I'(s;), and
nothing more. The probability P({s;}) is transferred to A; = I'(s;)

@ m(A) is the probability of knowing that X € A, and nothing more, given
the available evidence
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.
Special cases

@ If the evidence tells us that X € A for sure and nothing more, for some
A C Q, then we have a logical mass function ma such that ma(A) =1

@ myis equivalentto A
@ Special case: n1, the vacuous mass function, represents total ignorance
@ If each interpretation s; of the evidence points to a single value of X, then
all focal sets are singletons and m is said to be Bayesian. It is equivalent
to a probability distribution
@ A Dempster-Shafer mass function can thus be seen as
@ a generalized set
@ a generalized probability distribution
@ Total ignorance is represented by the vacuous mass function m, such
that m;(Q2) =1
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Belief and plausibility functions
Degrees of support and consistency

@ Let mbe a normalized mass function on 2 induced by a source
(S,25,P,T).

@ Let Abe a subset of Q.

@ One may ask:

@ To what extent does the evidence support the proposition w € A?
@ To what extent is the evidence consistent with this proposition?
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Belief function

Definition and interpretation
@ For any A C Q, the probability that the evidence implies (supports) the
proposition X € Ais

Bel(A) = P({s € S|T(s) C A}) = > _ m(B).
BCA

(S,2%P)

@ The function Bel : A — Bel(A) is called a belief function.
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Plausibility function

@ The probability that the evidence is consistent with (does not contradict)
the proposition X € A

PI(A) = P({s€ SIF(s)NA#0})= > m(B)=1- Bel(A)
BNA#D

(S,2%P)

@ The function P/ : A — PI(A) is called a plausibility function.
@ The function p/ : w — PI({w}) is called a contour function.
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Belief and plausibility functions
Two-dimensional representation

@ The uncertainty about a proposition A is represented by two numbers:
Bel(A) and PI(A), with Bel(A) < PI(A)

@ The intervals [Bel(A), PI(A)] have maximum length when m = m; is
vacuous: then, Bel(A) = 0 for all A # €, and PI(A) =1 for all A # 0.

@ The intervals [Bel(A), PI(A)] have minimum length when m is Bayesian.
Then, Bel(A) = PI(A) for all A, and Bel is a probability measure.
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Belief and plausibility functions
Broken sensor example

@ From
m(A)=0.9, m(Q) =01

we get
Bel(A) = m(A) =0.9, PI(A) = m(A) + m(Q) =1
Bel(A) =0, PI(A)=m(Q)=0.1
Bel(Q) = PI(Q) =1

@ We observe that B B
Bel(AU A) > Bel(A) + Bel(A)

PI(AUA) < PI(A) + PI(A)

@ Bel and Pl are non additive measures.
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Belief and plausibility functions
Characterization of belief functions

@ Function Bel : 22 — [0, 1] is a completely monotone capacity: it verifies
Bel(#) = 0, Bel(2) =1 and

k
Bel <U A,-) > > (-1)""Bel <ﬂ A,-) :
i=1 DAIC{1,....k} icl

for any k > 2 and for any family Ay, ..., A in 22

@ Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that:

m(A) = Y  (-1)A"1BIBel(B), VACQ.
P#BCA
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Belief and plausibility functions
Relations between m, Bel et P/

@ Let m be a mass function, Bel and P/ the corresponding belief and
plausibility functions

@ Forall AC Q,

Bel(A) = 1 — PI(A)
m(A) = > (-1)A~181Bel(B)

0#BCA
m(A) =Y _(-1)A-IBI+ pi(B)
BCA

@ m, Bel et Pl are thus three equivalent representations of

@ a piece of evidence or, equivalently
o a state of belief induced by this evidence
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© Relations with alternative theories
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Consonant belief function

@ When the focal sets of m are nested: Ay C A> C ... C Ar, mis said to be
consonant

@ The following relations then hold, for all A, B C Q,
PI(AU B) = max (PI(A), PI(B))

Bel(An B) = min (Bel(A), Bel(B))

@ Plis this a possibility measure, and Bel is the dual necessity measure
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Contour function

@ The contour function of a belief function Bel is defined by
pl(w) = Pl({w}), VYweQ
@ When Bel is consonant, it can be recovered from its contour function,

PI(A) = Tg/)\( pl(w).

@ The contour function is then a possibility distribution

@ The theory of belief function can thus be considered as more expressive
than possibility theory
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From the contour function to the mass function

@ Let pl/ be a contour on the frame Q = {wy,...,wn}, with elements
arranged by decreasing order of plausibility, i.e.,

1= pl(wr) > pl(wz) > ... > pl(wp),

and let A; denote the set {w1,...,w;}, for1 <i<n.
@ Then, the corresponding mass function m is

m(A;) = pl(w;) — pl(wiy1), 1<i<n—1,
IT)(Q) = pl(wn)~
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Relations with alternative theories Possibility theory

@ Consider, for instance, the following contour distribution defined on the
frame Q = {a, b, c,d}:

w a b ¢ d
pllw) 03 05 1 0.7

@ The corresponding mass function is

m({c})=1-0.7=0.3
m({c,d})=0.7-05=0.2

m({c,d,b})=05-03=0.2
m({c,d,b,a}) =
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Relations with alternative theories Imprecise probabilities

@ A probability measure P on Q is said to be compatible with Bel if
Bel(A) < P(A)

foral AC Q
@ Equivalently, P(A) < PI(A) forall AC Q

@ The set P(Bel) of probability measures compatible with Bel is called the
credal set of Bel

P(Bel) = {P : YA C Q, Bel(A) < P(A)}
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Construction of P(Bel)

@ An arbitrary element of P(Bel) can be obtained by distributing each mass

m(A) among the elements of A.

@ More precisely, let a(w, A) be the fraction of m(A) allocated to the
element w. (Function « is called an allocation of probability.) We have

w€eA

@ By summing up the numbers a(w, A) for each w, we get a probability
mass function on €,

@ It can be verified that

Zpa ) > Bel(A),

weA

forall AC Q.
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Belief functions are coherent lower probabilities

@ It can be shown (Dempster, 1967) that any element of the credal set
‘P(Bel) can be obtained in that way.

@ Furthermore, the bounds in the inequalities Bel(A) < P(A) and
P(A) < PI(A) are attained. We thus have, for all A C Q,

Bel(4) = Pergzgel) P(4)

PILA) = e, PA

@ We say that Bel is a coherent lower probability.

@ Not all lower envelopes of sets of probability measures are belief
functions!
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A counterexample

@ Suppose a fair coin is tossed twice, in such a way that the outcome of the
second toss may depend on the outcome of the first toss.

@ The outcome of the experiment can be denoted by
Q={(H,H),(H, T),(T,H),(T, T)}.

@ Let Hy ={(H,H),(H, T)} and H, = {(H, H), (T, H)} the events that we
get Heads in the first and second toss, respectively.

@ Let P be the set of probability measures on Q which assign
P(H;) = P(H2) = 1/2 and have an arbitrary degree of dependence
between tosses.

@ Let P, be the lower envelope of P.
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Relations with alternative theories Imprecise probabilities

A counterexample — continued

@ ltis clear that P.(Hy) = 1/2, P.(H2) = 1/2 and P.(H; N Hy) = 0 (as the
occurrence Heads in the first toss may never lead to getting Heads in the
second toss).

@ Now, in the case of complete positive dependence,
P(Hy UH,) = P(H;y) =1/2, hence P.(Hy UH,) <1/2.

@ We thus have
P.(H1 U Ha) < P.(Hq) + P.(H2) — P.(Hi N Ha),

which violates the complete monotonicity condition for k = 2.
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Two different theories

@ Mathematically, the notion of coherent lower probability is thus more
general than that of belief function.

@ However, the definition of the credal set associated with a belief function
is purely formal, as these probabilities have no particular interpretation in
our framework.

@ The theory of belief functions is not a theory of imprecise probabilities.
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e Combination of evidence
@ Dempster’s rule

Thierry Denceux

HEUDIASYC) Workshop on belief functions

CMU, July-August 2017

32/55



Broken sensor example continued

@ The first item of evidence gave us: my(A) = 0.9, m(Q2) = 0.1.

@ Another sensor returns another set of values B, and it is in working
condition with probability 0.8.

@ This second piece if evidence can be represented by the mass function:
mg(B) =0.8, mg(Q) =0.2

@ How to combine these two pieces of evidence?
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.
Analysis

broken (0.1)

working (0.9) T

@ If interpretations sy € Sy and sp € S, both hold, then X € T'1(s1) N T2(s2)

@ If the two pieces of evidence are independent, then the probability that s;
and s, both hold is Py({s1})P2({s2})
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Computation

S, working S, broken
(0.8) (0.2)

S1 working (0.9) | An B, 0.72 A 0.18

S; broken (0.1) B, 0.08 Q, 0.02

We then get the following combined mass function,

m(An B) = 0.72
m(A) = 0.18
m(B) = 0.08
m(Q) = 0.02
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Case of conflicting pieces of evidence

(Sll Pl)
broken (0.1)

working (0.9)
[ I

@ IfM'1(s1) NT2(s2) = B, we know that sy and s, cannot hold simultaneously

@ The joint probability distribution on S; x S, must be conditioned to
eliminate such pairs

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 36/55



Combination of evidence Dempster’s rule

Computation

S, working S, broken

S1 working (0.9)
Sy broken (0.1)

(0.8) (0.2)
0,0.72 A 0.18
B, 0.08 Q, 0.02

We then get the following combined mass function,

m((
m(A

)=

(A) = 018/028 0.64
m(B) = 0.08/0.28 ~ 0.29
(Q)

m(Q2) = 0.02/0.28 ~ 0.07
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Dempster’s rule

@ Let my and m» be two mass functions and
k= Y_ mi(B)my(C)
BNC=0

their degree of conflict
@ If k < 1, then my and m» can be combined as

(my & my)(A) = 1%@ > mi(Bymy(C), VA#D
BNC=A

and (my @ m2)(0) =0
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Another example

A 0 { b {b} {ab} {C} {a C} {b ct {a b c}
mi(A) 0 05 02
mp(A) 0 o.1 0 04 0.5 o o o

my
{a},0.1 {a,b},04 {c},05
{b},0.5 (,0.05 {b},0.2 0,0.25
my  {a b},02 | {a},0.02 {a, b}, 0.08 0,0.1
{a,c},0.3 | {a},0.03 {a},0.12 {c},0.15

The degree of conflict is Kk = 0.05 + 0.25 + 0.1 = 0.4. The combined mass
function is
(my ® mp)({a}) = (0.02 +0.03+0.12)/0.6 = 0.17/0.6
(my & mp)({b}) =0.2/0.6
(my ® mp)({a, b}) = 0.08/0.6
(m @ mx)({c}) =0.15/0.6.
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Dempster’s rule

Properties

@ Commutativity, associativity. Neutral element: m;

@ Generalization of intersection: if ma and mg are logical mass functions
and AN B # 0, then
ma © Mg = Mang

@ If either my or m, is Bayesian, then so is my @& m» (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Dempster’s conditioning

@ Conditioning is a special case, where a mass function m is combined with
a logical mass function m4. Notation:

mao ma = m(-|A)

@ It can be shown that PI(AN B)
N
PI(B|A) = ————.
(B4) PI(A)
@ Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and my is a logical mass function, then m & my is a Bayesian mass
function corresponding to the conditioning of m by A
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Commonality function

e Commonality function: let Q : 2% — [0, 1] be defined as
QA) =Y m(B), VACQ
BDA

@ Conversely,

m(A) = _(-1)"Q(B)

BDA

@ Qs another equivalent representation of a belief function.
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Commonality function and Dempster’s rule

@ Let @ and Q. be the commonality functions associated to my and ms.
@ Let @Q; & Q. be the commonality function associated to m; & ms.
@ We have

(Qr & Q)(A) = 11?01 (A)- Qo(A), YACQAZD

(Q1 @ Q)(0) =1
@ In particular, pl(w) = Q({w}). Consequently,

p/1 @p/g X (1 — Ii)71p/1p/2.
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Combination of evidence Some other rules
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e Combination of evidence

@ Some other rules
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Disjunctive rule

Definition and justification

@ Let (Sy, P1,T1) and (S, P2, T2) be sources associated to two pieces of
evidence

@ If interpretation s € Si holds and piece of evidence k is reliable, then we
can conclude that X € I'c(sk)

@ If interpretation s € S; and s, € S, both hold and we assume that at least
one of the two pieces of evidence is reliable, then we can conclude that
Xerly (51) U F2(32)

@ This leads to the TBM disjunctive rule:

(MmuUme)(A)= > mi(B)my(C), VACQ
BUC=A
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Disjunctive rule

Example
A 0 {a {b} {ab} {c} {ac} {bc}t {abc}
my(A) O 0 0.5 0.2 0 0.3 0 0
my(A) 0 0.1 0 04 0.5 0 0 0
mo
{a},0.1 {a,b},0.4 {c},0.5

{b},0.5 | {a,b},0.05 {a,b},0.2 {b,c},0.25
my {a,b},02 | {a,b},002 {a,b},0.08 {ab,c},0.1
{a,c},0.3 | {a,c},0.03 {ab,c},012 {arc},0.15

The resulting mass function is

(myump)({a,b}) =0.05+0.2+0.02+0.08 = 0.35

(my Umy)({b,c}) =0.25

(myumy)({a,c})=0.034+0.15=0.18
(mUmy)(2) =0.1+0.12=0.22.
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Disjunctive rule

Properties

@ Commutativity, associativity.

@ No neutral element.

@ m, is an absorbing element.

@ Expression using belief functions:

Bel,; U Bel, = Bel; - Bel,

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017

47 /55



Combination of evidence Some other rules

Definition

@ In general, the disjunctive rule may be preferred in case of heavy conflict
between the different pieces of evidence.

@ An alternative rule, which is somehow intermediate between the
disjunctive and conjunctive rules, has been proposed by Dubois and
Prade (1988). It is defined as follows:

(MW mp)(A) = > my(B)my(C) + > mq(B)my(C),
BNC=A {BNC=0,BUC=A}

forall AC Q, A# 0, and (my & mp)(0) = 0.
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Combination of evidence Some other rules

0 {a} {b} {ab} {C} {a C} {b ct {a b c}
m(A) 0 0 05 02
0 01 0 04 0.5 o o o

mo
{a},0.1 {a,b},0.4 {c},0.5
{b},05 |{ab},005 {b},02 {b,c},025
my {ab},02 | {a},002 {ab},0.08 {ab,c},0.1
{a,c},0.3 | {a},0.03 {a},0.12 {c},0.15

(mwm)({a,b}) = O 05 +0.08=0.13
(my & mp)({b}) =
(my W mo)({b,c}) =0.25
(mywmp)({a}) =0.02+0.03+0.12=0.17
(mywmo)({c}) =0.15
(my wmo)(Q2) =0.1.
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Properties

@ The DP rule boils down to the conjunctive and disjunctive rules when,
respectively, the degree of conflict is equal to zero and one.

@ In other cases, it has some intermediate behavior.

@ |t is not associative. If several pieces of evidence are available, they
should be combined at once using an obvious n-ary extension of the
above formula.
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Combination of evidence Marginalization, extension
Outline

e Combination of evidence

@ Marginalization, extension
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Multidimensional belief functions

@ Let X and Y be two variables defined on frames Qx and Qy

@ Let Qxy = Qx x Qy be the product frame

@ A mass function myy on Qxy can be seen as an generalized relation
between variables X and Y

@ Two basic operations on product frames

@ Express a joint mass function myy in the coarser frame Qx or Qy
(marginalization)

@ Express a marginal mass function my on Qx in the finer frame Qxy (vacuous
extension)
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Marginalization

QY
(N L _________ @ Problem: express myy in Qx

@ Solution: transfer each mass myy(A) to
B=AJQ, o
the projection of Aon Qx

@ Marginal mass function

Mxy x(B) = > myy(A) VB C Qx
{ACQxy,AlQx=B}

@ Generalizes both set projection and probabilistic marginalization
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Vacuous extension

@ Problem: express my in Qxy

@ Solution: transfer each mass my(B) to
the cylindrical extension of B: B x Qy

B A=BxQ),

@ Vacuous extension:

mx(B) if A= B x Qy

m A) =
xixv(A) 0 otherwise
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Application to approximate reasoning

@ Assume that we have:

o Partial knowledge of X formalized as a mass function my
e A joint mass function mxy representing an uncertain relation between X and
Y

@ What can we say about Y?
@ Solution:
my = (Mxtxy & Mxy), y
@ Simpler notation:
my = (Mx & Mxy) y

@ Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions
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