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Motivation

Introductory example

Let us consider a population in which some disease is present in
proportion θ.
n patients have been selected at random from that population. Let xi = 1
if patient i has the disease, xi = 0 otherwise. Each xi is a realization of
Xi ∼ B(θ).
We assume that the xi ’s are not observed directly. For each patient i , a
physician gives a degree of plausibility pli (1) that patient i has the disease
and a degree of plausibility pli (0) that patient i does not have the disease.
The observations are uncertain data of the form pl1, . . . ,pln.
How to estimate θ?
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Motivation

Aleatory vs. epistemic uncertainty

In the previous example, uncertainty has two distinct origins:
1 Before a patient has been drawn at random from the population, uncertainty

is due to the variability of the variable of interest in the population. This is
aleatory uncertainty.

2 After the random experiment has been performed, uncertainty is due to lack
of knowledge of the state of each particular patient. This is epistemic
uncertainty.

Epistemic uncertainty can be reduced by carrying out further
investigations. Aleatory uncertainty cannot.
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Motivation

Approach

In this lecture, we will consider statistical estimation problems in which
both kinds of uncertainty are present: it will be assumed that each data
item x

has been generated at random from a population (aleatory uncertainty), but
it is ill-known because of imperfect measurement or perception (epistemic
uncertainty).

The proposed model treats these two kinds of uncertainty separately:
Aleatory uncertainty will be represented by a parametric statistical model;
Epistemic uncertainty will be represented using belief functions.
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Motivation

Real world applications

Uncertain data arise in many applications (but epistemic uncertainty is usually
neglected). It may be due to:

Limitations of the underlying measuring equipment (unreliable sensors,
indirect measurements), e.g.: biological sensor for toxicity measurement
in water.
Use of imputation, interpolation or extrapolation techniques, e.g.:
clustering of moving objects whose position is measured asynchronously
by a sensor network,
Partial or uncertain responses in surveys or subjective data annotation,
e.g.: sensory analysis experiments, data labeling by experts, etc.

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 6 / 56



Motivation

Data labeling example
Recognition of facial expressions

joy     surprise sadness 

disgust anger   fear    
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Motivation

Recognition of facial expressions
Experiment

To achieve good performances in such tasks (object classification in
images or videos), we need a large number of labeled images.
However, ground truth is usually not available or difficult to determine with
high precision and reliability: it is necessary to have the images
subjectively annotated (labeled) by humans.
How to account for uncertainty in such subjective annotations?
Experiment:

Images were labeled by 5 subjects;
For each image, subjects were asked to give a degree of plausibility for each
of the 6 basic expressions.
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Motivation

Example 1
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Motivation

Example 2
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Motivation

Example 3
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Motivation

Model

Complete data: x = {(w i , zi )}n
i=1 with

w i : feature vector for image i (pixel gray levels)
zi : class of image i (one the six expressions).

The feature vectors w i are perfectly observed but class labels are only
partially known through subjective evaluations.
How to learn a decision rule from such data?
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Motivation

General approach

1 Postulate a parametric statistical model px (x ;θ) for the complete data;
2 Represent epistemic data uncertainty using belief functions (observed

data);
3 Estimate θ by minimizing the conflict between the model and the

observed data using an extension of the EM algorithm: the evidential EM
(E2M) algorithm.

4 Applications:
1 Probability estimation (Bernoulli model)
2 Linear discriminant analysis with uncertain class labels
3 Linear regression with fuzzy data
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Estimation from evidential data Model and problem statement
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Estimation from evidential data Model and problem statement

Model

Let X be a (discrete) random vector taking values in ΩX , with probability
mass function pX (·;θ) depending on an unknown parameter θ ∈ Θ.
Let x be a realization of X (complete data).
We assume that x is only partially observed, and partial knowledge of x
is described by a mass function m on ΩX (“observed” data).
Problem: estimate θ.
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Estimation from evidential data Model and problem statement

Likelihood function (reminder)

Given a parametric model pX (·;θ) and an observation x , the likelihood
function is the mapping from Θ to [0,1] defined as

θ → L(θ; x) = pX (x ;θ).

It measures the “likelihood” or plausibility of each possible value of the
parameter, after the data has been observed.
If we observe that x ∈ A, then the likelihood function is:

L(θ; A) = PX (A;θ) =
∑
x∈A

pX (x ;θ).
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Estimation from evidential data Model and problem statement

Generalized Likelihood function
Definition

ΩX

A1

A2

A3

Assume that m has focal sets A1, . . . ,Ar .
If we knew that x ∈ Ai , the likelihood
would be

L(θ; Ai ) = PX (Ai ;θ) =
∑
x∈Ai

pX (x ;θ).

Taking the expectation with respect to m:

L(θ; m) =
r∑

i=1

m(Ai )L(θ; Ai )
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Estimation from evidential data Model and problem statement

Generalized Likelihood function
Interpretation

We have

L(θ; m) =
r∑

i=1

m(Ai )
∑
x∈Ai

pX (x ;θ)

=
∑

x∈ΩX

pX (x ;θ)
∑
Ai3x

m(Ai )

=
∑

x∈ΩX

pX (x ;θ)pl(x) = 1− κ,

where κ is the degree of conflict between pX (·;θ) and m.
Consequently, maximizing L(θ; m) with respect to θ amounts to
minimizing the conflict between the parametric model and the uncertain
observations
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Estimation from evidential data Model and problem statement

Generalized Likelihood function
Case of fuzzy data

We can also write L(θ; m) as:

L(θ; m) =
∑

x∈ΩX

pX (x ;θ)pl(x) = Eθ [pl(X )]

If m is consonant, pl may be interpreted as the membership function of a
fuzzy subset of ΩX : it can be seen as fuzzy data.
L(θ; m) is then the probability of the fuzzy data, according to the definition
given by Zadeh (1968).
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Estimation from evidential data Model and problem statement

Independence assumptions

Let us assume that x = (x1, . . . ,xn) ∈ Rnp, where each x i is a realization
from a p-dimensional random vector X i .
Independence assumptions:

1 Stochastic independence of X 1, . . . ,X n:

pX (x ;θ) =
n∏

i=1

pX i (x i ;θ), ∀x = (x1, . . . , xn) ∈ ΩX

2 Cognitive independence of x1, . . . , xn with respect to m:

pl(x) =
n∏

i=1

pli (x i ), ∀x = (x1, . . . , xn) ∈ ΩX .

Under these assumptions:

log L(θ; m) =
n∑

i=1

logEθ [pli (X i )] .
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Estimation from evidential data Evidential EM algorithm
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Estimation from evidential data Evidential EM algorithm

Description

The generalized log-likelihood function log L(θ; m) can be maximized
using an iterative algorithm composed of two steps:

E-step: Compute the expectation of log L(θ; X ) with respect to
m ⊕ pX (·;θ(q)):

Q(θ,θ(q)) =

∑
x∈ΩX

log(L(θ; x))pX (x ;θ(q))pl(x)∑
x∈ΩX

pX (x ;θ(q))pl(x)
.

M-step: Maximize Q(θ,θ(q)) with respect to θ.
E- and M-steps are iterated until the increase of log L(θ; m) becomes
smaller than some threshold.
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Estimation from evidential data Evidential EM algorithm

Properties

1 When m is categorical: m(A) = 1 for some A ⊆ Ω, then the previous
algorithm reduces to the EM algorithm→ evidential EM (E2M) algorithm.

2 Monotonicity: any sequence L(θ(q); m) for q = 0,1,2, . . . of generalized
likelihood values obtained using the E2M algorithm is non decreasing,
i.e., it verifies

L(θ(q+1); m) ≥ L(θ(q); m), ∀q.
3 The algorithm only uses the contour function pl , which drastically reduces

the complexity of calculations.
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Estimation from evidential data Example: uncertain Bernoulli sample
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Estimation from evidential data Example: uncertain Bernoulli sample

Model and data

Let us assume that the complete data x = (x1, . . . , xn) is a realization
from an i.i.d. sample X1, . . . ,Xn from B(θ) with θ ∈ [0,1].
We only have partial information about the xi ’s in the form: pl1, . . . ,pln,
where pli (x) is the plausibility that xi = x , x ∈ {0,1}.
Under the cognitive independence assumption:

log L(θ; pl1, . . . ,pln) =
n∑

i=1

logEθ [pli (Xi )]

=
n∑

i=1

log [(1− θ)pli (0) + θpli (1)]
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Estimation from evidential data Example: uncertain Bernoulli sample

E- and M-steps

Complete data log-likelihood:

log L(θ, x) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

xi .

E-step: compute

Q(θ, θ(q)) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

ξ
(q)
i , with

ξ
(q)
i = Eθ(q) [Xi |pli ] =

θ(q)pli (1)

(1− θ(q))pli (0) + θ(q)pli (1)
.

M-step:

θ(q+1) =
1
n

n∑
i=1

ξ
(q)
i .
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Estimation from evidential data Example: uncertain Bernoulli sample

Numerical example

i 1 2 3 4 5 6
pli (0) 1 1 1 α 0 0
pli (1) 0 0 0 1− α 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

θ

L
(θ

;m
) α=0

α=1

α=0.5

α = 0.5

q θ(q) L(θ(q); pl)
0 0.3000 6.6150
1 0.5500 16.8455
2 0.5917 17.2676
3 0.5986 17.2797
4 0.5998 17.2800
5 0.6000 17.2800

θ̂ = 0.6
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Applications Partially supervised LDA
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Applications Partially supervised LDA

Problem statement

We consider a population of objects partitioned in g classes.
Each object is described by d continuous features W = (W 1, . . . ,W d )
and a class variable Z .
The goal of discriminant analysis is to learn a decision rule that classifies
any object from its feature vector, based on a learning set.
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Applications Partially supervised LDA

Learning tasks

Classically, different learning tasks are considered:
Supervised learning: Ls = {(w i , zi )}n

i=1;
Unsupervised learning: Lns = {w i}n

i=1;
Semi-supervised learning: Lss = {(w i , zi )}ns

i=1 ∪ {w i}n
i=ns

Here, we consider partially supervised learning:

Lps = {(w i ,mi )}n
i=1,

where mi is a mass function representing partial information about the
class of object i .
This problem can be solved using the E2M algorithm using a suitable
parametric model.
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Applications Partially supervised LDA

Linear discriminant analysis

Generative model:
Complete data: x = {(w i , zi )}n

i=1, assumed to be a realization of an iid
random sample X = {(W i ,Zi )}n

i=1;
Given Zi = k , W i is multivariate normal with mean µk and common variance
matrix Σ.
The proportion of class k in the population is πk .
Parameter vector: θ =

(
{πk}g

k=1, {µk}
g
k=1,Σ

)
.

The Bayes rule is approximated by assigning each object to the class k∗

that maximizes the estimated posterior probability

p(Z = k |w ; θ̂) =
φ(w ; µ̂k , Σ̂)π̂k∑
` φ(w ; µ̂`, Σ̂)π̂`

,

where θ̂ is the MLE of θ.
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Applications Partially supervised LDA

Observed-data likelihood

In partially supervised learning, the observed-data log-likelihood has the
following expression:

log L(θ;Lps) =
n∑

i=1

log

( g∑
k=1

plikπkφ(w i ;µk ,Σk )

)
,

where plik is the plausibility that object i belongs to class k .
Supervised learning is recovered as a special case when:

plik = zik =

{
1 if object i belongs to class k ;

0 otherwise.

Unsupervised learning is recovered when plik = 1 for all i and k .
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Applications Partially supervised LDA

E2M algorithm

E-step: Using pX (·;θ(q))⊕m, compute

t (q)
ik = E(Zik |m;θ(q)) =

π
(q)
k plikφ(w i ;µ

(q)
k ,Σ(q))∑

` π
(q)
k pli`φ(w i ;µ

(q)
` ,Σ(q))

M-step: Update parameter estimates

π
(q+1)
k =

1
n

n∑
i=1

t (q)
ik , µ

(q+1)
k =

∑n
i=1 t (q)

ik w i∑n
i=1 t (q)

ik

.

Σ(q+1) =
1
n

∑
i,k

t (q)
ik (w i − µ

(q+1)
k )(w i − µ

(q+1)
k )′
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Applications Partially supervised LDA

Face recognition problem
Experimental settings

216 images of 60× 70 pixels, 36 in each class.
One half for training, the rest for testing.
A reduced number of features was extracted using Principal component
analysis (PCA).
Each training image was labeled by 5 subjects who gave degrees of
plausibility for each image and each class.
The plausibilities were combined using Dempster’s rule (after some
discounting to avoid total conflict).
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Applications Partially supervised LDA

Combined labels
Example 1
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Applications Partially supervised LDA

Combined labels
Example 2
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Applications Partially supervised LDA

Combined labels
Example 3
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Applications Partially supervised LDA

Results
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Applications Partially supervised LDA

Results
Example 1
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Applications Partially supervised LDA

Results
Example 2
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Applications Partially supervised LDA

Results
Example 3
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Applications Linear regression with fuzzy data
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Applications Linear regression with fuzzy data

Model and data

The complete data is assumed to be a realization y of an n-dimensional
Gaussian random vector Y ∼ N (Xβ, σ2In), where

X is a fixed design matrix of size (n, p),
In is the identity matrix of size n, and
θ = (β, σ)T is the parameter vector.

We further assume that the realizations yi of the dependent variables are
ill-known and described by contour functions pli .
Under the cognitive independence assumption, the joint contour function
with respect to y is

pl(y) =
n∏

i=1

pli (yi )
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Applications Linear regression with fuzzy data

Observed and complete-data likelihoods

The complete data likelihood is

L(θ; y) = φ(y ; Xβ, σ2In) =
n∏

i=1

φ(yi ; xT
i β, σ

2),

where x i is the vector of input variables for the i-th observation.
The observed data likelihood is

L(θ; pl) =

∫
φ(y ; Xβ, σ2In)pl(y)dy

=
n∏

i=1

∫
φ(yi ; xT

i β, σ
2)pli (yi )dyi

Thierry Denœux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 46 / 56



Applications Linear regression with fuzzy data

Evidential EM algorithm

E-step: Taking the expectation of log L(θ; Y ) with respect to pY (·;θ)⊕ pl
and using the fit θ(q) of θ we get

Q(θ,θ(q)) = −n logσ − 1
2σ2

(
n∑

i=1

γ
(q)
i − 2βT X Tξ(q) + βT X T Xβ

)
+ C,

where ξ(q) = Eθ(q) (Y |pl) and γ(q)
i = Eθ(q) (Y 2

i |pli ) denote, respectively, the
expectations of Y and Y 2

i with respect to pY (·;θ)⊕ pl using the fit θ(q) of
θ.
M-step: differentiating Q(θ,θ(q)) with respect to β and σ, we get

β(q+1) = (X T X )−1X Tξ(q)

σ(q+1) =

√√√√1
n

(
n∑

i=1

γ
(q)
i − 2 β(q+1)T X Tξ(q) + β(q+1)T X T Xβ(q+1)

)
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Applications Linear regression with fuzzy data

Case of Gaussian fuzzy numbers

When the contour functions are normalized Gaussians of the form

pli (y) = φ(y ; mi , si )si
√

2π,

pY (·;θ)⊕ pl is then Gaussian distribution N (µ,Σ) with µ = (µ1, . . . , µn)T

and Σ = diag(σ1, . . . , σn), where

µi =
xT

i βs2
i + miσ

2

s2
i + σ2

and

σi =
s2

i σ
2

s2
i + σ2

.

More complex formula can be found for the case where the contour
functiuns are triangular or trapezoidal (see Denoeux, 2011).
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Applications Linear regression with fuzzy data

Numerical experiment

To demonstrate the interest of expressing partial information about
ill-known data in the form of possibility distributions, we performed the
following experiment.
We generated n = 100 values xi from the uniform distribution in [0,2],
and we generated corresponding values yi using the linear regression
model with β = (2,1)T and σ = 0.2.
To model the situation where only partial knowledge of values y1, . . . , yn
is available, contour functions pl1, . . . ,pln were generated as follows:

For each i , a “guess” y ′
i was randomly generated from a normal distribution

with mean yi and standard deviation σi , were σi was drawn randomly from a
uniform distribution in [0, 0.5];
pli was defined as the triangular possibility distribution with core y ′

i and
support [y ′

i − 2σi , y ′
i + 2σi ].
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Applications Linear regression with fuzzy data

Example of a generated dataset
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Applications Linear regression with fuzzy data

Numerical experiment (continued)

Three strategies were compared for estimating the parameter vector
θ = (β, σ)T :

1 Using the fuzzy data pl1, . . . , pln (method 1)
2 Using only 0.5-cuts of the fuzzy data (method 2)
3 Using only the crisp guesses y ′

1, . . . , y
′
n(method 3)

For each of these three methods, the L2 distance ‖θ̂ − θ‖ between the
true parameter vector and its MLE was computed.
The whole experiment was repeated 1000 times.
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Result
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Summary

The formalism of belief functions provides a very general setting for
representing uncertain, ill-known data.
Maximizing the proposed generalized likelihood criterion amounts to
minimizing the conflict between the data and the parametric model.
This can be achieved using an iterative algorithm (evidential EM
algorithm) that reduces to the standard EM algorithm in special cases.
In classification, the method makes it possible to handle uncertainty on
class labels (partially supervised learning). Uncertainty on attributes can
be handled as well.
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Other applications

The E2M algorithm can be applied to any problem involving a parametric
statistical model and epistemic uncertainty on observations, e.g.:

Independent factor analysis (Cherfi et al., 2011);
Clustering of fuzzy data using Gaussian mixture models (Quost and
Denoeux, 2016);
Hidden Markov models (Ramasso and Denoeux, 2014).

Open problem: How to elicit subjective evaluations in the
Dempster-Shafer framework?
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