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Introductory example

@ Let us consider a population in which some disease is present in
proportion 6.

@ n patients have been selected at random from that population. Let x; = 1
if patient / has the disease, x; = 0 otherwise. Each x; is a realization of
Xi ~ B(6).

@ We assume that the x;’s are not observed directly. For each patient /, a
physician gives a degree of plausibility p/;(1) that patient i has the disease
and a degree of plausibility p/;(0) that patient / does not have the disease.

@ The observations are uncertain data of the form ph, ..., pl,.
@ How to estimate 67
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Aleatory vs. epistemic uncertainty

@ In the previous example, uncertainty has two distinct origins:

@ Before a patient has been drawn at random from the population, uncertainty
is due to the variability of the variable of interest in the population. This is
aleatory uncertainty.

@ After the random experiment has been performed, uncertainty is due to lack
of knowledge of the state of each particular patient. This is epistemic
uncertainty.

@ Epistemic uncertainty can be reduced by carrying out further
investigations. Aleatory uncertainty cannot.
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Approach

@ In this lecture, we will consider statistical estimation problems in which
both kinds of uncertainty are present: it will be assumed that each data
item x

@ has been generated at random from a population (aleatory uncertainty), but
e it is ill-known because of imperfect measurement or perception (epistemic
uncertainty).

@ The proposed model treats these two kinds of uncertainty separately:

@ Aleatory uncertainty will be represented by a parametric statistical model;
e Epistemic uncertainty will be represented using belief functions.
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Real world applications

Uncertain data arise in many applications (but epistemic uncertainty is usually
neglected). It may be due to:

@ Limitations of the underlying measuring equipment (unreliable sensors,
indirect measurements), e.g.: biological sensor for toxicity measurement
in water.

@ Use of imputation, interpolation or extrapolation techniques, e.g.:
clustering of moving objects whose position is measured asynchronously
by a sensor network,

@ Partial or uncertain responses in surveys or subjective data annotation,
e.g.: sensory analysis experiments, data labeling by experts, etc.
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Data labeling example

Recognition of facial expressions

joy surprise sadness

disgust anger
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Recognition of facial expressions

Experiment

@ To achieve good performances in such tasks (object classification in
images or videos), we need a large number of labeled images.

@ However, ground truth is usually not available or difficult to determine with
high precision and reliability: it is necessary to have the images
subjectively annotated (labeled) by humans.

@ How to account for uncertainty in such subjective annotations?

@ Experiment:

e Images were labeled by 5 subjects;
e For each image, subjects were asked to give a degree of plausibility for each
of the 6 basic expressions.
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Fear

Anger

Disgust

Sadness

Surprise

Joy

Expert labels

[
[
—
——

L
0 05

Thierry Denceux

Plausibility

Workshop on belief functions

CMU, July-August 2017

11/56



Model

@ Complete data: x = {(w;, z))}/_, with
o w;: feature vector for image i (pixel gray levels)
o z;: class of image i (one the six expressions).

@ The feature vectors w; are perfectly observed but class labels are only
partially known through subjective evaluations.

@ How to learn a decision rule from such data?
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General approach

@ Postulate a parametric statistical model px(x; 8) for the complete data;

© Represent epistemic data uncertainty using belief functions (observed
data);

© Estimate 0 by minimizing the conflict between the model and the
observed data using an extension of the EM algorithm: the evidential EM
(E2M) algorithm.

© Applications:

@ Probability estimation (Bernoulli model)

@ Linear discriminant analysis with uncertain class labels
© Linear regression with fuzzy data
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Estimation from evidential data Model and problem statement
Outline

e Estimation from evidential data
@ Model and problem statement
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Estimation from evidential data Model and problem statement

@ Let X be a (discrete) random vector taking values in Qx, with probability
mass function px(-; @) depending on an unknown parameter 6 € ©.

@ Let x be a realization of X (complete data).

@ We assume that x is only partially observed, and partial knowledge of x
is described by a mass function m on Qx (“observed” data).

@ Problem: estimate 6.
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Likelihood function (reminder)

@ Given a parametric model px(-; @) and an observation x, the likelihood
function is the mapping from © to [0, 1] defined as

6 — L(6; x) = px(x; 6).

@ It measures the “likelihood” or plausibility of each possible value of the
parameter, after the data has been observed.

@ If we observe that x € A, then the likelihood function is:

L(6; A) = Px(A;0) = > px(x;6).
XcA
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Generalized Likelihood function

Definition

Thierry Denceux (UTC/HEUDIASYC)

@ Assume that m has focal sets Ay, ..., A,.

@ If we knew that x € A;, the likelihood
would be

L(0; A) = Px(A;;0) = > px(x;6).

XEA;

@ Taking the expectation with respect to m:

r

L(O;m) = m(A)L(6; A))

i=1
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Generalized Likelihood function

Interpretation

@ We have

LO;m) = Zm ) > px(x;6)

XEA;
= Z px(x:;0) Z m(A;)
xeQx Aidx
= > px(x:0)pl(x) =1 x,

xXeQyx

where « is the degree of conflict between px(-; 8) and m.

@ Consequently, maximizing L(6; m) with respect to & amounts to
minimizing the conflict between the parametric model and the uncertain
observations
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Generalized Likelihood function

Case of fuzzy data

@ We can also write L(0; m) as:

L(O:m) = 3 px(x: 8)pl(x) = Eo [ol(X)]

XEQx

@ If mis consonant, p/ may be interpreted as the membership function of a
fuzzy subset of Qx: it can be seen as fuzzy data.

@ L(@; m) is then the probability of the fuzzy data, according to the definition
given by Zadeh (1968).

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 20/56



Independence assumptions

@ Let us assume that x = (x4, ..., Xx,) € R", where each x; is a realization
from a p-dimensional random vector X.

@ Independence assumptions:
@ Stochastic independence of X1, ..., Xp:

n
x(X; ) = HPX,-(XI? 0), Vx=(xy,...,Xn) € Qx
i=1
@ Cognitive independence of X1, ..., X, with respect to m:
n
pl(x) = [ [ pl(x:), VX =(x1,...,Xn) € Qx.
@ Under these assumptions:

log L(8; m) = Zlog]Eg[pl Nl
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Estimation from evidential data Evidential EM algorithm
Outline

e Estimation from evidential data

@ Evidential EM algorithm
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.
Description

@ The generalized log-likelihood function log L(8; m) can be maximized
using an iterative algorithm composed of two steps:

E-step: Compute the expectation of log L(6; X) with respect to
m® px(- 09):

_ Txen, 199(L(8: X))Px(x; 69)pi(x)
xen, Px(:0D)pIx)

M-step: Maximize Q(6, 0(?) with respect to 6.

@ E- and M-steps are iterated until the increase of log L(8; m) becomes
smaller than some threshold.

Q(o, g(q))
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.
Properties

@ When mis categorical: m(A) = 1 for some A C Q, then the previous
algorithm reduces to the EM algorithm — evidential EM (E*M) algorithm.
@ Monotonicity: any sequence L(8?; m) for g = 0,1,2, ... of generalized
likelihood values obtained using the E?M algorithm is non decreasing,
i.e., it verifies
L@ m) > L(6D;m), vq.

@ The algorithm only uses the contour function p/, which drastically reduces
the complexity of calculations.
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Estimation from evidential data Example: uncertain Bernoulli sample
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e Estimation from evidential data

@ Example: uncertain Bernoulli sample
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Estimation from evidential data Example: uncertain Bernoulli sample

@ Let us assume that the complete data x = (xi, ..., Xp) is a realization
from ani.i.d. sample Xi,..., X, from B(#) with 6 € [0,1].

@ We only have partial information about the x;’s in the form: pl;, ..., pl,
where pli(x) is the plausibility that x; = x, x € {0, 1}.

@ Under the cognitive independence assumption:

n
log L(¢; ph, ..., pl) > " logEg [pli(X))]
i=1

> log[(1 - 6)pli(0) + 6pl(1)]
i=1
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Estimation from evidential data Example: uncertain Bernoulli sample

Complete data log-likelihood:

log L(#, x) = nlog(1 — 6) + log ( ) Zx,

E-step: compute
Q(0,019) = nlog(1 — 6) + log < ) Zf(q with

6 Dpli(1)
(1 = 0(@D)pli(0) + 6D pli(1)

&9 = Eg [Xilpl] =
M-step:

g(a+1) 25 q)
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Estimation from evidential data Example: uncertain Bernoulli sample

Numerical example
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a=0.5
0 0.3000 6.6150
1 05500 16.8455
2 0.5917 17.2676
3 0.5986 17.2797
4 05998 17.2800
5 0.6000 17.2800
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© Applications
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Outline

© Applications
@ Partially supervised LDA
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Problem statement

@ We consider a population of objects partitioned in g classes.

@ Each object is described by d continuous features W = (W', ..., W9)
and a class variable Z.

@ The goal of discriminant analysis is to learn a decision rule that classifies
any object from its feature vector, based on a learning set.
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Learning tasks

@ Classically, different learning tasks are considered:
Supervised learning: £s = {(w;, z)}L,;
Unsupervised learning: Lps = {w;}7_;;
Semi-supervised learning: Lss = {(w;, z:)} /=, U{w;}L
@ Here, we consider partially supervised learning:

‘CPS = {(WI" m,-)}?:1,

where m; is a mass function representing partial information about the
class of object /.

@ This problem can be solved using the E2M algorithm using a suitable
parametric model.
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Linear discriminant analysis

@ Generative model:
e Complete data: x = {(w;, z))}_, assumed to be a realization of an iid
random sample X = {(W;, Z)}L+;
e Given Z; = k, W; is multivariate normal with mean p,, and common variance
matrix X.
e The proportion of class k in the population is 7.
o Parameter vector: 6 = ({mx}_;, {mi i1, X)-

@ The Bayes rule is approximated by assigning each object to the class k*
that maximizes the estimated posterior probability

O(W; iy, )7

p(Z = k|w; 8) = o
Zz 45( w; iy, Z)WZ

where 8 is the MLE of 6.

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 33/56



Observed-data likelihood

@ In partially supervised learning, the observed-data log-likelihood has the

following expression:
n g
log L(6; Lps) = ) _log (Z Plikmk (Wi g, Zk)> ;
i=1 k=1

where pli is the plausibility that object i belongs to class k.
@ Supervised learning is recovered as a special case when:

[ g — 1 if object i belongs to class k;
Pl =2Kk=130  otherwise.

@ Unsupervised learning is recovered when ply = 1 for all i and k.
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E2M algorithm

E-step: Using px(-; 8'?) & m, compute

7qu P/ik¢(Wii HE(q), > (@)
D 7T )ple(wj; uéq), ¥(9)

t9) — B(Zy|m; 6(9) =

M-step: Update parameter estimates

(9)
1 1 Z t
q+) Zt:k’ Mf(qu)— 211
=1 ik

s(g+1) — Z t(q q+1))(w, ug(q+1))/
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Face recognition problem

Experimental settings

@ 216 images of 60 x 70 pixels, 36 in each class.
@ One half for training, the rest for testing.

@ A reduced number of features was extracted using Principal component
analysis (PCA).

@ Each training image was labeled by 5 subjects who gave degrees of
plausibility for each image and each class.

@ The plausibilities were combined using Dempster’s rule (after some
discounting to avoid total conflict).

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 36 /56



Combined labels

Example 1
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Applications Partially supervised LDA

Combined labels
Example 2

Expert labels Combined labels
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Combined labels

Example 3
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Results
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Applications Partially supervised LDA

Results

Example 1
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Results

Example 2
Fear
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Applications Partially supervised LDA

Results
Example 3
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Applications Linear regression with fuzzy data

© Applications

@ Linear regression with fuzzy data
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S il e reoression vith fuzzy data
Model and data

@ The complete data is assumed to be a realization y of an n-dimensional
Gaussian random vector Y ~ N'(X3, 021,), where

e X is a fixed design matrix of size (n, p),
e I, is the identity matrix of size n, and
e 0 =(B,0)" is the parameter vector.

@ We further assume that the realizations y; of the dependent variables are
ill-known and described by contour functions pl;.

@ Under the cognitive independence assumption, the joint contour function
with respect to y is

pi(y) = [T pi(yi)
i=1

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 45/56



Linear regression with fuzzy data
Observed and complete-data likelihoods

@ The complete data likelihood is

L(6:y) = o(y: XB, 0% 1) = [ [ o(vi: X[ B, 0%),

i=1

where x; is the vector of input variables for the i-th observation.
@ The observed data likelihood is

L(6; pl) = / o(y: XB, 0 I)pl(y)dy

= H/qb(y,-;x,-Tﬁ,UZ)pl,-(y,-)dy,-
i=1
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Linear regression with fuzzy data
Evidential EM algorithm

@ E-step: Taking the expectation of log L(0; Y) with respect to py(+; 8) ® pl
and using the fit 8% of 8 we get

1 n
Q(6.6') = —nlogo — 5 (Z 7D —2pTXTE + BTXTXB> +C,
i=1

where £9 = By (Y|pl) and +\? = Eyw (Y2|ph) denote, respectively, the

expectations of ¥ and Y? with respect to py(-; 8) @ pl using the fit 89 of
0.

e M-step: differentiating Q(6,6'?) with respect to 8 and o, we get

I@(QH) — (XTX)71XT£(‘7)

oa+1) J (Z% — 2 3@t T xT¢(a) +ﬂ(Q+1)TXTXﬁ(Q+1)>

Thierry Denceux (UTC/HEUDIASYC) Workshop on belief functions CMU, July-August 2017 47 /56



Linear regression with fuzzy data
Case of Gaussian fuzzy numbers

@ When the contour functions are normalized Gaussians of the form
pli(y) = o(y; mi, s;)siV2r,

py(-; @) @ pl is then Gaussian distribution A (g, X) with o = (p1,...,pn)"
and X = diag(o+,...,0n), where
X[ Bs?+ mjo?
t S,-2 + 02
and
i — s20?
T s2 + 02

@ More complex formula can be found for the case where the contour
functiuns are triangular or trapezoidal (see Denoeux, 2011).
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Linear regression with fuzzy data
Numerical experiment

@ To demonstrate the interest of expressing partial information about
ill-known data in the form of possibility distributions, we performed the
following experiment.

@ We generated n = 100 values x; from the uniform distribution in [0, 2],
and we generated corresponding values y; using the linear regression
model with 3 = (2,1)" and ¢ = 0.2.

@ To model the situation where only partial knowledge of values y1, ..., ¥,
is available, contour functions pl, . . ., pl, were generated as follows:

o For each i, a “guess” y/ was randomly generated from a normal distribution
with mean y; and standard deviation o, were o; was drawn randomly from a
uniform distribution in [0, 0.5];

e pl; was defined as the triangular possibility distribution with core y/ and
support [y/ — 204, y{ + 20
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Linear regression with fuzzy data
Example of a generated dataset

0 0.5 1 1.5

n
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Linear regression with fuzzy data
Numerical experiment (continued)

@ Three strategies were compared for estimating the parameter vector
0=(B.0)":
@ Using the fuzzy data ph, . .., pl, (method 1)
@ Using only 0.5-cuts of the fuzzy data (method 2)
@ Using only the crisp guesses y;, ..., y,(method 3)

@ For each of these three methods, the L, distance ||§ — 0| between the
true parameter vector and its MLE was computed.

@ The whole experiment was repeated 1000 times.
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Applications Linear regression with fuzzy data
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Summary

@ The formalism of belief functions provides a very general setting for
representing uncertain, ill-known data.

@ Maximizing the proposed generalized likelihood criterion amounts to
minimizing the conflict between the data and the parametric model.

@ This can be achieved using an iterative algorithm (evidential EM
algorithm) that reduces to the standard EM algorithm in special cases.

@ In classification, the method makes it possible to handle uncertainty on
class labels (partially supervised learning). Uncertainty on attributes can
be handled as well.
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Linear regression with fuzzy data
Other applications

@ The E2M algorithm can be applied to any problem involving a parametric
statistical model and epistemic uncertainty on observations, e.g.:
o Independent factor analysis (Cherfi et al., 2011);
o Clustering of fuzzy data using Gaussian mixture models (Quost and
Denoeux, 2016);
e Hidden Markov models (Ramasso and Denoeux, 2014).
@ Open problem: How to elicit subjective evaluations in the
Dempster-Shafer framework?
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