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Exploratory data analysis

Exploratory Data Analysis (EDA): techniques for summarizing the
main characteristics of data using statistical graphics and data
visualization techniques.
Basic methods (1D or 2D plots):

histograms
boxplots
scatter plots
...

More advanced techniques (visualizing high-dimensional data):
Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)
...
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Clustering

Finding groups in data, such that observations within each group are
similar, and observations from different groups are dissimilar.
Applications

EDA (finding groups of companies, countries, etc., with similar
characteristics for further analysis)
In marketing: finding groups of customers with similar characteristics
and/or purchasing behavior (customer segmentation)
...
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What we will see

Today:
How to draw some basic plots
Clustering algorithms for cross-sectional numerical data:

Partitional clustering: c-means algorithm
Clustering evaluation criteria
Fuzzy clustering: fuzzy c-means (FCM) algorithm
(Hierarchical clustering)

Next class (Aug 20, 2022):
More advances data visualization techniques (PCA, MDS)
Clustering qualitative and hybrid (numerical/qualitative) data
Time series clustering
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Running example: KOF globalization data

The KOF Swiss Economic Institute publishes each year globalisation
indices measures the economic, social and political dimensions of
globalisation.
These indices aggregate various economic, social and politcal data
(see next slides)
We will consider the 2014 cross-section of 157 countries to illustrate
various data visualization and clustering techniques
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Economic globalization index
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Social globalization index
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Political globalization index
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Partitional clustering

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm

Thierry Denœux (UTC) Computer Coding – Clustering August 2022 9 / 59



Partitional clustering

Questions

1 Are different groups of countries, with similar globalization
characteristics?

2 How many groups are there?
3 How to assign observations to each group?
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Partitional clustering

Partition

Definition
A partition of a set X is a collection of subsets X1, . . . ,Xc such that
X1 ∪ . . . ∪ Xc = X , and for any i 6= j , Xi ∩ Xj = ∅. Each subset Xk is
called a class, a group or a cluster.

Partitional clustering aims at finding a partition of n observations (objects)
in a dataset.
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Partitional clustering

Representation of a partition

Let X = {x1, . . . , xn} be a set of n objects (p-dimensional attribute
vectors). A partition in c groups can be represented in several ways:

1 As a vector y = (y1, . . . , yn) where yi = k if xi ∈ Xk

2 As an n × c matrix U = (uik), where uik = 1 if yi = k , uik = 0
otherwise

3 As an n × n matrix R = (rij) such that rij = 1 if yi = yj , rij = 0
otherwise

We will mainly use the 1st and 2nd representations.
Matrix U verifies:

c∑
k=1

uik = 1, i = 1, . . . , n.

The number of observations in cluster k is

nk =
n∑

i=1

uik , k = 1, . . . , c .
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Partitional clustering

Partitional clustering algorithms

There exist a lot of partitional clustering algorithms.
The (hard) c-means (HCM) algorithm was introduced in the 1960’s
but it is still the most widely used today, because of its simplicity and
speed.
It is applicable to data with numerical attributes.
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Partitional clustering c-Means Algorithm

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm
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Partitional clustering c-Means Algorithm

(Hard) c-Means Algorithm

1 Fix the number c of clusters
2 Initialize cluster centers (prototypes) v1, . . . , vc randomly.
3 Compute distances dik = ‖xi − vk‖ between each observation xi and

each prototype vk , and assign each xi to the cluster of its nearest
prototype:

uik :=

{
1 if dik = min` di`
0 otherwise

4 Recompute each prototype vk as the center of mass of cluster k :

vk :=

∑n
i=1 uikxi∑n
i=1 uik

=
1
nk

∑
{i :uik=1}

xi , k = 1, . . . , c

5 If the prototypes have not changed in the last iteration, stop.
Otherwise, return to Step 3.
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Partitional clustering c-Means Algorithm

Illustration of the HCM algorithm
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Partitional clustering c-Means Algorithm

Why does it work?

Let U = (uik) and V = (v1, . . . , vc). Consider the following cost
function:

JHCM(U,V ) =
n∑

i=1

c∑
k=1

uikd
2
ik

where dik = ‖xi − vk‖ is the Euclidean distance between xi and vk .
It can be shown that JHCM(U,V ) decreases at each step of HCM.
As a consequence, the algorithm converges to a local minimum of
JHCM(U,V ).
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Partitional clustering c-Means Algorithm

Proof that JHCM(U ,V ) decreases at each iteration

The HCM algorithm alternates 2 steps:
1 Update of U with V fixed
2 Update of V with U fixed

Step 1: the cost function can be written as

JHCM(U,V ) =
n∑

i=1

c∑
k=1

uikd
2
ik︸ ︷︷ ︸

d2
i,k(i)

=
n∑

i=1

d2
i ,k(i)

When updating U for fixed V , each k(i) is chosen to minimize d2
i ,k(i),

i.e., di ,k(i) = min` di`, and hence JHCM(U,V ).
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Partitional clustering c-Means Algorithm

Proof that JHCM(U ,V ) decreases at each iteration (cont.)

Step 2: the cost function can alternatively be written as

JHCM(U,V ) =
c∑

k=1

n∑
i=1

uikd
2
ik︸ ︷︷ ︸

I(vk )

where

I(vk) =
n∑

i=1

uik(xi − vk)T (xi − vk)

We have
∂I(vk)

∂vk
= 0⇔ vk =

1
nk

∑
{i :uik=1}

xi .

so updating V in such a way that vk is the center of cluster k
minimizes JHCM(U,V ). Proof
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Partitional clustering c-Means Algorithm

Remarks

1 The prototypes may be initialized with randomly selected observations.
2 The final solution usually depends on the initial prototypes. It is

recommended to run the algorithm several times with different random
initializations, and keep the best solution according to JHCM.

3 The choice of the number c of clusters is a difficult problem in
clustering. This problem is addressed in the next section.
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Partitional clustering How good is a partition?

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm
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Partitional clustering How good is a partition?

Validity of a partition

After we have generated a partition using a clustering algorithm, we
need ways to evaluate the validity/quality of this partition.
If several partitions are generated (e.g., with different numbers of
clusters), we need ways to compare them.
The main approaches include:

Graphical representations
Internal indices
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Partitional clustering How good is a partition?

Graphical representations

If p is small (say, p ≤ 5), we can visually inspect the data using 2D or
3D plots. If p is large, we need more sophisticated methods.
A simple method to determine the number of clusters is to plot JHCM
as a function of c and see if the curve decreases more slowly beyond
some value of c (“knee”). This method works only of the clusters are
well separated (see next slides).
The silhouette plot is a more advanced graphical representation that
provides visual information about the quality of the partition.
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Partitional clustering How good is a partition?

The knee method for data with well-separated clusters
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Partitional clustering How good is a partition?

Silhouette plot

The silhouette plot is a graphical representation of data that can be
used to visually evaluate the validity of a partition into clusters.
For each object i in cluster yi = k(i), let ai be the mean distance to
the other objects in the same cluster

ai =
1

nk(i) − 1

∑
j 6=i ,yj=k(i)

d(i , j)

where d(i , j) is the distance between objects i and j , yj is the cluster
of object j . (We assume nk(i) > 1).
Let bi be the smallest mean distance of object i to all objects in any
other cluster, to which i does not belong:

bi = min
k 6=k(i)

1
nk

∑
j :yj=k

d(i , j)
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Partitional clustering How good is a partition?

Silhouette (continued)

We define the silhouette value of object i as

si =
bi − ai

max(ai , bi )

We can see that

si =


1− ai/bi if ai < bi

0 if ai = bi

bi/ai − 1 if ai > bi

and −1 ≤ si ≤ 1.
Observations with a large si (close to 1) are well clustered, a small si
(around 0) means that the observation lies between two clusters, and
observations with si < 0 are probably placed in the wrong cluster.
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Partitional clustering How good is a partition?

Silhouette plot in R

library(cluster)

km<-kmeans(x,centers=3,nstart=10)
D<- dist(x)
sil<-silhouette(km$cluster,D)
plot(sil)
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Partitional clustering How good is a partition?

Silhouette plot of the 4-cluster synthetic data with c = 4

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km$cluster, dist = dist(x))

Average silhouette width :  0.7

n = 100 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   25  |  0.69

2 :   25  |  0.70

3 :   25  |  0.69

4 :   25  |  0.71
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Partitional clustering How good is a partition?

Silhouette plot of the 4-cluster synthetic data with c = 3

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km$cluster, dist = dist(x))

Average silhouette width :  0.56

n = 100 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   50  |  0.41

2 :   25  |  0.72

3 :   25  |  0.72
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Partitional clustering How good is a partition?

Silhouette plot of the 4-cluster synthetic data with c = 5

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km$cluster, dist = dist(x))

Average silhouette width :  0.64

n = 100 5  clusters  Cj

j :  nj | avei∈Cj  si

1 :   25  |  0.69

2 :   25  |  0.68

3 :   25  |  0.66

4 :   11  |  0.47

5 :   14  |  0.54
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Partitional clustering How good is a partition?

Internal indices

Internal indices measure the “intrinsic” quality of a partition (how
well-separated the clusters are).
We have seen that the mean silhouette value

s =
1
n

n∑
i=1

si

can be used as an internal index. (The larger s, the better clustering).
There exist many other internal indices. Two of the most widely used
are the Davies-Bouldin and the Dunn indices.
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Partitional clustering How good is a partition?

Davis-Bouldin index

Let dk be the mean distance between an object of cluster k and the
center vk of that cluster:

dk =
1
nk

n∑
i=1

uikdik

It is a measure of the scatter/spread of cluster k .
A measure of within-to-between spread between clusters k and ` is

Rk` =
dk + d`
d(vk , v`)

Rk` is small if clusters k and ` are well separated.
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Partitional clustering How good is a partition?

Davis-Bouldin index (continued)

The index of cluster k is

Rk = max
6̀=k

Rk`

Rk is small if cluster k is well separated from all other clusters.
The Davis-Bouldin (DB) index is defined as

DB =
1
c

c∑
k=1

Rk

The smaller DB, the better clustering.
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Partitional clustering How good is a partition?

Dunn index

Let δk` denote the smallest distance between a vector of cluster k and
a vector of cluster `:

δk` = min
{(i ,j):uik=1,uj`=1}

d(i , j)

Let δmin denote the smallest such distance:

δmin = min
k 6=`

δk`
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Partitional clustering How good is a partition?

Dunn index (continued)

Let ∆k denote the diameter of cluster k , defined as the largest
distance separating two distinct points in that cluster:

∆k = max
{(i ,j):uik=ujk=1}

d(i , j)

Let ∆max denote the maximum diameter:

∆max = max
1≤k≤c

∆k

The Dunn index is defined as the quotient of δmin and ∆max:

Dunn =
δmin

∆max

The higher Dunn index, the better.
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Partitional clustering How good is a partition?

Davis-Bouldin index in R

library(clusterCrit)

C<- 2:10
N<-length(C)
DB<-rep(0,N)
Du<-rep(0,N)
Si<-rep(0,N)
for(i in 1:N){
km<-kmeans(x,centers=C[i],nstart=10)
DB[i]<-intCriteria(as.matrix(x), km$cluster, crit="Davies_Bouldin")
Du[i]<-intCriteria(as.matrix(x), km$cluster, crit="Dunn")
Si[i]<-intCriteria(as.matrix(x), km$cluster, crit="Silhouette")
}
plot(C,DB,type="b",xlab="number of clusters",ylab="DB index")
plot(C,Du,type="b",xlab="number of clusters",ylab="Dunn index")
plot(C,Si,type="b",xlab="number of clusters",ylab="Silhouette")
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Partitional clustering How good is a partition?

Sihouette index for the 4-cluster synthetic data

2 4 6 8 10

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0

number of clusters

S
ilh

o
u

e
tt

e

Thierry Denœux (UTC) Computer Coding – Clustering August 2022 37 / 59



Partitional clustering How good is a partition?

DB index for the 4-cluster synthetic data
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Partitional clustering How good is a partition?

Dunn index for the 4-cluster synthetic data
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Fuzzy Clustering

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm
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Fuzzy Clustering Fuzzy partition

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm
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Fuzzy Clustering Fuzzy partition

Limitation of partitional clustering

In partitional clustering, an observation is assigned unambiguously to
one and only one cluster.
This may be arbitrary when the observation lies at the boundary
between two or more clusters.
Example (“butterfly” data):
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Fuzzy Clustering Fuzzy partition

Butterfly data: 2 solutions with HCM
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Fuzzy Clustering Fuzzy partition

Fuzzy partition

A fuzzy partition is described by an n × c matrix U = (uik), where
uik ∈ [0, 1] is the degree of membership of observation i to cluster k .
uik = 1 means full membership, uik = 0 means no membership at all,
and 0 < uik < 1 means partial membership.
We still impose the n equality constraints

c∑
k=1

uik = 1, i = 1, . . . , n.

Each cluster becomes a fuzzy set of observations.
How to generate a fuzzy partition?
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Fuzzy Clustering FCM algorithm

Overview

1 Partitional clustering
c-Means Algorithm
How good is a partition?

2 Fuzzy Clustering
Fuzzy partition
FCM algorithm
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Fuzzy Clustering FCM algorithm

Fuzzy c-means (FCM)

We consider the following optimization problem:

minimize JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβikd
2
ik

with dik = ‖xi − vk‖, subject to the constraints

c∑
k=1

uik = 1, i = 1, . . . , n

uik ≥ 0, i = 1, . . . , n and k = 1, . . . , c

With β = 1, the solution is the same as that of HCM.
To obtain a fuzzy partition, we need to set β > 1 (default: β = 2).
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Fuzzy Clustering FCM algorithm

Solution of the optimization problem

As with HCM, we start with randomly selected prototypes v1, . . . , vc and
we use a grouped coordinate descent strategy by alternating 2 steps

1 Minimize JFCM(U,V ) with respect to U for fixed V

2 Minimize JFCM(U,V ) with respect to V for fixed U

until some stopping criterion is met, for instance

max |U(t+1) − U(t)| < ε

or
max |V (t+1) − V (t)| < ε
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Fuzzy Clustering FCM algorithm

Minimization of JFCM(U ,V ) w.r.t. U for fixed V

We can write the cost function as

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβikd
2
ik︸ ︷︷ ︸

Ji (ui·)

=
n∑

i=1

Ji (ui ·),

with ui · = (ui1, . . . , uic).
We can minimize each function Ji independently, subject to∑

k uik = 1 (and uik ≥ 0 but we can ignore these positivity
constraints).
To solve these constrained optimization problems, we use the method
of Lagrange multipliers.
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Fuzzy Clustering FCM algorithm

Lagrange multipliers

The method of Lagrange multipliers is a general method for solving
constrained optimization problems of the form

minimize f (x)
subject to g(x) = 0

(1)

We consider the Lagrange function

L(x , λ) = f (x)− λg(x)

and we solve the equations

∂L
∂x

(x , λ) = 0, g(x) = 0 (2)

Under some technical conditions, the solution of (2) gives us the
solution of the optimization problem (1).
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Fuzzy Clustering FCM algorithm

Minimization of JFCM(U ,V ) w.r.t. U for fixed V (cont.)

We minimize

Ji =
c∑

k=1

uβikd
2
ik subject to

∑
k

uik = 1

The Lagrange function is

L(ui ·, λ) =
c∑

k=1

uβikd
2
ik − λ

(
c∑

k=1

uik − 1

)
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Fuzzy Clustering FCM algorithm

Minimization of JFCM(U ,V ) w.r.t. U for fixed V (cont.)

The solution must verify

∂L
∂uik

= βuβ−1
ik d2

ik − λ = 0, k = 1, . . . , c

c∑
k=1

uik = 1

After some manipulation we get

uik =
d
−2/(β−1)
ik∑c

`=1 d
−2/(β−1)
i`

, k = 1, . . . , c

Proof
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Fuzzy Clustering FCM algorithm

Minimization of JFCM(U ,V ) w.r.t. V for fixed U

We write the cost function as

JFCM(U,V ) =
c∑

k=1

n∑
i=1

uβik(xi − vk)T (xi − vk)︸ ︷︷ ︸
I(vk )

=
c∑

k=1

I(vk)

We can minimize each I(vk) w.r.t. vk independently. Solving

∂I(vk)

∂vk
= 0

we get

vk =

∑n
i=1 u

β
ikxi∑n

i=1 u
β
ik

, k = 1, . . . , c

Proof
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Fuzzy Clustering FCM algorithm

FCM algorithm

1 Initialize prototypes V = (v1, . . . , vc) randomly.
2 Update U for fixed V :

uik =
d
−2/(β−1)
ik∑c

`=1 d
−2/(β−1)
i`

for all i , k

3 Update V for fixed U:

vk =

∑n
i=1 u

β
ikxi∑n

i=1 u
β
ik

for all k

4 Return to Step 2 while the change in V or U is greater than some
threshold.
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Fuzzy Clustering FCM algorithm

Example in R: butterfly data

library(fclust)

fm<-FKM(x,2,RS=5)

plot(1:11,fm$U[,1],type="l",ylim=c(0,1),xlab="objects",
ylab="membership degrees",col="red",lwd=2)

lines(1:11,fm$U[,2],lty=1,col="blue",lwd=2)
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Fuzzy Clustering FCM algorithm

Result
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Fuzzy Clustering FCM algorithm

Fuzzy silhouette index

Cluster validity indices have been defined for fuzzy clustering as well.
One such index is the fuzzy silhouette index, defined as

s f =

∑n
i=1(uik(i) − uik ′(i))

αsi∑n
i=1(uik(i) − uik ′(i))α

where k(i) and k ′(i) are the fuzzy clusters to which object i has,
respectively, the highest and second highest membership degrees, and
α ≥ 0 is a weighting coefficient (by default, α = 1).
An object in the near vicinity of a cluster prototype is given more
importance than another object located in an overlapping area (where
the membership degrees of the objects to two or more fuzzy clusters
are similar).
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Appendix

Derivation of the HCM algorithm

We have

I(vk) =
n∑

i=1

uik(xi − vk)T (xi − vk)

= −2

(
n∑

i=1

uikxi

)T

vk + vTk vk

n∑
i=1

uik︸ ︷︷ ︸
nk

+C

Consequently,

∂I(vk)

∂vk
= −2

n∑
i=1

uikxi + 2nkvk = 0⇔ vk =
1
nk

n∑
i=1

uikxi

Back
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Appendix

Derivation of the FCM algorithm (1/2)

From βuβ−1
ik d2

ik − λ = 0, we get

uik =

(
λ

βd2
ik

)1/(β−1)

=

(
λ

β

)1/(β−1)

d
−2/(β−1)
ik

From
∑

` ui` = 1,(
λ

β

)1/(β−1)∑
`

d
−2/(β−1)
i` = 1⇒

(
λ

β

)1/(β−1)

=
1∑

` d
−2/(β−1)
i`

Finally,

uik =
d
−2/(β−1)
ik∑
` d
−2/(β−1)
i`

Back
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Appendix

Derivation of the FCM algorithm (2/2)

We have

I(vk) =
n∑

i=1

uβik(xi − vk)T (xi − vk)

= −2

(∑
i

uβikxi

)T

vk +

(∑
i

uβik

)
vTk vk + C

Consequently,

∂I(vk)

∂vk
= −2

(∑
i

uβikxi

)
+ 2

(∑
i

uβik

)
vk

and
∂I(vk)

∂vk
= 0⇔ vk =

∑n
i=1 u

β
ikxi∑n

i=1 u
β
ik

Back
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