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Visualization of multidimensional data

Motivation

We have seen that 2D can be easily represented by scatter plots and
2D bar plots.
This idea can be extended to p-dimensional data when p remains
small (say, up to 5 or 6) using matrix plots (matrix representation of
pairwise scatter plots).
For higher values of p, visualizing the data becomes challenging.
In this section, we will study two methods for mapping
multidimensional data onto a smaller-dimension feature space
amenable to visualization.
These methods also allow one to find low-dimensional representations
of of distance/dissimilarity data.
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Visualization of multidimensional data Principal Component Analysis

Basic idea

We consider a cross-section X = {x1, . . . , xn} of p variables (features,
attributes) observed for n instances (observations, objects). We
denote by xij the value of attribute j for object i .
When p ≥ 3 representing such data is difficult.
One solution is to project dataset X onto a q-dimensional subspace,
with q < p.
By dropping p − q dimensions, some information will be lost. The
projection should be done in such a way that the loss of information is
minimized.
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Visualization of multidimensional data Principal Component Analysis

Basic idea (continued)

Principal Component Analysis (PCA) finds orthogonal directions in input
space along which the projected data have maximal variance. Each
direction is defined by a vector uk such that ‖uk‖ = 1. The coordinate of
observation i along the corresponding axis (called the principal component
score) is zik = uTk xi .
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Visualization of multidimensional data Principal Component Analysis

Scatter matrix

The scatter of the data is described by the empirical covariance
(scatter) matrix

S =
1
n

n∑
i=1

(xi − x)(xi − x),

where x = 1
n

∑n
i=1 xi is the sample mean.

Let X = (xij) be the n × p data matrix, and assume that the data
have been centered, so that x = 0. We can write

S =
1
n
XTX
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Visualization of multidimensional data Principal Component Analysis

Some properties of matrix S

Matrix S is symmetric: ST = S

From now on, we assume that X has full column rank, i.e., no variable
is a linear combination of other variables.
Matrix S is then positive definite, i.e., for any nonzero vector u,
uTSu > 0.
We recall that an eigenvector of matrix S is a nonzero vector u such
that

Su = λu

for some real λ called the corresponding eigenvalue.
As S is positive definite, its eigenvalues are all positive, and its
eigenvectors are orthogonal.
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Visualization of multidimensional data Principal Component Analysis

First principal component

Let u be a p-dimensional vector such that ‖u‖ = uTu = 1, and
zi = uT xi the coordinate of observation i along the axis directed by u.
The vector z = (z1, . . . , zn)T can be written as z = Xu.
Vector u1 such that the zi ’s have maximum variance 1

n

∑n
i=1 z

2
i is

u1 = arg max
‖u‖=1

n∑
i=1

(uT xi )
2 = arg max

‖u‖=1
‖Xu‖2

= arg max
‖u‖=1

uT XTX︸ ︷︷ ︸
S

u

It can be shown that u1 is the eigenvector of matrix S with the largest
eigenvalue λ1.
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Visualization of multidimensional data Principal Component Analysis

Next principal components

Having found u1, we search for vector u that maximizes

n∑
i=1

(uT xi )
2 = uTSu

subject to the constraints ‖u‖ = 1, uTu1 = 0.
The solution is the eigenvector u2 of S with the second largest
eigenvalue λ2.
Continuing this line of reasoning, we obtain p vectors u1, . . . , up with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp.
We can write Z = XU, where U = (u1, . . . , up) is the p × p matrix
(called the loading matrix) whose columns are the p eigenvectors. The
columns of Z are p new variables called the principal components.
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Visualization of multidimensional data Principal Component Analysis

Explained variance

The scatter matrix of Z is

(XU)TXU = UT XTX︸ ︷︷ ︸
S

U = UT SU︸︷︷︸
ΛU

= ΛUTU︸ ︷︷ ︸
Ip

,

where Λ = diag(λ1, . . . , λp) is the diagonal matrix containing the p
eigenvalues of S .
Consequently,

tr(Λ) = tr[UT (SU)] = tr[(SU)UT ] = tr(S)

Hence, the sum of the eigenvalues is equal to the total variance (the
sum of the variances of the p original variables).
The proportion of the variance explained by the first q components is

q∑
j=1

λj

/
p∑

j=1

λj
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Visualization of multidimensional data Multidimensional Scaling
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Visualization of multidimensional data Multidimensional Scaling

Main idea

Multidimensional Scaling (MDS) is a set of techniques for representing
distance or dissimilarity data.
Given a n × n matrix ∆ = (δij) of dissimilarities, MDS finds a
configuration of n points in a q-dimensional space, such that the
(Euclidean) distances between points approximate the dissimilarities.
We start by formally defining the notions of “distance” and
“dissimilarity”.
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Visualization of multidimensional data Multidimensional Scaling

Distance

Definition (Distance)

A distance on a set X is a mapping d : X 2 → R+ verifying the following
properties

1 d(x , y) = 0⇔ x = y

2 d(x , y) = d(y , x) [symmetry]
3 d(x , z) ≤ d(x , y) + d(y , z) [triangular inequality]

Examples of distances in Rp:

Euclidean: d(x , y) =
√∑p

j=1(xj − yj)2

Manhattan: d(x , y) =
∑p

j=1 |xj − yj |

Generalization: order-q Minkowski: d(x , y) =
(∑p

j=1(xj − yj)
q
)1/q

,
q ≥ 1
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Visualization of multidimensional data Multidimensional Scaling

Dissimilarity

Definition (Dissimilarity)

A dissimilarity measure on a set X is a mapping δ : X 2 → R+ verifying the
following properties

1 δ(x , x) = 0
2 δ(x , y) = δ(y , x) [symmetry]

Examples:
Travel times between cities
Subjectively assessed dissimilarities between products, objects, etc.
More later...
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Visualization of multidimensional data Multidimensional Scaling

Stress function

Let ∆ = (δij) be a dissimilarity, and let X be an n × p matrix
describing a configuration of n points in Rp. We denote by dij(X ) the
Euclidean distance between points xi and xj .
MDS consists in finding X minimizing discrepancies between the
distances dij(X ) and the dissimilarities δij . Discrepancies are measured
by a stress (error) function.
Simplest method: we minimize the raw stress defined as

Stress(X ) =
∑
i<j

(δij − dij(X ))2
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Visualization of multidimensional data Multidimensional Scaling

Other stress functions

Depending on the scale in which dissimilarities are expressed, we can apply
different monotonic transformations to the δij ’s in the stress function:

Ratio MDS
Stress(X , a) =

∑
i<j

(aδij − dij(X ))2

Interval MDS
Stress(X , a, b) =

∑
i<j

(aδij + b − dij(X ))2

Ordinal (nonmetric) MDS

Stress(X , f ) =
∑
i<j

(f (δij)− dij(X ))2

where f is a monotone function.

Nonmetric MDS is particularly recommended when dissimilarities are
measured on an ordinal scale (e.g., “small”, “medium”, “large”).
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Dissimilarity measures for complex data

Motivation

Until now, we have studied clustering algorithms applicable to
cross-sectional data with numerical attributes.
In this section we will review some dissimilarity measures for more
complex data, namely: cross-sectional data with qualitative or mixed
(qualitative/numerical) attributes and time series.
Having defined a dissimilarity measure for some kind of data, there
are, at least, two strategies for clustering:

1 Describe the data in a space of numerical attributes using MDS, and
use clustering techniques for numerical attribute data such as HCM or
FCM

2 Use a clustering algorithm that directly uses dissimilarities as inputs;
such algorithms will be studied later (PAM, hierarchical clustering)

Thierry Denœux (UTC) Computer Coding – Clustering August 2022 20 / 50



Dissimilarity measures for complex data Qualitative and mixed-type data
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Dissimilarity measures for complex data Qualitative and mixed-type data

Binary variables

Let us assume that we have p binary variables, i.e., variables with two
possible outcomes, encoded as 0 or 1.
We can distinguish between two cases:
Symmetric case: the two outcomes are equally important, the

encoding as 0 or 1 is arbitrary (e.g., sex, right-handed);
two individuals having both 0 or 1 values are equally
similar;

Asymmetric case: both outcomes are not equally important, for
instance, they correspond to the presence or absence of
a rare attribute. Not having this attribute (e.g., being a
Nobel prize winner) does not make two individuals
similar.
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Dissimilarity measures for complex data Qualitative and mixed-type data

Dissimilarity measures for binary data

Given n objects and p binary attributes, we can compute the following
contingency table for any two objects i and j :

Object j
0 1

object i 0 a b
1 c d

with p = a + b + c + d .
In the case of symmetric attributes, the dissimilarity between objects i
and j can be measured by the simple matching coefficient

δij =
b + c

a + b + c + d

In the case of asymmetric attributes, we often use the Jaccard index

δij =
b + c

b + c + d
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Dissimilarity measures for complex data Qualitative and mixed-type data

Nominal variables

A nominal (or categorical) variable has M unordered outcomes (e.g.,
marital status with outcomes bachelor/married/divorced/widowed)
In the case of p nominal variables, the most common dissimilarity
measure is the simple matching coefficient:

δij =
p − q

p

where q is the number of matches (number of variables that have the
same outcomes for objects i and j).
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Dissimilarity measures for complex data Qualitative and mixed-type data

Ordinal variables

An ordinal variable is a variable with a finite number of ordered
outcomes, for instance, very low’/low/medium/high/very high
Treating such a variable as a nominal one and ignoring the order
would result in a loss of information.
Common approach: assign to each outcome its rank in {1, . . . ,M}
and convert the ranks to the 0-1 range. The rank rik of object i for
variable k is replaced by

zik =
rik − 1
Mk − 1

where Mk is the number of outcomes of variable k .
The transformed ranks zik are then treated as numerical variables,
with distances measured by the Euclidean or Manhattan distance.
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Dissimilarity measures for complex data Qualitative and mixed-type data

Mixed-type data

Mixed-type data are data with attributes of different types.
For this kind of data, Gower (1971) proposed to compute the
dissimilarity between two objects i and j as

δ
(k)
ij =

∑p
k=1 γ

(k)
ij δ

(k)
ij∑p

k=1 γ
(k)
ij

where γ(k)
ij = 1 if both measurements xik and xjk for the variable k are

nonmissing, and γ(k)
ij = 0 otherwise; moreover, γ(k)

ij is also put equal
to 0 when variable k is an asymmetric binary attribute and objects i
and j constitute a 0-0 match.
If k is a numerical attribute, then

δ
(k)
ij =

|xik − xjk |
Rk

where Rk is the range of variable k .
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Dissimilarity measures for complex data Time series
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Dissimilarity measures for complex data Time series

Measuring the dissimilarity between time series

By defining a dissimilarity measure between time series, we will be able
to apply clustering and multidimensional data visualization techniques
to times series data.
There are several ways to measure the dissimilarity between time series
or sequences, depending on what we want to achieve.
Often, two sequences (possibly of different lengths) are considered to
be similar if they show the same pattern, which may occur at different
times and at different time scales.
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Dissimilarity measures for complex data Time series

Dynamic time warping

Treating the sequences as vectors and computing, e.g., the Euclidean
distance between vectors will not capture the similarity between
patterns. Furthermore, this is not possible when the sequences may
have different lengths.
Dynamic time warping (DTW) is a widely used technique to compute
the similarity of sequences by finding the best alignment between the
sequences, i.e., the best matching relation between the indices of the
two sequences.
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Dissimilarity measures for complex data Time series

Problem formulation

The optimization problem writes

DTW (x , x ′) = min
π∈A(x ,x ′)

∑
(i ,j)∈π

d(xi , x
′
j )

where d(xi , x
′
j ) is a distance between xi and x ′j (which may be

vectors), and π is an alignment path defined as a sequence of K index
pairs ((i0, j0), . . . , (iK−1, jK−1)) such that

The first index from the first sequence is matched with the first index
from the other sequence: (i0, j0) = (0, 0)
The last index from the first sequence is matched with the last index
from the other sequence: (iK−1; jK−1) = (n − 1,m − 1)
The sequence is monotonically increasing in both i and j and all time
series indices appear at least once:

ik−1 ≤ ik ≤ ik−1 + 1 and jk−1 ≤ jk ≤ jk−1 + 1
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Dissimilarity measures for complex data Time series

Solution

Although the search space is finite, exhaustive search becomes quickly
intractable even for moderate time series lengths.
The problem is considerably simplified by existence of the following
recurrence equation:

Ri ,j = d(xi , xj) + min(Ri−1,j ,Ri ,j1 ,Ri−1,j−1)

where Rij is the value of the cost function up to timestamps i and j .
A dynamic programming algorithm that exploits this equation can find
an exact solution in O(nm) time.
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Clustering dissimilarity data

Motivation

We have seen that a dissimilarity matrix can be clustered by first
computing a corresponding configuration of points in Rp using MDS.
However, the fit between dissimilarities and distances between points
in the configuration is not perfect: some information is lost in the
process.
As an alternative, we can seek to cluster the data directly using the
dissimilarity matrix itself.
There exist many clustering algorithms for dissimilarity data. Here, we
will see two of the most widely used approaches:

1 The Partitioning Around Medoids (PAM) algorithm
2 Hierarchical clustering
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Clustering dissimilarity data Partitioning around medoids
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Clustering dissimilarity data Partitioning around medoids

Main idea

The PAM algorithm is similar to HCM in that it alternates between
two phases:

Describing each class by a prototype
Assigning each object to the nearest prototype

However, in PAM, prototypes are chosen among the objects
themselves (and not as means of attribute vectors in each class as in
HCM). Such prototypes are called medoids.
As a consequence, the algorithm only needs a distance or dissimilarity
matrix, and not a matrix of attributes.
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Clustering dissimilarity data Partitioning around medoids

Description of the algorithm

1 Initialization: Choose c objects to become the medoids
2 Build phase: Assign every entity to its closest medoid
3 Swap phase:

For each cluster, search if any of the entities of the cluster lowers the
average dissimilarity coefficient; if it does, select the entity that lowers
this coefficient the most as the medoid for this cluster
If at least one medoid has changed go to (2), else end the algorithm
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Clustering dissimilarity data Partitioning around medoids

Example
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Clustering dissimilarity data Partitioning around medoids

Example (continued)
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Clustering dissimilarity data Partitioning around medoids

Discussion

The PAM algorithm is more robust than HCM to outliers.
However, his robustness comes at the expense of more computations:
the time complexity of PAM is roughly O(c(n − c)2) (against O(nc)
for HCM).
Consequently, PAM is limited to datasets of small/medium size.
There exist variants for larger datasets.
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Clustering dissimilarity data Hierarchical Clustering
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Clustering dissimilarity data Hierarchical Clustering

Notion of hierarchy

We have seen that determining the “best” number of clusters is a
difficult problem in partitional and fuzzy clustering.
As an alternative, we can build a sequence of partitions
Pn,Pn−1, . . . ,P2,P1, such that

Each partition Pk has exactly k clusters
Each partition Pk is obtained by merging 2 clusters in partition Pk+1

Such a sequence of partitions is called a hierarchy.
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Clustering dissimilarity data Hierarchical Clustering

Hierarchical clustering

Hierarchical clustering methods do not require the user to supply a
number of clusters, but only a way to compute the dissimilarity
between two clusters, based on dissimilarities among the observations
in the two clusters.
They produce hierarchical representations in which the clusters at each
level of the hierarchy are created by merging clusters at the next lower
level.
At the lowest level, each cluster contains a single observation. At the
highest level there is only one cluster containing all of the data.
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Clustering dissimilarity data Hierarchical Clustering

Example
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Clustering dissimilarity data Hierarchical Clustering

Principle

Agglomerative clustering algorithms begin with every observation
representing a singleton cluster.
At each of the n − 1 steps the closest (most similar) two clusters are
merged into a single cluster, producing one less cluster at the next
higher level.
Therefore, a measure of dissimilarity between two clusters (groups of
observations) must be defined.
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Clustering dissimilarity data Hierarchical Clustering

Dissimilarity between clusters

Let G and H represent two groups. The dissimilarity d(G ,H) between
G and H is computed from the set of pairwise observation
dissimilarities {dij : i ∈ G , j ∈ H}.
Three main definitions:
Single linkage

d(G ,H) = min
i∈G ,j∈H

dij

Complete linkage
d(G ,H) = max

i∈G ,j∈H
dij

Average linkage

d(G ,H) =
1

|G ||H|
∑

i∈G ,j∈H
dij
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Clustering dissimilarity data Hierarchical Clustering

Criteria for selecting a distance measure

If the data dissimilarities dij exhibit a strong clustering tendency, with
each of the clusters being compact and well-separated from others,
then all three methods produce similar results. To the extent this is
not the case, results will differ.
Single linkage tends to created elongated clusters due to the chaining
effect (observations linked by a series of close intermediate
observations).
In contrast, complete linkage tends to produce compact and small
clusters.
Group average clustering represents a compromise between the two
extremes of single and complete linkage: it attempts to produce
relatively compact clusters that are relatively far apart.
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Clustering dissimilarity data Hierarchical Clustering

Dendrogram

The hierarchy can be plotted as a tree such that the height of each node is
proportional to the value of the between-group dissimilarity between its two
sons. The terminal nodes representing individual observations are all
plotted at zero height. This is called a dendrogram.
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Clustering dissimilarity data Hierarchical Clustering

Cutting the dendrogram

Cutting the dendrogram horizontally at a particular height partitions the
data into disjoint clusters. Groups that merge at high values, relative to the
merger values of the subgroups contained within them lower in the tree, are
candidates for natural clusters.
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Clustering dissimilarity data Hierarchical Clustering

Example in R: Butterfly data

D<-dist(x)
h<-hclust(D,method="complete")
plot(h,main="Complete Link")
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Clustering dissimilarity data Hierarchical Clustering

Result
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