Complements on belief functions

Thierry Denœux

Université de Technologie de Compiègne
HEUDIASYC (UMR CNRS 6599)
http://www.hds.utc.fr/~tdenoeux

Chiang Mai University
 August 2016

Outline

(1) Belief functions on product spaces
2) Belief functions on infinite spaces

- Definition
- Practical models
- Combination and propagation

Belief functions on product spaces

Motivation

- In many applications, we need to express uncertain information about several variables taking values in different domains
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events)

Fault tree example

(Dempster \& Kong, 1988)

Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_{X} and Ω_{Y}
- Let $\Omega_{X Y}=\Omega_{X} \times \Omega_{Y}$ be the product frame
- A mass function $m_{X Y}$ on $\Omega_{X Y}$ can be seen as an uncertain relation between variables X and Y
- Two basic operations on product frames
(1) Express a joint mass function $m_{X Y}$ in the coarser frame Ω_{X} or Ω_{Y} (marginalization)
(2) Express a marginal mass function m_{X} on Ω_{X} in the finer frame $\Omega_{X Y}$ (vacuous extension)

Marginalization

- Problem: express $m_{X Y}$ in Ω_{X}
- Solution: transfer each mass $m_{X Y}(A)$ to the projection of A on Ω_{X}
- Marginal mass function

$$
m_{X Y \downarrow X}(B)=\sum_{\left\{A \subseteq \Omega_{X Y}, A \downarrow \Omega_{X}=B\right\}} m_{X Y}(A) \quad \forall B \subseteq \Omega_{X}
$$

- Generalizes both set projection and probabilistic marginalization

Vacuous extension

- Problem: express m_{X} in $\Omega_{X Y}$
- Solution: transfer each mass $m_{X}(B)$ to the cylindrical extension of B : $B \times \Omega_{Y}$
- Vacuous extension:

$$
m_{X \uparrow X Y}(A)= \begin{cases}m_{X}(B) & \text { if } A=B \times \Omega_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Operations in product frames

Application to approximate reasoning

- Assume that we have:
- Partial knowledge of X formalized as a mass function m_{X}
- A joint mass function $m_{X Y}$ representing an uncertain relation between X and Y
- What can we say about Y ?
- Solution:

$$
m_{Y}=\left(m_{X \uparrow X Y} \oplus m_{X Y}\right)_{\downarrow Y}
$$

- Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions

Outline

(1) Belief functions on product spaces

2) Belief functions on infinite spaces

- Definition
- Practical models
- Combination and propagation

Outline

(1) Belief functions on product spaces

(2) Belief functions on infinite spaces

- Definition
- Practical models
- Combination and propagation

Belief function: general definition

- Let Ω be a set (finite or not) and \mathcal{B} be an algebra of subsets of Ω
- A belief function (BF) on \mathcal{B} is a mapping Bel: $\mathcal{B} \rightarrow[0,1]$ verifying $\operatorname{Bel}(\emptyset)=0, \operatorname{Bel}(\Omega)=1$ and the complete monotonicity property: for any $k \geq 2$ and any collection B_{1}, \ldots, B_{k} of elements of \mathcal{B},

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} B_{i}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|/|+1} B e l\left(\bigcap_{i \in I} B_{i}\right)
$$

- A function $P I: \mathcal{B} \rightarrow[0,1]$ is a plausibility function iff $B e l: B \rightarrow 1-P I(\bar{B})$ is a belief function

Source

- Let S be a state space, \mathcal{A} an algebra of subsets of S, \mathbb{P} a finitely additive probability on (S, \mathcal{A})
- Let Ω be a set and \mathcal{B} an algebra of subsets of Ω
- 「 a multivalued mapping from S to 2^{Ω}
- The four-tuple $(S, \mathcal{A}, \mathbb{P}, \Gamma)$ is called a source
- Under some conditions, it induces a belief function on (Ω, \mathcal{B})

Strong measurability

- Lower and upper inverses: for all $B \in \mathcal{B}$,

$$
\begin{gathered}
\Gamma_{*}(B)=B_{*}=\{s \in S \mid \Gamma(s) \neq \emptyset, \Gamma(s) \subseteq B\} \\
\Gamma^{*}(B)=B^{*}=\{s \in S \mid \Gamma(s) \cap B \neq \emptyset\}
\end{gathered}
$$

- 「 is strongly measurable wrt \mathcal{A} and \mathcal{B} if, for all $B \in \mathcal{B}, B^{*} \in \mathcal{A}$
- $\left(\forall B \in \mathcal{B}, B^{*} \in \mathcal{A}\right) \Leftrightarrow\left(\forall B \in \mathcal{B}, B_{*} \in \mathcal{A}\right)$
- A strongly measurable multi-valued mapping Γ is called a random set

Belief function induced by a source

Lower and upper probabilities

- Lower and upper probabilities:

$$
\forall B \in \mathcal{B}, \quad \mathbb{P}_{*}(B)=\frac{\mathbb{P}\left(B_{*}\right)}{\mathbb{P}\left(\Omega^{*}\right)}, \quad \mathbb{P}^{*}(B)=\frac{\mathbb{P}\left(B^{*}\right)}{\mathbb{P}\left(\Omega^{*}\right)}=1-\operatorname{Bel}(\bar{B})
$$

- \mathbb{P}_{*} is a BF, and \mathbb{P}^{*} is the dual plausibility function
- Conversely, for any belief function, there is a source that induces it (Shafer's thesis, 1973)

Interpretation

- Typically, Ω is the domain of an unknown quantity ω, and S is a set of interpretations of a given piece of evidence about ω
- If $s \in S$ holds, then the evidence tells us that $\omega \in \Gamma(s)$, and nothing more
- Then
- $\operatorname{Bel}(B)$ is the probability that the evidence supports B
- $P I(B)$ is the probability that the evidence is consistent with B

Outline

(1) Belief functions on product spaces

(2) Belief functions on infinite spaces

- Definition
- Practical models
- Combination and propagation

Consonant belief function

Source

- Let π be a mapping from $\Omega=\mathbb{R}^{p}$ to $S=[0,1]$ s.t. $\sup \pi=1$
- Let Γ be the multi-valued mapping from S to 2^{Ω} defined by

$$
\forall s \in[0,1], \quad \Gamma(s)=\{\omega \in \Omega \mid \pi(\omega) \geq s\}
$$

- Let $\mathcal{B}([0,1])$ be the Borel σ-field on $[0,1]$, and P the uniform probability measure on $[0,1]$
- We consider the source $([0,1], \mathcal{B}([0,1]), P, \Gamma)$

Consonant belief function

Properties

- Let Bel and $P /$ be the belief and plausibility functions induced by $([0,1], \mathcal{B}([0,1]), P, \Gamma)$
- The focal sets $\Gamma(s)$ are nested, i.e., for any s and s^{\prime},

$$
s \geq s^{\prime} \Rightarrow \Gamma(s) \subseteq \Gamma\left(s^{\prime}\right)
$$

The belief function is said to be consonant.

- The corresponding contour function $p /$ is equal to π
- The corresponding plausibility function is a possibility measure: for any $B \subseteq \Omega$,

$$
\begin{gathered}
P l(B)=\sup _{\omega \in B} p l(\omega) \\
\operatorname{Bel}(B)=\inf _{\omega \notin B}(1-p l(\omega))
\end{gathered}
$$

Random closed interval

- Let (U, V) be a bi-dimensional random vector from a probability space $(S, \mathcal{A}, \mathbb{P})$ to \mathbb{R}^{2} such that $U \leq V$ a.s.
- Multi-valued mapping:

$$
\Gamma: s \rightarrow \Gamma(s)=[U(s), V(s)]
$$

- The source $(S, \mathcal{A}, \mathbb{P}, \Gamma)$ is a random closed interval. It defines a BF on ($\mathbb{R}, \mathcal{B}(\mathbb{R})$)

Random closed interval

Properties

- Lower/upper cdfs:

$$
\begin{aligned}
\operatorname{Bel}((-\infty, x]) & =\mathbb{P}([U, V] \subseteq(-\infty, x])=\mathbb{P}(V \leq x)=F_{V}(x) \\
P l((-\infty, x]) & =\mathbb{P}([U, V] \cap(-\infty, x] \neq \emptyset)=\mathbb{P}(U \leq x)=F_{U}(x)
\end{aligned}
$$

- Lower/upper expectation:

$$
\begin{aligned}
\mathbb{E}_{*}(\Gamma) & =\mathbb{E}(U) \\
\mathbb{E}^{*}(\Gamma) & =\mathbb{E}(V)
\end{aligned}
$$

- Lower/upper quantiles

$$
\begin{aligned}
q_{*}(\alpha) & =F_{U}^{-1}(\alpha), \\
q^{*}(\alpha) & =F_{V}^{-1}(\alpha) .
\end{aligned}
$$

Outline

(1) Belief functions on product spaces

(2) Belief functions on infinite spaces

- Definition
- Practical models
- Combination and propagation

Dempster's rule

Definition

- Let $\left(S_{i}, \mathcal{A}_{i}, \mathbb{P}_{i}, \Gamma_{i}\right), i=1,2$ be two sources representing independent items of evidence, inducing BF Bel_{1} and Bel_{2}
- The combined BF Bel $=B e l_{1} \oplus B e l_{2}$ is induced by the source $\left(S_{1} \times S_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}, \mathbb{P}_{1} \otimes \mathbb{P}_{2}, \Gamma_{\cap}\right)$ with

$$
\Gamma_{\cap}\left(s_{1}, s_{2}\right)=\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)
$$

Dempster's rule

Definition

- For each $B \in \mathcal{B}, \operatorname{Bel}(B)$ is the conditional probability that $\Gamma_{\cap}(s) \subseteq B$, given that $\Gamma_{\cap}(s) \neq \emptyset$:

$$
B e l(B)=\frac{\mathbb{P}\left(\left\{\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2} \mid \Gamma_{\cap}\left(s_{1}, s_{2}\right) \neq \emptyset, \Gamma_{\cap}\left(s_{1}, s_{2}\right) \subseteq B\right\}\right)}{\mathbb{P}\left(\left\{\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2} \mid \Gamma_{\cap}\left(s_{1}, s_{2}\right) \neq \emptyset\right\}\right)}
$$

- It is well defined iff the denominator is non null
- As in the finite case, the degree of conflict between the belief functions can be defined as one minus the denominator in the above equation.

Approximate computation

Monte Carlo simulation

Require: Desired number of focal sets N
$i \leftarrow 0$
while $i<N$ do
Draw s_{1} in S_{1} from \mathbb{P}_{1}
Draw s_{2} in S_{2} from \mathbb{P}_{2}
$\Gamma_{\cap}\left(s_{1}, s_{2}\right) \leftarrow \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
if $\Gamma_{\cap}\left(s_{1}, s_{2}\right) \neq \emptyset$ then
$i \leftarrow i+1$
$B_{i} \leftarrow \Gamma_{\cap}\left(s_{1}, s_{2}\right)$
end if
end while
$\widehat{B e l}(B) \leftarrow \frac{1}{N} \#\left\{i \in\{1, \ldots, N\} \mid B_{i} \subseteq B\right\}$
$\hat{P} l(B) \leftarrow \frac{1}{N} \#\left\{i \in\{1, \ldots, N\} \mid B_{i} \cap B \neq \emptyset\right\}$

Combination of dependent evidence

- The case of complete dependence between two pieces of evidence can be modeled by two sources formed by different multivalued mappings Γ_{1} and Γ_{2} from the same probability space.
- The combined BF is induced by the source $\left(S, \mathcal{A}, \mathbb{P}, \Gamma_{\cap}\right)$
- This combination rule preserves consonance: the combination of two consonant BFs is still consonant.
- This is the rule used in Possibility Theory.

Propagation of belief functions

- Assume that a quantity Z is defined as function of two other quantities X and Y

$$
Z=\varphi(X, Y)
$$

- Solution:

$$
B e I_{Z}=\left(B e l_{X \uparrow X Y z} \oplus B e l_{Y \uparrow X Y Z} \oplus B e l_{\varphi}\right)_{\downarrow Z}
$$

- For any $A \subseteq \Omega_{X}$ and $B \subseteq \Omega_{Y}$,

$$
\left(A \uparrow \Omega_{X Y Z}\right) \cap\left(B \uparrow \Omega_{X Y Z}\right) \cap R_{\varphi}=\varphi(A, B)
$$

- Consequently, if Be_{X} and Be_{Y} are induced by random sets $\Gamma(U)$ and $\Lambda(V)$, where U and V are independent rvs, then $B e I_{z}$ is induced by the RS

$$
\varphi(\Gamma(U), \wedge(V))
$$

Exercise

- In R, we can represent (an approximation of) a random interval (RI) by a matrix B of size $N \times 2$, where $B[i$,$] is a realization of the random interval.$
- Write a function in R that generates a RI representation for the consonant belief function with contour function $\pi: \mathbb{R} \rightarrow[0,1]$ (assumed to be continuous and unimodal)
- Write a function that computes the RI representation of $Z=\varphi(X, Y)$, as a function of φ, and the RI representations of X and Y.
- Run some examples. Draw the lower and upper cdfs of the RIs obtained, and compute their lower and upper expectations.

