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Abstract. A method is proposed for reducing the size of a frame of
discernment, in such a way that the loss of information content in a set
of belief functions is minimized. This approach allows to compute strong
inner and outer approximations which can be combined efficiently using
the Fast Mdbius Transform algorithm.

1 Introduction

The Dempster-Shafer theory of Belief Functions (BF’s) is now widely accepted
as arich and flexible framework for representing and reasoning with imperfect in-
formation. The concept of belief function subsumes those of probability and pos-
sibility measures, making the theory very general. Situations of weak knowledge
and heterogeneous information sources are easily modeled within this theory,
making it quite suitable in many application domains such as medical diagnosis,
sensor fusion and pattern recognition [14].

This generality, however, has a cost in terms of computational complexity. A
BF (or, equivalently, a mass function) assigns a number to each of the 2" subsets
of the frame of discernment {2 (with |2| = n), with 2" — 1 degrees of freedom,
which is much larger that what is needed to specify a probability or a possibility
measure. Although BF’s as elicited from experts or inferred from observation
data are usually constrained to be of a simple form, the fusion of several BF’s
using the Dempster’s rule of combination almost inevitably increases the number
of focal sets (i.e., subsets of {2 with a positive mass of belief), resulting in high
storage and computational requirements for large-scale problems.

The algorithmic complexity of combining several BF’s has been studied from
a theoretical point of view by Orponen [10], who proved that the problem is #P
complete. Recently, Wilson [16] provided a very complete review of algorithmic
issues related to the manipulation of BF’s. Currently, two algorithms exist for
computing the conjunctive combination m; N'my of two mass functions m; and
ma (similar methods hold for the disjunctive combination):

— the mass-based algorithm, initially sketched by Shafer, involves considering
each focal set A of my, each focal set B of ms, and assigning the mass



m1 (A)ma(B) to the set AN B. Using this method, the combination can be
performed in time proportional to n|F(m1)||F(ms)|, where F(m;) denotes
the number of focal sets of m; (i = 1,2). The time needed for the combina-
tion of K BF’s my,...,mg depends on the particular structure of the mass
functions, and is at worst roughly proportional to n Hfil |F(m;)|, as shown
by Wilson [16].

— the Fast Mobius Transform (FMT) method [8] converts each mass function
m; into its associated commonality function g;; the product of these functions
is computed, and the result is converted back into a mass function. The
algorithm takes time proportional to Kn22™.

The choice of one of these methods depends on the structure of the mass func-
tions. As remarked by Wilson, if the number of focal sets of the combined belief
function is much small than 2™, then the mass-based method is likely to be faster.
However, this is generally not known in advance. If one of the BF’s has a number
of focal sets close to 2", then the FMT method is likely to be better. However,
this method becomes impractical when (2 has more than 15 to 20 elements.

When the combination of several BF’s cannot be computed exactly, one has
to resort to stochastic or deterministic approximation procedures [16]. Since the
mass-based method for combining BF’s is the most widely used, most determin-
istic methods (which are exclusively considered here) have been designed with
the aim of reducing the number of focal elements. This is true, in particular, for
the summarization method initially introduced by Lowrance et al. [6], and for
the more sophisticated methods proposed subsequently [15] [1] [5] [11] [2].

In this paper, a different approach is investigated. Instead of reducing the
number of focal elements, we propose to reduce the size of the frame of discern-
ment, which can be expected to drastically decrease the computing time of the
FMT combination method, and can even make it applicable to find reasonable
approximations in the case of large-size problems. Given a set of BF’s, we pro-
pose to find a coarsening of the frame (2 that will preserve as much as possible
of the information content of the belief functions. This approach allows to com-
pute inner and outer approximations, from which lower and upper bounds for
the combined belief values can be derived.

The following section summarizes the background definitions and results
needed in the sequel. Our approximation method is then described in Section 3,
and a simulation example is presented in Section 4.

2 Background

2.1 Basic Concepts

The main concepts of evidence theory are only summarized here. More details
can be found in Refs. [12] and [13]. Let {2 denote a finite set called the frame
of discernment. A mass function, or basic belief assignment(bba) is a function

m : 29 — [0, 1] verifying:
> m(4)=1. (1)



Each mass of belief m(A) measures the amount of belief that is exactly commit-
ted to A. A bba m such that m(0) = 0 is said to be normal. This condition will
not be imposed here. The subsets A of 2 such that m(A) > 0 are called focal
sets of m. Let F(m) C 29 denote the set of focal sets of m.

The belief function induced by m is a function bel : 22 — [0, 1], defined as:

bel(d) = Y m(B) (2)

0£BCA

for all A C 2. bel(A) represents the amount of support given to A.
The plausibility function associated with a bba m is a function pl : 2 —
[0, 1], defined as:

pl(d)= Y m(B) VAcCQ (3)

pl(A) represents the potential amount of support that could be given to A.

Given two bba’s m; and ms defined over the same frame of discernment 2
and induced by two distinct pieces of evidence, we can combine them in two
ways using the conjunctive or the disjunctive rules of combination [13] defined,
respectively, as:

(miemy)(4) = > mai(B)ma(C) (4)
BNC=A

(mioms)(4) = Y mi(B)ma(C) (5)
BUC=A

for all A C (2. The choice of one of these combination rules is related to the
reliability of the two sources. In fact, if we know that both sources of informa-
tion are fully reliable, then we combine them conjunctively. However, if we only
know that at least one of the two sources is reliable, then we combine them
disjunctively.

The conjunctive and disjunctive rules can be conveniently expressed by means
of the commonality function ¢ and the implicability function b, defined, respec-
tively, as

a(4) = Y m(B) (6)
ACB
and
b(A) = bel(A) + m(0) (7

for all A C 2. If ¢; ®¢2 denotes the commonality function associated to mi@®mso,
and b, @by denotes the implicability function associated to m@msz, we have the
following simple relations:
10¢2 = q1q2 (8)
b1 @by = b1 by (9)

The importance of this result arises from the fact that the functions m, ¢ and
b (as well as bel and pl) are equivalent representations, in the sense that, given
any of these functions, it is possible to recover all the others. The conversion



between these functions can be efficiently done using the FMT algorithm [8] in
time proportional to n?2™ [16]. Relations (8) and (9) provide the basis for the
FMT-based method for combining BF’s, which consists in transforming the BF’s
or the bba’s to ¢ or b, computing the product, and converting back the result
into a mass or a belief function. In contrast, the more traditional mass-based
approach relies exclusively on Egs (4) and (5).

2.2 Coarsenings and Refinements

In applying the BF framework to a real-world problem, the definition of the
frame of discernment is a crucial step. As remarked by Shafer [12], the degree of
“granularity” of the frame is always a matter of convention, as any element w of {2
representing a “state of nature” could always be split into several possibilities.
Hence, it is fundamental to examine how a BF defined on a frame may be
expressed in a finer or, conversely, in a coarser frame.

Let 2 and © denote two finite sets. A mapping p : 2 — 29 is called a
refining if it verifies the following properties:

1. The set {p({6}),0 € O} C 29 is a partition of £2.
2. For all A C O, we have
p(4) = | p({6}) (10)

feA

Following the terminology introduced by Shafer, the set © is then called a coars-
ening of (2, and (2 is called a refinement of 6.

Note that defining a coarsening of a frame (2 is formally equivalent to defining
a partition of £2. Let © be such a partition. The function p : 2¢ — 2% such that
p({6}) = 6 for all § € O, and verifying (10) is a refining of @, and O is a
coarsening of (2.

A bba m® defined on a frame © may easily be carried to a refinement 2
by means of the vacuous extension, which transfers the mass m®(4) to p(4),
for all A C @ (in the following, the superscript of a bba will always indicate its
domain). The resulting bba m® on 2 is then defined as

m?(B) = {m@(A), if B = p(A) for some A C © (11)
0, otherwise.

The inverse operation, i.e., carrying a bba m* to a coarsening @ of (2 is not
so easy because a refining p : 2€ — 2% is not, in general, onto; there are usually
subsets A of {2 which are not “discerned” by @ and, hence, are not equal to p(B)
for any B C O [12]. In order to associate a subset of @ with each subset A of
2, an inner reduction 8 and an outer reduction 8 may be defined, respectively,
as functions from 2% to 29, such that:

0(A) = {6 € Olp({6}) € A} (12)
0(4) = {0 € Olp({0}) N A # 0} (13)



for all A C 2. Hence, the mass m®(A) given to A C 2 by a bba m can be
transferred either to §(A), or to §(A). This leads to the following definitions:

m®(B)= > m4) VBCO (14)
{AC2,B=0(A)}

m®(B) = > m?(A) VBC®6. (15)
{ACQ,B=0(A)}

The bba’s m® and m® will be called, respectively, the inner and the outer
reduction of m* (m® is called the restriction of m*? par Shafer [12, p. 126]; the
definition of m® is, to our knowledge, new).

To simplify the manipulation of expressions when changing frames, let us
introduce the following definition.

Definition 1 Let 2, and (25 be two finite sets, ¢ an application from 2% to
22 m ™ g bba on 121, and m*> a bba on £25. We say that m*® is the image of
m*t by ¢, and we note m*’2 = p(m*%), if

m®4)= Y m™B)

{BC,p(B)=A}
for all A C (2.

According to Def. 1, the vacuous extension of m® in 2 may be noted m* =
p(m®), and Eqs (14) and (15) may be rewritten as m® = (m*) and m® =
6(m*?).

2.3 Inclusion of Belief Functions

Another notion of interest is that of strong inclusion of bba’s [3]. Let m and m' be
two BS’s with focal elements F(m) = {F1,...,Fp} and F(m') = {F{,..., F, }.
Then m is said to be strongly included in m', or to be a specialization of m'
(noted m C m'), iff there exists a non-negative matrix W with entries w;;
(i=1,...,p;5=1,...,p") such that

pl

ZwZJ:m(Fl)a 'l:]-,,p, (16)
j=1

p
Zwij = mI(FJI)J .7: 17"'7pl (17)
=1

and wi; > 0 = F; C Fj. The relationship between m and m' may be seen as
a transfer of mass from each focal element F; of m to supersets FJ’ D Fj;, the
quantity w;; denoting the part of m(F;) transferred to F;. If m C m/, then we
have (with obvious notations) pl < pl’ and b’ < b, but the reverse is not true.



An approximation m~ (resp. m*) of a bba m is called a strong inner (resp.
outer) approximation if m~ C m (resp. m C m™). Given strong inner and outer
approximations of several BF’s, it is possible to obtain lower and upper bounds
for the belief and the plausibility values of the combined BF [3][2]. Methods
for constructing such approximations were propose by Dubois and Prade [4]
in a possibilistic setting, and by Denceux [2] using an approach based on the
clustering of focal sets.

3 Coarsening Approximations of Belief Functions

In this section, we propose a new heuristic method for constructing strong inner
and outer approximations of BF’s. Our method consists in finding a coarsening
O of the initial frame (2 such that the approximating BF can be represented
exactly in ©. We first present the basic principle and the algorithm in the case
of a single BF, and then extend the method to the simultaneous approximation
of several BF’s.

3.1 Basic Principle

Main result Let m* denote a bba on (2, © a coarsening of 2, p the refining
from 2 to 2%, and § and 6 the associated inner and outer reduction functions.
Let m® and m® denote the inner and outer reductions of m* as defined by Eqs
(14) and (15), and let m®? and m* be the vacuous extensions of m® and m®,
respectively, on (2. We thus have

= pof(m?) (18)
m? = p(m®) = pof(m?) (19)

Theorem 1 m* and m* are, respectively, strong inner and outer approrima-
tions of m?: m? C m? C m%

Proof: We have, by construction,

m®?(A) = > m?(B) VACQ (20)
{BCQ,A=pof(B)}

m?(A) = > m?(B) VAcC (21)
{BCQ,A=pof(B)}

From Theorem 6.3 in [12, p.118], we have p(8(B)) C B for all B C (2. Hence,
the mass m*(A) is the sum of masses m*(B) initially attached to supersets of
A, which implies that m® C m*.

Similarly, B C p(f(B)) for all B C {2, which implies that the mass m*(A) is
the sum of masses m*(B) initially attached to subsets of A, which implies that
m? C m*?. QED



Matrix representation of bba’s A very simple construction of m® and m*
for a given coarsening © can be obtained using the following representation. Let
us assume that the frame 2 = {w,...w,} has n elements, and the bba m®
under consideration has p focal sets: F(m®?) = {Ai,..., A,}. One can represent
the bba m* by a pair (m*, F*) where m* is the p-dimensional vector of masses
m®? = (m“(A4;),...,(m%(4,)) and F¥ is a p x n binary matrix such that

0 1, ifw; € A4
Fij = Aiw;) = { 0, othérwise.
where A;(-) denotes the indicator function of focal set A;.

This representation is similar to an (objects x attributes) binary data matrix
as commonly encountered in data analysis. Here, each focal set corresponds to
an object, and each element of the frame corresponds to an attribute. Each
object A; has a weight m*(4;). Since a coarsening is inherently equivalent to a
partition of {2, finding a suitable coarsening is actually a problem of classifying
the columns of data matrix F, which is a classical clustering problem (see, e.g.
[7]). Note that, in contrast, the clustering approximation method introduced by
Denceux [2] is based on the classification of the lines of F.

To see how the bba’s m®, m®, m?, m* can be constructed from F, let us
denote by P = {I,...,I.} the partition of N, = {1,...,n} corresponding to
the coarsening © = {61,...,6.}, i.e.,

0, = {wj;,j € I.} r=1,...,c

Let (m®,F®) denote the matrix representation of m®. Matrix F® may be ob-
tained from F* by merging the columns F(j for j € I, and replacing them by
their minimum:

Fe

=1i,r

. I?) .

= ?EHII} Fi,j Vi, r (22)

and we have m® = m*. The justification for this is that the focal elements

of m® are the sets 8(4;), and 8 € §(A4;) iff p(§) C A;, where p is the refining
associated to 6. o

similarly, if (@®,F ) denotes the matrix representation of m®, we have
F, = maxF® Vi 23
ir = I}g}i{ ij V6T (23)

and m° = m®.
The matrix representations of mf? and m”, the vacuous extensions of m®
and m®, are then obtained as:

F’, =F. Vjel, (24)
=N =0 .
ij=Fi, Viel (25)



3.2 Clustering Algorithm

As shown above, given a coarsening @ of a frame of discernment (2 and a basic
belief assignment m‘, we can define strong inner and outer approximations m®
and m®. It is clear that the quality of these approximations depends on the
coarsenings considered, then how to choose these coarsenings so as to obtain
good approximations of m*?

To answer this question, we propose to use a measure of information allowing
us to reduce the size of the frame of discernment while retaining as much in-
formation as possible from the original belief function. Several approaches have
been proposed to measure the information contained in a piece of evidence [9].
Among these approaches, we will use the generalized cardinality [4, 2] defined as:

P
jm| = m(A)|Ail, (26)

i=1
where A;,i = 1,...,p are the focal sets of m. The bba m is all the more imprecise

(and contains all the less information) that |m| is large.
It follows from Theorem 1 and the definition of strong inclusion that
m?| < [m®| < [m®|
Hence, a way to keep m® and m® as “close” as possible to m®? is to mini-
mize the increase of cardinality from m® to m® (which correspond to a loss
of information), and to minimize the decrease of cardinality from m*® to m®
(corresponding to meaningless information).
More precisely, let us denote by P, the set of all partitions of NV, in ¢ classes
(¢ < m). As shown above, each element of P, corresponds to a coarsening of
2 with ¢ elements. The coarsening yielding the “best” (least specific) inner
approximation corresponds to the partition P, defined as:
P, = arg min A(m®?,m*
- gPePc (m™, m™)

with A(m?, m?) = [m?| — |m%|. Similarly, the partition P, yielding the best
(most specific) outer approximation is defined as
P.= arg}gréi})lc A2, m?).

We are thus searching for the best coarsening over all possible partitions of
2 into c clusters. Unfortunately, the number of possible partitions is huge, and
exploring all of them is not computationally tractable. Hierarchical clustering
[7] is a heuristic approach for constructing a sequence of nested partitions of a
given set. In our case, this approach will consist in aggregating sequentially pairs
of elements of (2 until the desired size of the coarsened frame of discernment is
reached. At each step, the two elements whose aggregation results in the best
value of the criterion will be selected.



More precisely, let (m, F¥) denote the matrix representation of m*, and
suppose that we are looking for the coarsening with n—1 elements corresponding
to the “best” inner approximation. The aggregation of elements w; and wy, of
the frame corresponds to the fusion of columns j and k of F using the mini-
mum operator. In this process, the number of 1’s in each line i of matrix F* is
decreased by one if either w; € A; and wy, € A;, or wy, € A; and w; ¢ A;. Hence,
the decrease of cardinality is

p
S(wk,wi) = A(m?,m?) = my|Ff - Ff (27)
i=1

Note that 0(wk,w;) can be interpreted as a degree of dissimilarity between w;
and w;. The hierarchical clustering algorithm can then be described as follows:

— Given: the bba (m®, F?)
— Compute the dissimilarity matrix D = (6(wg,wr)), k,1 € {1,...,n}
—c+n
— Repeat
e c+—c—1
e find £* and I* such that §(wg+,w;+) = ming ; §(wy, wy)
e construct F® with ¢ columns by aggregating columns k* and [* using
the minimum operator
e update dissimilarity matrix D
— Until ¢ has the desired value
— Compute (m®, F¥), the vacuous extension of (m®,F®)

The computation of outer approximations can be performed in exactly the
same way, except that the minimum operator is replaced by the maximum op-
erator. After aggregating columns k and I of matrix F¥, the number of 1’s in
each line i of matrix F is now increased by one if either wj € A; and wy & A,
or wy € A; and w; ¢ A;. Hence, the increase of cardinality is

Am?,m%) =y my[F - F| = 6w, w) (28)
i=1

We thus arrive at the same dissimilarity measure as in the previous case, although
the resulting coarsening is, in general, different.

Remark 1 Several lines of F or 7’ computed by the above algorithm may be
identical, which means that the number of focal sets has decreased. In this case,
the binary matrix of focal sets and the mass vector have to be rearranged so that
the line dimension becomes equal to the number of focal sets.

Remark 2 As remarked by Wilson [16], coarsening a frame may sometimes
result in no loss of information. Two elements w; and wy, can be merged with-
out losing information if 6(w;,wr) = 0. Hence, “lossless coarsenings” (using
Wilson’s terminology) will be found in the first steps of our algorithm, if such

solutions exist. Our algorithm will even find the “coarsest lossless coarsening”
as defined by Wilson [16].



Remark 3 Our algorithm is basically the classical hierarchical clustering algo-
rithm applied to the binary matriz of focal sets. Hence, the time needed to com-
pute an inner or outer coarsening approzrimation by this method is proportional
to n®.

3.3 Inner and Outer Approximations of Combined Belief Functions

The approximation method proposed in the previous section can be generalized
to compute inner and outer approximations of combined belief functions. Rather
than computing the combination of the original belief functions defined on (2, we
will compute the combination of their approximations defined over a common
coarsened frame of {2 using the FMT algorithm [8]. Then the vacuous extension
defined above will be used to recover the combined belief function on the original
frame (2 from its approximations defined over the coarsened frames.

Let m{,...,m% be K bba’s defined over a frame of discernment (2 to be
combined using either the conjunctive or the disjunctive rules of combination.
Let (m{,F{), k = 1,...,K denote their matrix representations. We wish to
find a common coarsening © = {64,...,0.} of 2 that will preserve as much as
possible of the information contained in each of the K bba’s. For that purpose,
let us define the followin§ criterion to be minimized for the construction of an

inner approximation: Y_,_; A(m{?,m{?), and for the construction of an outer

. . K — s S .
approximation: » ., A(m,? ,my’). To minimize these criteria, we may simply

apply the same hierarchical clustering approach as above, to the matrix

F{
F?=| :
Fi
and the weight vector m? = [m{’,..., m{]’ (prime denotes transposition).

Determining Inner and Outer approximations of the Combined Belief
Function. Given K bba’s m?,...,m% and m?,...,m% defined over the com-
mon coarsened frame @ of (2, we shall proceed as follows to determine strong
inner and outer approximations of their combination:

1. use the FMT algorithm to convert these approximated bba’s to their related
inner and outer commonality or implicability functions.

2. compute the approximated inner and outer combined commonality or impli-
cability functions over the coarsened frame @. In the case of inner approx-
imation they are given by: ¢© = [[r, ¢? and b® =15, b2, and similarly
f . . e =
or the outer approximations ¢© and b .

3. convert back these approximated combined commonality or implicability
functions to their related inner and outer combined bba’s m® and m® using
the FMT algorithm.

4. use the vacuous extension to recover the inner and outer approximated com-
bined belief function m? and m* from m® and m°.



4 Simulations

As an example, we simulated the conjunctive combination of 3 bba’s on a frame
2 with n = |2| = 30, with 500 focal sets each. The focal sets were generated
randomly in such a way that element w; of the frame had probability (i/(n+1))?
to belong to each focal set. Hence, we simulate the realistic situation in which
some single hypotheses are more plausible than others. The masses were assigned
to focal sets as proposed by Tessem [15]: the mass given to the first one was taken
from a uniform distribution on [0, 1], then a random fraction of the rest was given
to the second one, etc. The remaining part of the unit mass was finally allocated
to the last focal set. The conjunctive sum of the 3 bba’s was approximated using
the method described above, using a coarsening of size ¢ = 10.

Bounds on pl (+) and b (x)
T T T

. . . . . . .
01 02 03 04 05 06 07 08 09 1
inner b and pl

Fig. 1. Simulation results

A part of the results is shown in Fig. 1. The plausibilities and implicabilities
pl?(A) and b?(A) are plotted on the z axis against pI” (A) and 5% (A), for 1000
randomly selected subsets of (2. As expected, we obtain a bracketing of the true
plausibilities and implicabilities for any A, since p_lQ (A) < pl¥(A) < HQ(A) and

b?(A) > b?(A) > EQ(A). A bracketing of bel(A) could also be obtained, as
shown by Denceux [2].

5 Conclusion

A new method for computing inner and outer approximations of BF’s has been
defined. Unlike previous approaches, this method does not rely on the reduction
of the number of focal sets, but on the construction of a coarsened frame in
which combination can be performed efficiently using the FMT algorithm. Joint
strategies aiming at reducing the number of focal sets or the size of the frame,
depending on the problem at hand, could be considered as well, and are left for
further study.
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