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Abstract. A new method is proposed for building a predictive belief function

from statistical data in the Transferable Belief Model framework. The starting

point of this method is the assumption that, if the probability distribution PX of

a random variable X is known, then the belief function quantifying our belief re-

garding a future realization of X should have its pignistic probability distribution

equal to PX . When PX is unknown but a random sample of X is available, it is

possible to build a set P of probability distributions containing PX with some

confidence level. Following the Least Commitment Principle, we then look for a

belief function less committed than all belief functions with pignistic probabil-

ity distribution in P . Our method selects the most committed consonant belief

function verifying this property. This general principle is applied to the case of

the normal distribution.

Keywords: Dempster-Shafer theory, Evidence theory, Transferable Belief Model,

possibility distribution, statistical data.

1 Introduction

The Transferable Belief Model (TBM) is gaining increasing interest as a formal frame-

work for information fusion, decision making under uncertainty and imprecise data

analysis [14, 21, 18]. However, it is no always clear how to quantify various uncertain-

ties using belief functions as required in this framework, especially when statistical data

are involved. A contribution to this problem will be presented here.

More precisely, the problem considered in this paper can be described as follows.

Let X be a random variable with unknown probability distribution PX . We would like to

quantify the beliefs held by an agent about a future realization of X from past indepen-

dent observations X1, . . . , Xn drawn from the same distribution. In [5], it was argued that

a belief function bel(·; X1, . . . , Xn) solution to this problem should verify two properties:

it should be less committed than PX with a given probability (i.e., for a given proportion

of realizations of the random sample), and it should converge towards PX in probability

as the size of the sample tends to infinity. Several methods for constructing such belief

functions (refered to as predictive belief functions) were proposed in [5] in the special

case where X is discrete, based on multinomial confidence intervals. This approach was



recently extended to the continuous case using confidence bands on the unknown cu-

mulative probability distribution instead of multinomial confidence intervals [1], and a

similar approach in the context of Possibility Theory was presented in [12].

In the above approach, the second requirement demanding that, in the long run, the

predictive belief function converge towards the probability distribution of X is based

on Hacking’s frequency principle [11, 17], which equates the degree of belief of an

event to its probability (long run frequency), when the latter is known. This principle,

however, can be questioned. For instance, consider the result X of a coin-tossing exper-

iment, with X ∈ {H, T }, where H and T stand for “Head” and “Tail”, respectively. If the

coin is known to be perfectly balanced, then PX({H}) = PX({T }) = 0.5. If asked about

our opinion regarding the result of the next toss, should we necessarily assign a degree

of belief 0.5 to the event that this toss will bring a “Head”? This requirement seems

hard to justify. However, if we are forced to bet on the result of this random experi-

ment, then it seems reasonable to assign equal odds to the two elementary events. In the

TBM, degrees of chance are not equated with degrees of belief: decision making is as-

sumed to be handled at the pignistic level, which is distinguished from the credal level

at which beliefs are entertained [21, 20]. The pignistic transformation converts each be-

lief function bel into a pignistic probability distribution BetP that is used for decision

making. As a consequence, we may replace Hacking’s principle by the weaker require-

ment that the pignistic probability of an event be equal to its long run frequency, when

the latter is known. Coming back to the coin example, this requirement leads to the

constraint BetP({H}) = BetP({T }) = 0.5, which defines a set of admissible belief func-

tions. Among this set, the Least Commitment Principle [16] dictates to choose the least

committed one (i.e., the least informative), which is here the vacuous belief function.

In the above example, the probability distribution of X was assumed to be known. In

the more realistic situation considered here, we only have partial information about this

distribution, in the form of a random sample X1, . . . , Xn. In that case, it is possible to

construct a set P of probability distributions defined, e.g., by a parametric confidence

region. A natural extension of the above line of reasoning is then to require that bel

be less committed than any belief function with pignistic probability distribution in P .

This leads to the definition of a set of admissible belief functions, among which the

most committed one can be chosen. This is the principle of the approach presented in

this paper.

The rest of this paper is organized as follows. The background on the TBM will first

be recalled in Section 2. The proposed approach will be formalized in Section 3. It will

then be applied to the case of the normal distribution in Section 4. Section 5 will finally

conclude the paper.

2 Background on the TBM

This section provides a short introduction to the main notions pertaining to the theory

of belief functions that will be used throughout the paper, and in particular, its TBM

interpretation. We first consider the case of belief functions defined on a finite domain

[14], and then address the case of a continuous domain [19].



2.1 Belief Functions on a Finite Domain

Let X = {ξ1, . . . , ξK} be a finite set, and let X be a variable taking values in X . Given

some evidential corpus, the knowledge held by a given agent at a given time over the

actual value of variable X can be modeled by a so-called basic belief assignment (bba)

m defined as a mapping from 2X into [0, 1] such that:

∑

A⊆X
m(A) = 1. (1)

Each mass m(A) is interpreted as the part of the agent’s belief allocated to the hypothesis

that X takes some value in A [14, 21]. The subsets A ∈X such that m(A) > 0 are called

the focal sets of A. When the focal sets are nested, m is said to be consonant.

Equivalent representations of m include the belief, plausibility and commonality

functions defined, respectively, as:

bel(A) =
∑

∅,B⊆A

m(B), (2)

pl(A) =
∑

B∩A,∅
m(B), (3)

and

q(A) =
∑

B∩A,∅
m(B), (4)

for all A ⊆ X . When m is consonant, then the plausibility function is a possibility

measure: it verifies pl(A∪B) = max(pl(A), pl(B)) for all A, B ⊆X . The corresponding

possibility distribution is defined by poss(x) = pl({x}) = q({x}) for all x ∈ X , and the

commonality function verifies q(A∪B) = min(q(A), q(B)) for all A, B ⊆X . Conversely,

any possibility measure Π with possibility distribution poss(x) = Π({x}) for all x ∈ X

is a plausibility function corresponding to a consonant bba m defined as follows [7]. Let

πk = poss(ξk), and let us assume that the elements of X have been arranged in such a

way that π1 ≥ π2 ≥ . . . ≥ πK . Then, we have:

m(A) =



1 − π1 if A = ∅,
πk − πk+1 if A = {ξ1, . . . , ξk} for some k ∈ {1, . . . ,K − 1},
πK if A =X ,

0 otherwise.

(5)

In the TBM, the Least commitment Principle (LCP) plays a role similar to the princi-

ple of maximum entropy in Bayesian Probability Theory. As explained in [16], the LCP

states that, given two belief functions compatible with a set of constraints, the most

appropriate is the least informative. To make this principle operational, it is necessary

to define ways of comparing belief functions according to their information content.

Several such partial orderings, generalizing set inclusion, have been proposed [22, 8].

Among them, the q- and pl-ordering relations are defined as follows:

– m1 is said to be q-more committed than m2 (noted m1 ⊑q m2) if q1(A) ≤ q2(A), for

all A ⊆X ;



– m1 is said to be pl-more committed than m2 (noted m1 ⊑pl m2) if pl1(A) ≤ pl2(A),

for all A ⊆X ;

The interpretation of these and other ordering relations is discussed in [8] from a set-

theoretical perspective, and in [9] from the point of view of the TBM. In general, q- and

pl-orderings are distinct notions, and none of them implies the other. However, these

two orderings are equivalent in the special case of consonant belief functions: if m1 and

m2 are consonant, then

m1 ⊑q m2 ⇔ m1 ⊑pl m2 ⇔ poss1 ≤ poss2.

The TBM is a two-level mental model in which belief representation and updating

take place at a first level termed credal level, whereas decision making takes place at a

second level called pignistic level [21]. To make decisions, any bba m such that m(∅) < 1

is mapped into a pignistic probability function Betp = Bet(m) given by

Betp(x) =
∑

A⊆X ,A,∅

m(A)

1 − m(∅)
1A(x)

|A| , ∀x ∈X , (6)

where 1A denotes the indicator function of A defined by 1A(x) = 1 if x ∈ A, 0 otherwise.

Conversely, let us assume that we know the pignistic probability function p0 of an

agent and we would like to find the q-least committed (q-LC) belief function associated

to p0. As shown in [9, 10], the solution is a consonant belief function, called the q-LC

isopignistic belief function. It is defined by the following possibility distribution:

poss(x) =
∑

x′∈X
min(p0(x), p0(x′)). (7)

If m is the bba associated to poss, we note m = Bet−1
LC

(p0).

2.2 Continuous Belief Functions on R

Belief functions on R may be defined by replacing the concept of bba by that of basic

belief density (bbd) [4, 15, 19]. A normal bbd m is a function taking values from the set

of closed real intervals into [0,+∞), such that

"

x≤y

m([x, y]) dx dy = 1. (8)

The belief, plausibility and commonality functions can be defined in the same way as

in the finite case, replacing finite sums by integrals. In particular,

bel([x, y]) =

∫ y

x

∫ y

u

m([u, v])dvdu, (9)

pl([x, y]) =

∫ y

−∞

∫ +∞

max(x,u)

m([u, v])dvdu, (10)



q([x, y]) =

∫ x

−∞

∫ +∞

y

m([u, v])dvdu, (11)

for all x ≤ y. The domains of these integrals may be represented as in Figure 1, where

each point in the triangle corresponds to an interval with upper and lower bounds indi-

cated on the horizontal and vertical axes, respectively.
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Fig. 1. The belief, plausibility and commonality functions are defined as integrals of the bbd with

support [a, b] on the shaded area of triangles (a), (b) and (c), respectively.

A pignistic probability distribution Bet f = Bet(m) can be defined as in the discrete

case. It is a continuous distribution with the following probability density [19]:

Bet f (x) = lim
ǫ→0

∫ x

−∞

∫ +∞

x+ǫ

m([u, v])

v − u
dvdu. (12)

The expression of the q-LC isopignistic bbd m = Bet−1
LC

( f0) associated with a uni-

modal probability density f0 with mode ν was also derived in [19]. The focal sets of

m are the level sets of the density function f0. They are intervals Ib = [a, b] such that

f0(a) = f0(b). Given the upper bound b of any such interval, the lower bound is uniquely

defined by a = γ(b) for all b ≥ ν. The bbd is defined by

m([a, b]) = θ(b)δ(a − γ(b)),



with

θ(b) = (γ(b) − b) f ′0(b),

where f ′
0

is the derivative of f0 and δ is the Dirac delta function. Note that m is con-

sonant. Consequently, the associated plausibility function is a possibility measure. The

corresponding possibility distribution poss is given by:

poss(x) = pl({x}) =


∫ +∞
x

(γ(t) − t) f ′
0
(t)dt if x ≥ ν∫ +∞

γ−1(x)
(γ(t) − t) f ′

0
(t)dt otherwise.

If f0 is symmetrical, then γ(x) = 2ν − x, and the above equation simplifies to

poss(x) =


2(x − ν) f0(x) + 2

∫ +∞
x

f0(t)dt if x ≥ ν
2(ν − x) f0(x) + 2

∫ x

−∞ f0(t)dt otherwise.
(13)

3 Consonant Belief Function Induced by a Set of Pignistic

Probabilities

Let us now assume that the pignistic probability distribution p0 of an agent is only

known to belong to a set P of probability distributions and, as before, we seek to

approximate the agent’s bba m0. The problem is again underdetermined, as we can only

say that m0 belongs to the set M (P) = Bet−1(P) defined by

M (P) = {m | Bet(m) ∈P}
=

⋃

p∈P
M (p),

where M (p) = Bet−1(p) denotes the set of bbas whose pignistic probability distribution

is equal to p (see Figure 2).

According to the LCP, m0 should be approximated by a bba m∗ less committed

than m0, with respect to some ordering ⊑. In general, the set M (P) does not contain

a LC element. However, we may define the admissible set M ∗(P) as the set of bbas

dominating (i.e., less committed than) all bbas in M (P):

M
∗(P) = {m′ | m ⊑ m′,∀m ∈M (P)}.

It is then natural to choose m∗ as the most committed element in M ∗(P), if this element

exists. The solution of this problem is not obvious in the general case. However, a

simple solution can be found if we restrict the search to the subset C ∗(P) ⊂M ∗(P) of

consonant bbas less committed than all bbas in M (P), and we consider the q-ordering.

For all p ∈ P , let mp = Bet−1
LC

(p) be the q-LC isopignistic bba induced by p. It is

consonant. Let possp denote the corresponding possibility distribution. Bba mp is the

q-least committed bba in the set M (p) of bbas whose pignistic probability distribution

is p. Consequently, a consonant bba m belongs to C ∗(P) if and only if it is q-less

committed than mp, for all p ∈P , ie, if and only if

possp ≤ poss, ∀p ∈P ,
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Fig. 2. Definition of the q-most committed dominating (q-MCD) bba m∗ associated to a set P of

probability distribution. The set M (P) contains all bbas with pignistic probability function in

P . The set M ∗(P) contains all bbas dominating (i.e., less committed than) all bbas in M (P).

The q-MCD bba m∗ is the q-most committed consonant bba in M ∗(P).

where poss is the possibility distribution associated to m. It follows that the q-most

committed element in C ∗(P) is defined by the following possibility distribution

poss∗(x) = sup
p∈P

possp(x), ∀x ∈X . (14)

Possibility distribution poss∗ will be referred to as the q-most committed dominating

(q-MCD) possibility distribution associated to P . The corresponding bba will be noted

m∗.

Example 1. Let us consider a frame X = {ξ1, ξ2, ξ3}with three elements, and a set P =

{p, p′, p′′} of three probability distributions shown in the first three columns of Table 1.

The possibility distributions poss, poss′, poss′′ associated with the corresponding q-LC

isopignistic bbas are displayed in Table 1. Note that there is no q-LC element among

these three bbas. Possibility distribution poss∗ is shown in the last column of Table 1.

Using (5), we obtain the corresponding bba as

m∗({ξ1}) = 0.35, m∗({ξ1, ξ2}) = 0.05, m∗(X ) = 0.6.

Remark 1. By definition, the q-MCD bba m∗ is the q-most committed element among

all consonant bbas that are q-less committed than all bbas in M (P). The restriction

to consonant bbas is justified by the existence and unicity of a solution in C ∗(P),

whereas the existence of a q-most committed element in M ∗(P) is not guaranteed



Table 1. Pignistic probabilities and corresponding q-LC isopignistic possibility distributions of

Example 1.

x p(x) p′(x) p′′(x) poss(x) poss′(x) poss′′(x) poss∗(x)

ξ1 0.7 0.6 0.65 1 1 1 1

ξ2 0.2 0.25 0.1 0.5 0.65 0.3 0.65

ξ3 0.1 0.15 0.25 0.3 0.45 0.6 0.6

in general. Additionally, finding the solution in C ∗(P) is computationally tractable in

several cases of practical interest, as will be shown below, and the result usually has

a very simple expression. It may happen, however, that a q-most committed element

in M ∗(P) exists, and that it is strictly more committed than m∗. This is the case, in

particular, when function qmax defined by

qmax(A) = max
p∈P

qp(A), ∀A ⊆X

is a commonality function, qp being the commonality function associated to mp, . In

that case, the corresponding bba mmax is obviously the q-most committed element in

M ∗(P). This is the case in Example 1: it may be shown that qmax = max(q, q′, q′′) is

a commonality function, and the corresponding bba mmax is strictly q-more committed

than m∗.

Remark 2. The approach presented here is different from that introduced in [5] and [2],

in which we searched for the pl-most committed bba m◦, in the set M ◦(P) of bbas that

are less committed than all probability measures in P . In this alternative approach, the

solution is obtained as the lower envelope P∗ of P , when it is a belief function. This is

the case, in particular, when P is a p-box [2], or when it is constructed from a multi-

nomial confidence region with K ≤ 3 [5]. Different heuristics were introduced in [5]

for constructing a belief function less committed than P∗ when P∗ is not a belief func-

tion. The approach adopted here usually yields a simpler result as it produces consonant

belief functions. Additionally, it may be argued to be more in line with the two-level

structure of the TBM, as it does not directly compare probabilities at the pignistic level

with belief functions at the credal level.

4 Application to the normal distribution

Let us now assume that X has a normal distribution with mean µ and variance σ2. If

these two parameters are known, then the possibility distribution poss associated with

the q-LC isopignistic bbd is given by (13):

poss(x; µ, σ) =



2(x−µ)
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
+ 2

(
1 − Φ

(
x−µ
σ

))
if x ≥ µ

2(µ−x)

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
+ 2Φ

(
x−µ
σ

)
otherwise,

(15)

where Φ is the standard normal cumulative distribution function.



When µ and σ2 are unknown but an iid sample X1, . . . , Xn is available, then it is

possible to define a joint confidence region for µ and σ2 [3]. In particular, the Mood

exact confidence region at level 1 − α = (1 − α1)(1 − α2) is defined by

R(X1, . . . , Xn) =

{
(µ;σ2) : X − u1−α1/2

σ
√

n
≤ µ ≤ X + u1−α1/2

σ
√

n
,

nS 2

χ2
n−1;1−α2/2

≤ σ2 ≤ nS 2

χ2
n−1;α2/2

 , (16)

where X is the sample mean, S 2 = (1/n)
∑n

i=1(Xi −X)2 is the sample variance, u1−α1/2 is

the upper α1/2 percentile of a standard normal distribution, and χ2
n−1;α2/2

and χ2
n−1;1−α2/2

are the lower and upper α2/2 percentiles of a χ2
n−1

distribution. The shape of that region

is illustrated in Figure 3. Values of α1 and α2 yielding a region of smallest possible size

for a fixed confidence level are given in [3].
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Fig. 3. Shape of Mood’s exact region: the Mood Exact Region for α = 0.1, α1 = α2 and n =

25. Without loss of generality, x = 0 and s2 = 1. The points with coordinates (̂µ−, (σ̂+)2) and

(̂µ+, (σ̂+)2) are denoted A and B, respectively.

Let P denote the set of Gaussian distributions with parameters contained in con-

fidence region R. Applying the principle outlined in Section 3, we may obtain the

q-MCD possibility distribution poss∗ for any x by maximizing poss(x; µ, σ) given by

(15) with respect to µ and σ, under the constraint (µ, σ2) ∈ R. The result is given by

the following proposition.



Proposition 1. The q-MCD possibility distribution poss∗ associated with the Mood

confidence confidence region R at level (1 − α1)(1 − α2) is

poss∗(x) =



poss(x; µ̂−, σ̂+) if x < µ̂−

1 if µ̂− ≤ x ≤ µ̂+
poss(x; µ̂+, σ̂+) if x > µ̂+,

(17)

with

σ̂+ =


nS 2

χ2
n−1;α2/2


1/2

,

µ̂− = X − u1−α1/2

σ̂+
√

n
, µ̂+ = X + u1−α1/2

σ̂+
√

n
.

Proof. We have by definition

poss∗(x) = sup
(µ,σ2)∈R

poss(x; µ, σ).

If x ∈ [̂µ−, µ̂+], then we can get poss(x, µ, σ) = 1 by setting µ = x and σ = σ̂+. If

x < µ̂−, then the value 1 cannot be reached. However, we obtain using standard calculus

for x < µ:

∂poss(x; µ, σ)

∂µ
= − (x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
< 0

and

∂poss(x; µ, σ)

∂σ
=

(µ − x)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0.

Consequently, poss(x; µ, σ) is maximized by jointly minimizing µ and maximizing σ,

and the maximum is reached for (µ, σ) = (̂µ−, σ̂+). Similarly, we get for x > µ̂+:

∂poss(x; µ, σ)

∂µ
=

(x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0

and

∂poss(x; µ, σ)

∂σ
=

(x − µ)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0.

Consequently, the maximum of poss(x, µ, σ) for x > µ̂+ is reached for (µ, σ) = (̂µ+, σ̂+).

�

Figure 4 shows the possibility distribution poss∗(x) for x = 0, s2 = 1, α = 0.1 and

various values of n. The case n = ∞ corresponds to the situation where parameters µ and

σ2 are known: in that case, poss∗ is simply que q-LC isopignistic possibility distribution

induced by the normal pignistic distribution with µ = 0 and σ2 = 1.
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Fig. 4. Plot of poss∗(x) for x = 0, s2 = 1, α = 0.1, α1 = α2, and n = 10, 30, 100 and ∞.

5 Conclusion

A new method for generating a belief function from statistical data in the TBM frame-

work has been presented. The starting point of this method is the assumption that, if

the probability distribution PX of a random variable is known, then the belief function

quantifying our belief regarding a future realization of X should be such that its pig-

nistic probability distribution equals PX . In the realistic situation where PX is unknown

but a random sample of X is available, it is possible to build a set P of probability

distributions containing P with some confidence level. Following the LCP, it is then

reasonable to impose that the sought belief function be q-less committed than all be-

lief functions whose pignistic probability distribution is in P . Our method selects the

q-most committed consonant belief function verifying this property, referred to as the q-

MCD possibility distribution induced by P . This general principle has been illustrated

in the case of the normal distribution.

In conjunction with the General Bayesian Theorem [16, 6], the q-LC isopignistic

transformation has proved useful to tackle classification problems using the TBM [13].

In this approach, the parameters of the pignistic distributions were assumed to be given

by experts or estimated using large samples. Using the tools presented in this paper, it

will be possible to apply this methodology to a wider range of problems where only

small datasets are available. Future work in this direction will be reported in forthcom-

ing papers.
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