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Abstract. Based on the canonical decomposition of belief functions,
Smets introduced the concept of a latent belief structure (LBS). This
concept is revisited in this article. The study of the combination of LBSs
allows us to propose a less committed version of Dempster’s rule, result-
ing in a commutative, associative and idempotent rule of combination for
LBSs. This latter property makes it suitable to combine non distinct bod-
ies of evidence. A sound method based on the plausibility transformation
is also given to infer decisions from LBSs. In addition, an extension of the
new rule is proposed so that it may be used to optimize the combination
of imperfect information with respect to the decisions inferred.

1 Introduction

The theory of belief functions [14] is recognized as a rich framework for represent-
ing and reasoning with imperfect information. Contrary to probability theory, it
allows in particular the representation of different forms of ignorance. However,
when decisions have to be made in an uncertain context, rationality principles
[13] justify the use of a probability distribution. There exist different methods for
the transformation of a belief function to a probability distribution; in particular
the pignistic transformation [17] and the plausibility transformation [2]. In this
article, two results related to the latter transformation are presented. First, it
can be extended to transform a so-called latent belief structure (LBS) [16] into
a probability distribution. Second, two ways of modeling negative statements
become equivalent with the extension of this transformation.

Equipped with a well-defined means to use LBSs with respect to decision
making, this paper deepens their study. The analysis of the combination of LBSs
leads to families of conjunctive combination rules. One of these rules is idempo-
tent, a property required for the combination of LBSs obtained from, e.g., belief
functions based on non distinct bodies of evidence.

The rest of this paper is organized as follows. The mathematical concept of
LBS and Smets’s tentative interpretation of a LBS will first be recalled in Section
2. Combination rules for LBSs will then be studied in Section 3. Section 4 will
describe decision making from LBSs and Section 5 will conclude the paper.
? The authors would like to thank the anonymous referees for their constructive

comments that helped to improve this paper.
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2 Latent Belief Structures

2.1 Background Material on Belief Function Theory

The presentation of belief function theory adopted here is in line with the one
of the transferable belief model (TBM) [17]. The beliefs held by a rational agent
Ag on a finite frame of discernment Ω = {ω1, ..., ωK} are represented by a basic
belief assignment (BBA) mΩ

Ag defined as a mapping from 2Ω to [0, 1] verifying∑
A⊆Ω m (A) = 1. For A ⊆ Ω, if m (A) > 0 holds, then A is called a focal set

(FS) of m. A BBA m is called: normal if ∅ is not a FS; vacuous if Ω is the only
FS; dogmatic if Ω is not a FS; categorical if is has only one FS different from
Ω; simple if it has at most two FSs, Ω included. If m is a simple BBA (SBBA)
defined by m (A) = 1 − w and m (Ω) = w for A 6= Ω, it is noted Aw; if A = Ω
then we write Ω if no confusion can occur. Note that normality is not required
by the TBM. Equivalent representations of a BBA m exist. In particular the
belief, plausibility, and commonality functions are defined, respectively, by:

bel (A) =
∑

∅6=B⊆A

m (B) , (1)

pl (A) =
∑

B∩A 6=∅

m (B) , (2)

and
q (A) =

∑
B⊇A

m (B) , (3)

for all A ⊆ Ω. Two distinct BBAs m1 and m2 can be combined using the TBM
conjunctive combination rule, noted ∩©, or using Dempter’s rule [14], noted ⊕.
Assuming that m1 ∩©2 (∅) 6= 1, those rules are defined by:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) ,∀A ⊆ Ω , (4)

m1⊕2 (A) =
{

0 if A = ∅,
m1 ∩©2 (A) /

(
1−m1 ∩©2 (∅)

)
otherwise. (5)

Under conflicting information, i.e. m1 ∩©2 (∅) > 0, the legitimacy of the normal-
ization operation involved by Dempster’s rule has been questioned. Indeed, the
conflict may originate from different situations such as unreliable sources of in-
formation or a lack of exhaustiveness of Ω, in which cases other normalization
operations may be reasonable [6].

The pignistic and the plausibility transformations allow the transformation
of a BBA m to probability distributions noted respectively BetPm and PlPm.
They are defined as follows:

BetPm ({ωk}) =
∑

{A⊆Ω,ωk∈A}

m (A)
(1−m (∅)) |A|

, (6)

PlPm ({ωk}) = κ−1pl ({ωk}) , (7)

with κ =
∑K

j=1 pl ({ωj}).
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2.2 Canonical Decomposition of a Belief Function

The canonical decomposition of a belief function, introduced in [16], is based on
a generalization of the canonical representation of a separable BBA m defined by
Shafer [14]. A BBA is called separable if it can be written as the ∩© combination
of SBBAs. For a separable BBA m, one has thus:

m = ∩©A⊂ΩAw(A), (8)

with w (A) ∈ [0, 1] for all A ⊂ Ω. Through the definition of a generalized SBBA,
Smets [16] proposed a means to canonically decompose any non dogmatic BBA
(NDBBA). A generalized SBBA is defined as a function µ from 2Ω to R by:

µ (A) = 1− w, µ (Ω) = w, µ (B) = 0 ∀B ∈ 2Ω\ {A,Ω} , (9)

for A 6= Ω and w ∈ [0,+∞). Extending the SBBA notation, any generalized
SBBA can be written Aw; when w ≤ 1, µ is thus a SBBA. When w > 1,
µ is called inverse SBBA. Smets showed that any NDBBA can be uniquely
represented as the ∩© combination of non categorical generalized SBBAs; the
expression for this decomposition is then the same as (8) with w ∈ (0,+∞) this
time. The weights w (A) for each A ∈ 2Ω\ {Ω} are obtained as follows:

w (A) =
∏

B⊇A

q (B)(−1)|B|−|A|+1

. (10)

The weight function, w : 2Ω\ {Ω} → (0,+∞), is thus yet another equivalent
representation of a NDBBA m.

If Aw1 and Aw2 are two SBBAs, their combination by ∩© is the SBBA Aw1w2 .
From the commutativity and associativity of the ∩© rule, the combination of two
NDBBAs m1 and m2 with respective weight functions w1 and w2 is written:

m1 ∩©2 = ∩©A⊂ΩAw1(A)·w2(A). (11)

Details on normalized versions of those results can be found in a recent exposi-
tion of the canonical decomposition [3]. Other combinations of belief functions
have been proposed. In particular the cautious rule [3], noted ∧©, possesses the
idempotence property. It is defined as follows (∧ is the minimum operator):

m1 ∧©2 = ∩©A⊂ΩAw1(A)∧w2(A). (12)

2.3 Decombination Rule

In the area of belief revision [8], the addition of beliefs without retracting others
is known as expansion; the inverse operation, contraction, allows the removal of
beliefs. In belief function theory, those operations are performed respectively by
the ∩© and 6∩© rules. Different authors [16, 15, 10] have studied the 6∩© rule which
is either called the decombination [16] or removal [15] rule. Let q1 and q2 be the
commonality functions of two NDBBAs, the decombination is defined by:

q1 6∩©2 (A) = q1 (A) /q2 (A) , ∀A ⊆ Ω. (13)
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The resulting function may not be a belief function. In this case it is called a
pseudo belief function [16] or signed belief function [10].

The interest of this operator is motivated by the following example. Suppose
you are in a state of ignorance about the actual state ω0 of the world Ω. Suppose
that you then have some good reasons to believe in A, for A ⊂ Ω; you perform
an expansion of your beliefs (here your ignorance) by the SBBA Ax (if the good
reasons amounts to (1−x), for x small), which is equivalent to the combination
Ω ∩©Ax. Later, another information arrives telling you that the first information
was not valid. This can be handled in at least three ways, all of them bringing
you to the state of indecision that this example intuitively leads to. Note that
this situation is illustrated by the Pravda bias example [16].

First of all, the second information can be understood as: the negation of the
first information holds true. This results in an expansion of belief in favor of Ā. It
leads to the state of belief Ax ∩©Āx, yielding bel (A) = bel

(
Ā
)

which is indeed a
state of indecision. This solution produces however a share of conflict (m (∅) > 0)
depending on the value of x. This conflict cannot be escaped whatever further
information you receive [10], unless an arbitrary normalization operation is used.

Another way of interpreting the second information is that all conclusions
that may be drawn from the first information must be cancelled, i.e. you should
come back to the state of belief in which you were before receiving the first
information [10]. This means here that you should come back to the state of
ignorance, i.e. bel (Ω) = 1, which is a state of indecision. This interpretation
of the example may be treated in two ways. It may be argued that both ways
involve a contraction in their development as showed by the following reasoning.

The first way of treating this second interpretation of the example consists in
contracting the belief you had in favor of A, which amounts to do Ax 6∩©Ax = Ω.
The ignorance state is thus recovered. The second method uses the discounting
operation [14]. This operation is based on the use of a second frameR = {R,NR}
which represents a meta-knowledge mR on the reliability of the information that
is given to you. If the first source of information is reliable then your belief on Ω
is the one given by this source; this is noted mΩ

Ag [{R}] = mΩ
S where S denotes

the first source of information. If the source of information is not reliable then
your belief is vacuous: mΩ

Ag [{NR}] (Ω) = 1. Let us suppose that before you
receive the second information, you are a priori almost certain that S is reliable:
mR

Ag ({R}) = 1 − ε, and mR
Ag (R) = ε, with ε a small positive real number.

Your belief on Ω is computed by ∩© combining mR
Ag with mΩ

Ag [{R}] and then
marginalizing this belief on Ω. To be in a state of indecision after receiving the
second information, mR

Ag ({R}) = 0 must hold. It is possible by a contraction of
your initial mR

Ag. It is also possible through the ∩© combination of your initial
mR

Ag with a BBA mR ({NR}) = 1; this solution implies however the use of a
categorical belief (see [3] for a discussion on dogmatic beliefs).

More generally, the 6∩© rule allows a form of non monotonic reasoning in the
belief function theory. Indeed if for A ⊆ Ω you have a belief bel (A) > 0 then
it will be impossible without this operator to obtain later bel

(
Ā
)

= 1 by an
expansion with other beliefs, unless normalization is used.
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Smets [16] goes further than the interpretation of removal of beliefs that
is given to the 6∩© operator. He introduces states of debt of belief (also called
diffident beliefs). Indeed, Smets reformulates the example so that the second
source of information gives good reasons not to believe in A. He argues that if
the weights of the good reasons to believe A and not to believe A counterbalance
each other, then you should be in a state of ignorance. Those states of debt of
belief are used by Smets to introduce the LBSs recalled in the next subsection.

Note that the existence of positive and negative information is generally
coined under the term bipolarity. Other authors have tried to model such dual
information in the belief function theory; in particular we can cite the work of
Dubois et al. [7], and of Labreuche et al. [11]. The question of the relevance
of debt of belief remains open. Nonetheless, the next subsection shows that
decombination is useful at least mathematically and thus deserves attention.

2.4 Confidence and Diffidence

Let Aw1 and Aw2 be two non categorical SBBAs, hence A1/w2 is an inverse
SBBA. The decombination of Aw1 by Aw2 , i.e. Aw1 6∩©Aw2 , is equal to the ∩©
combination of Aw1 with A1/w2 [16]. Let w be the weight function of a NDBBA
m. Partition 2Ω into two (disjoint) subsets: C = {A : A ⊂ Ω,w (A) ∈ (0, 1]}, and
D = {A : A ⊂ Ω,w (A) ∈ (1,∞)}. A NDBBA m can then be written:

m =
(
∩©A∈CAw(A)

)
6∩©
(
∩©A∈DA

1
w(A)

)
(14)

Any NDBBA is thus the result of combinations and decombinations of non
categorical SBBAs or, equivalently, any NDBBA is equal to the decombina-
tion of a separable NDBBA by a separable NDBBA. Smets called the separable
NDBBA, noted mc and obtained from the set C, the confidence component
and the separable NDBBA, noted md and obtained from the set D, the diffi-
dence component. We can thus write: m = mc 6∩©md. The weight functions of
mc and md, defined from 2Ω\ {Ω} to (0, 1] and called the confidence and diffi-
dence weight functions, are noted wc and wd. They can easily be found from the
original weight function w of a NDBBA m as follows: wc (A) = 1 ∧ w (A) , and
wd (A) = 1 ∧ 1

w(A) , for all A ⊂ Ω.
From the canonical decomposition of a belief function, Smets defined a LBS

as a pair of BBAs
(
mc,md

)
allowing the representation of belief states in which

positive and negative items of evidence (reasons to believe and not to believe [16])
occur. Definition 1 is more specific, in that it imposes that this pair be made of
separable NDBBAs. Definition 2 defines a concept also introduced in [16].

Definition 1 (Latent Belief Structure). A latent belief structure is defined
as a pair of separable NDBBAs mc and md called respectively the confidence and
diffidence components. A LBS is noted using a upper-case L.

Definition 2 (Apparent Belief Structure). The apparent belief structure
associated with a LBS L = (mc,md) is the signed belief function obtained from
the decombination mc 6∩©md of the confidence and diffidence components of L.
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The motivation for Definition 1 is due to the following observation: if mc and
md are two NDBBAs, then we can always find two separable NDBBAs m′c and
m′d such that mc 6∩©md = m′c 6∩©m′d, hence a LBS can be merely defined as a pair
of separable NDBBAs. A LBS is thus a generalization of a NDBBA.

The properties linking these definitions are the following. By definition, the
apparent belief structure associated to a LBS may or may not be a belief function.
Further, an infinity of LBSs correspond to the same apparent belief structure.
Besides, among the infinity of LBSs corresponding to the same apparent belief
structure, one LBS has a particular structure: it is then called a canonical LBS
(see Definition 3 below). In particular, an infinity of LBSs can yield the same
NDBBA, for instance the LBSs (A0.2, A0.3) and (A0.6, A0.9) correspond to the
same NDBBA A2/3 and the canonical LBS of this NDBBA is

(
A2/3, Ω

)
. Remark

that the canonical decomposition of a NDBBA m yields the canonical LBS of
m. Example 1 shows how a CLBS can be generated from expert opinions. Note
that LΩ will be used to denote the LBS obtained from the vacuous BBA.

Definition 3 (Canonical Latent Belief Structure). A CLBS is a LBS ver-
ifying: ∀A ⊂ Ω, wc(A) ∨ wd(A) = 1 where ∨ denotes the maximum operator.

Example 1. Suppose Ω = {a, b, c} and the sets A = {a, b} , B = {b, c} , C =
{a, c}. Now, a first expert gives the opinion A ∼ B which, according to the
elicitation technique proposed in [1], means that he believes equivalently in A
and B, i.e. bel1 (A) = bel1 (B). A second expert gives the opinion: C ∼ B, i.e
bel2 (C) = bel2 (B). Given those constraints on bel1 and bel2, the BBAs m1 and
m2 of Table 1 on page 7 may be produced using the method proposed in [1] for
a certain set of parameters required by the method.

3 Combination of LBSs

This section studies mathematical operations on LBSs. Let us first express two
known operations of belief function theory using LBSs.

Let
(
mc

1,m
d
1

)
and

(
mc

2,m
d
2

)
be the CLBSs associated with two NDBBAs m1

and m2. Then
(
mc

1 ∩©mc
2,m

d
1 ∩©md

2

)
is a LBS associated with m1 ∩©m2. This lead

Smets to define the conjunctive combination of two LBSs as follows.

Definition 4. The conjunctive combination of two LBSs L1 and L2 is a LBS
noted L1 ∩©2. It is defined by the weight functions (15) and (16):

wc
1 ∩©2 (A) = wc

1 (A) · wc
2 (A) , (15)

wd
1 ∩©2 (A) = wd

1 (A) · wd
2 (A) . (16)

The vacuous LBS LΩ is a neutral element for ∩©, i.e. L ∩©LΩ = L for all LBSs
L. The cautious rule of combination [3] can also be expressed in terms of LBSs.

Definition 5. ([4, Proposition 6]) The cautious combination of two LBSs L1

and L2 is a LBS noted L1 ∧©2. It is defined by the following weight functions:

wc
1 ∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , (17)

wd
1 ∧©2 (A) = wd

1 (A) ∨ wd
2 (A) . (18)
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Table 1. Two NDBBAs and their CLBSs.

A m1 (A) wc
1 (A) wd

1 (A) mc
1 (A) md

1 (A) m2 (A) wc
2 (A) wd

2 (A) mc
2 (A) md

2 (A)

∅ 0 1 1 0 0 0 1 1 0 0
{a} 0 1 1 0 0 0 1 1 0 0
{b} 0 1 5/9 4/9 4/9 0 1 1 0 0
{a, b} 0.4 1/3 1 2/9 0 0 1 1 0 0
{c} 0 1 1 0 0 0 1 5/9 4/9 4/9
{a, c} 0 1 1 0 0 0.4 1/3 1 2/9 0
{b, c} 0.4 1/3 1 2/9 0 0.4 1/3 1 2/9 0

Ω 0.2 1/9 5/9 0.2 1/9 5/9

It is clear that those two rules belong to different families of combination rules:
the ∩© rule is purely conjunctive whereas the ∧© rule is both conjunctive and
disjunctive [4], hence they treat the diffidence component in different ways. The
remainder of this section is devoted to the proposal of other purely conjunctive
rules. One of those rules is particularly interesting since it is idempotent; the
motivation for its definition relies on the least commitment principle of the TBM.

3.1 Least Commitment Principle (LCP)

The LCP is similar to the principle of maximum entropy in Bayesian Probabil-
ity Theory. It postulates that given a set M of BBAs compatible with a set of
constraints, the most appropriate BBA is the least informative. This principle
becomes operational through the definition of partial orders allowing the infor-
mational comparison of BBAs. Such orders, generalizing set inclusion, are [5]:

– pl-order: for all A ⊆ Ω, iff pl1 (A) ≤ pl2 (A) then m1 vpl m2;
– q-order: for all A ⊆ Ω, iff q1 (A) ≤ q2 (A) then m1 vq m2;
– s-order: m1 vs m2, i.e. m1 is a specialization of m2, iff there exists a square

matrix S with general term S (A,B), A,B ⊆ Ω such that
∑

B⊆Ω S (A,B) =
1, ∀A ⊆ Ω, and S (A,B) > 0 ⇒ A ⊆ B,∀A,B ⊆ Ω, and m1 (A) =∑

B⊆Ω S (A,B)m2 (A), ∀A ⊆ Ω.

A BBA m1 is said to be x-more committed than m2, with x ∈ {pl, q, s}, if
m1 vx m2. A particular case of specialization is the dempsterian specialization
[9], noted vd: m1 vd m2, iff there exists a BBA m such that m1 = m ∩©m2. This
condition is stronger than specialization, i.e. m1 vd m2 ⇒ m1 vs m2.

It is reasonable to say that a SBBA Aw1 is more committed than a SBBA
Aw2 , if w1 ≤ w2. Hence a BBA m1 obtained from the combination by ∩© of
SBBAs, i.e. a separable BBA, will be more committed than another separable
BBA m2 if w1 (A) ≤ w2 (A) for all A ∈ 2Ω\ {Ω}; this is equivalent to the
existence of a separable BBA m such that m1 = m ∩©m2. This new partial order,
defined for separable BBAs and noted m1 vw m2 with m1 and m2 two separable
BBAs, is consequently stricly stronger than d-ordering as a non-separable BBA
m such that m1 = m ∩©m2, i.e. m1 vd m2, can easily be found. Let us also
remark that, using a special representation of categorical BBAs, Denoeux [4,
Proposition 3] has shown that vw may be seen as generalizing set inclusion,
much as the x-orderings, with x ∈ {pl, q, s}, do.
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All those partial orders can be extended to LBSs. In particular, the LBS
L1 ∩©2 = (mc

1 ∩©2,m
d
1 ∩©2) obtained from the combination by ∩© of two LBSs

L1 = (mc
1,m

d
1) and L2 = (mc

2,m
d
2) has the following properties: for i ∈ {1, 2},

mc
1 ∩©2 vw mc

i , and md
1 ∩©2 vw md

i , i.e. the ∩© rule produces a LBS L1 ∩©2 which is
both w-more committed in confidence and in diffidence than the LBSs L1 and L2.
To simplify the presentation, a LBS L which is both w-more committed in confi-
dence and in diffidence than a LBS L

′
will be noted L vl L

′
(l stands for latent).

Informally, the l-order seems natural as it exhibits properties similar to those of
classical orderings. To see that, simply replace l by x with x ∈ {d, s, q, pl} and L
by m in the following expressions: ∀L,L vl LΩ and L1 ∩©2 vl L1, L1 ∩©2 vl L2.

3.2 Combination of non-distinct LBSs
As remarked in [5], it is possible to think of vx as generalizing set inclusion.
This reasoning can be used to see conjunctive combination rules as generalizing
set intersection. Denœux [3] considers thus the following situation. Suppose we
get two reliable sources of information. One states that ω is in A ⊆ Ω, whereas
the other states that it is in B ⊆ Ω. It is then certain that ω is in C such that
C ⊆ A and C ⊆ B. The largest subset C satisfying those constraints is A ∩B.

Suppose now that the sources provide the NDBBAs m1 and m2 and let L1

and L2 be the equivalent CLBSs of those NDBBAs. Upon receiving those two
pieces of information, the agent’s state of belief should be represented by a LBS
L12, i.e.

(
mc

12,m
d
12

)
, more informative than L1 and L2. Let Sx (L) be the set of

LBSs L′ such that L′ vx L. Hence L12 ∈ Sx (L1) and L12 ∈ Sx (L2), or equiva-
lently L12 ∈ Sx (L1)∩Sx (L2). According to the LCP, the x-least committed LBS
should be chosen in Sx (L1) ∩ Sx (L2). This defines a conjunctive combination
rule if the x-least committed LBS exists and is unique. Proposition 1 shows that
the l-order may be an interesting solution for this problem.

Proposition 1. Let L1 and L2 be two LBSs. The l-least committed element in
Sl (L1)∩Sl (L2) exists and is unique (the proof is trivial by Proposition 1 of [3]).
It is defined by the following confidence and diffidence weight functions:

wc
1∧∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , A ∈ 2Ω\ {Ω} , (19)

wd
1∧∧©2 (A) = wd

1 (A) ∧ wd
2 (A) , A ∈ 2Ω\ {Ω} . (20)

Definition 6 (Weak Rule). Let L1 and L2 be two LBSs. Their combination
with the weak rule is defined as the LBS whose weight functions are given by
(19) and (20). It is noted: L1∧∧©2.
This rule is commutative, associative and idempotent. In addition, ∩© is distribu-
tive with respect to ∧∧©. Those properties originate from the properties of the ∧©
rule [3] since there is a connection between the partial orders on which those two
rules are built. We can thus see that the combination by the ∧∧© rule consists in
combining the confidence and diffidence components by the ∧© rule.

The ∧∧© rule exhibits other properties: LΩ is a neutral element and if L1 vl L2,
the result of the least committed combination of those LBSs is L1 ∧∧©L2 = L1.
Further, using the l-order in the derivation of the rule allows the construction of a
’weaker’, or l-less committed, version of Dempster’s rule, i.e. L1 ∩©L2 vl L1 ∧∧©L2.
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Note that the apparent form of a LBS L1∧∧©2, produced by the ∧∧© combina-
tion of two CLBSs L1 and L2 obtained from two NDBBAs m1 and m2, may
not be a BBA. However, if m1 and m2 are separable BBAs then the apparent
form of the LBS L1∧∧©2 is a BBA since a separable BBA yields a LBS whose
diffidence component is vacuous and the ∧∧© combination consists in combining
the confidence component of L1 and L2 by the ∧© rule. It can also be shown that
the combination by the ∧© rule of two consonant BBAs does not always yield a
consonant BBA. A consonant BBA is separable [4, Proposition 2], hence the ∧∧©
rule applied to two CLBSs obtained from two consonant BBAs will yield a LBS
whose apparent form is a separable BBA which is not necessarily consonant.

Example 2. The left-hand part of Table 2 shows the weight functions resulting
from the weak (∧∧©), the conjunctive ( ∩©), and the cautious ( ∧©) combinations of
the expert opinions of Example 1. Note that wd

1 ∧©2 (A) = 1, for all A ⊂ Ω.

Table 2. Weight functions obtained from different combinations (left). Plausibility
transformations of the LBSs obtained with those combinations (right, see Section 4).

A wc
1∧∧©2 (A) wd

1∧∧©2 (A) wc
1 ∩©2 (A) wd

1 ∩©2 (A) wc
1 ∧©2 (A) PlP1∧∧©2 PlP1 ∩©2 PlP1 ∧©2

∅ 1 1 1 1 1
{a} 1 1 1 1 1 9/19 0.23 1/3
{b} 1 5/9 1 5/9 1 5/19 0.385 1/3
{a, b} 1/3 1 1/3 1 1/3
{c} 1 5/9 1 5/9 1 5/19 0.385 1/3
{a, c} 1/3 1 1/3 1 1/3
{b, c} 1/3 1 1/9 1 1/3

Interestingly, the idea of distinctness conveyed by the derivation of the ∧∧© rule
relates, in part, to the foci of the SBBAs underlying a complex belief state.
Indeed let us assume that two bodies of evidence, yielding the LBSs L1 and L2,
are non distinct, then L1∧∧©2 6= L1 ∩©2 iff C1 ∩ C2 6= ∅ or D1 ∩ D2 6= ∅, with
Ci = {A : A ⊂ Ω,wc

i (A) < 1} and Di =
{
A : A ⊂ Ω,wd

i (A) < 1
}
. The effect of

this view of distinctness is illustrated in Example 3 of Section 4, where double
counting the SBBA implicitly shared by two agents is avoided.

3.3 Generalizing the Weak Rule
In the same vein as Denœux [3], it is possible to derive infinite families of conjunc-
tive combination rules for LBSs. The ∩© and ∧∧© rules are then merely instances of
these families. This extension is based on the observation that the ∩© rule uses the
product, whereas the ∧∧© rule uses the minimum of weights belonging to the unit
interval. Now, these two operations on this interval are binary operators known
as triangular norms (t-norms). Replacing them by any positive t-norm > yields
>© operators, which possess the following properties: commutativity, associativ-
ity, neutral element LΩ and monotonicity with respect to vl, i.e. ∀L1, L2 and
L3, L1 vl L2 ⇒ L1 >©L3 vl L2 >©L3. Only the ∧∧© rule is idempotent. Operators
exhibiting a behavior between ∩© and ∧∧© can be obtained using parameterized
families of t-norms such as the Dubois and Prade family defined by:

x>DP
γ y = (xy) / (max (x, y, γ)) for x, y, and γ ∈ [0, 1] . (21)
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Note that the ∩© and ∧∧© rules are recovered for γ = 1 and γ = 0 respectively. The
parameterization is what make those rules attractive: they allow the fine-tuning
of the behavior of a system. Indeed, the γ parameter may be related to some
subjective judgment on the distinctness of the items of evidence. It can also be
learnt from data as done in [12] through the use of the plausibility transformation
extended to LBSs (see Section 4): the conjunctive combination of two LBSs is
then optimized with respect to the decisions inferred.

4 Decision Making with LBSs

This section provides a means to transform a LBS into a probability distribution.
The plausibility transformation is of particular interest here due to one of its
properties: it is invariant with respect to the combination by ∩© [18], which is not
the case of the pignistic transformation. Proposition 2 reformulates this property
for the 6∩© rule using the decombination operator in probability theory, noted �
and defined in [15] as follows. Let P1 and P2 be two probability distributions:

P1 � P2 ({ωk}) = κ−1P1 ({ωk}) /P2 ({ωk}) ,∀ωk ∈ Ω (22)

with κ =
∑K

j=1 P1 ({ωj}) /P2 ({ωj}).

Proposition 2 (PlP is invariant with respect to 6∩©). Let m1 and m2 be
two NDBBAs:

PlPm1 6∩©m2 = PlPm1 � PlPm2 . (23)

Proof. For all ωk ∈ Ω, let us denote αk = pl1 ({ωk}) = q1 ({ωk}) , βk =
pl2 ({ωk}). From Equation (13) we have:

PlPm1 6∩©m2 ({ωk}) = (αk/βk) /(
K∑

i=1

(αi/βi)) . (24)

Besides,

PlPm1 � PlPm2 ({ωk}) =

((
αk∑K
i=1 αi

)
/

(
βk∑K
i=1 βi

))
/

 K∑
j=1

(
αj∑K

i=1 αi

)
(

βj∑K
i=1 βi

)

(25)

(24) and (25) are equal. ut

Using Proposition 2, a LBS L =
(
mc,md

)
can be transformed into a probability

distribution as follows:

PlPL = PlPmc � PlPmd . (26)

Example 3. The right side of Table 2 shows three qualitatively different prob-
ability distributions computed using (26). They are obtained from the expert
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opinions of Example 1 combined with different combination rules. It is interest-
ing to note that the application of the ∩© and ∧∧© rule yields opposite decisions.
This is easily explained through the observation of the SBBAs underlying the
two opinions. We see in particular that both opinions share a SBBA focused on
the set {b, c}: if we think of the opinions as based on distinct bodies of evidence,
then the reasons for which expert 1 believes in {b, c} are different from the rea-
sons of expert 2, hence the combined belief in favor of the set {b, c} should be
stronger than the individual beliefs. On the other hand, if the experts base their
beliefs in {b, c} on the same items of evidence then the combined belief in favor
of the set {b, c} should not be stronger than the individual beliefs. Consequently
with the ∩© rule we have w ({b, c}) < w ({a, c}) = w ({a, b}) which makes the
two singletons b and c more probable, actually much more probable than a. This
difference is then only partially moderated by the diffidence in b and c so that
eventually b and c remain more probable than a. However, with the ∧∧© and the ∧©
rules, we have w ({b, c}) = w ({a, c}) = w ({a, b}), which yields equiprobability
for the three singletons. Besides, the ∧∧© rule keeps the information relating to
the diffidence in b and c, hence a is more probable than b and c with this rule.

Proposition 3 shows that two ways of modeling negative statements become
equivalent when PlP is used. Indeed, according to Smets’s vocabulary [16], for
A ⊂ Ω, having good reasons to believe in not A is equivalent to having good
reasons not to believe (or having a debt of belief) in A. It can also be formulated
using the terminology used in belief revision: the expansion by Āα is equivalent
to the contraction by Aα, for α ∈ (0, 1]. Let PlP∼ denote the equivalence relation
between LBSs defined by L1

PlP∼ L2 iff PlPL1 ({ωk}) = PlPL2 ({ωk}), ∀ωk ∈ Ω.

Proposition 3. Āα PlP∼ A
1
α , for α ∈ (0, 1].

Proof. ∀ωk ∈ A,A ⊂ Ω,
PlPĀα ({ωk}) =

α∣∣Ā∣∣+ |A|α
, (27)

PlPA1/α ({ωk}) =
1

|A|+
∣∣Ā∣∣ 1

α

. (28)

(27) and (28) are equal. ut
Propositions 2 and 3 define equivalence classes with respect to the plausibility
transformation in which there is at least one separable BBA; for instance we have:(
Ā0.6, A0.5

) PlP∼
(
Ā0.3, Ω

)
. Note also that the combination by ∩© of any two LBSs

belonging to two different equivalence classes always falls in the same equivalence
class, for instance if L1

PlP∼ L2 and L3
PlP∼ L4, then e.g. L1 ∩©L3

PlP∼ L2 ∩©L4. It
can easily be shown that this is not true for the ∧© and ∧∧© rules.

Eventually, from Proposition 3, remark that Aα ∩©Āα PlP∼ Aα 6∩©Aα,∀A ⊆ Ω

with α ∈ (0, 1]. Now, let BetP∼ denote the equivalence relation between BBAs
defined by m1

BetP∼ m2 iff BetPm1 ({ωk}) = BetPm2 ({ωk}), for all ωk ∈ Ω.
The two ways of modeling negative statements will yield the same probability
distribution, i.e. Aα ∩©Āα BetP∼ Aα 6∩©Aα, with the pignistic transformation iff
|A| =

∣∣Ā∣∣; a stricter condition than the one of the plausibility transformation.
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5 Conclusion
In this article, latent belief structures have been revisited. The mathematical
simplicity of this generalization of non dogmatic belief functions has allowed the
analysis of the unnormalized version of Dempster’s rule, which resulted in the
introduction of infinite families of conjunctive combination rules. Two potential
uses of these rules have been proposed. First they may permit to relax the
hypothesis of distinctness inherent to the use of Dempster’s rule. Second, they
may be used to optimize the combination of imperfect information with respect
to the decisions inferred. An extension of the plausibility transformation has been
also provided to transform a LBS into a probability distribution and two ways of
modeling negative statements were proved equivalent under this extension. The
interest of this formalism in concrete applications is currently being investigated.
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