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Abstract. The determination of the initial weights is an important issue

in multilayer perceptron design. Recently, we have proposed a new ap-

proach to weight initialization based on discriminant analysis techniques.

In this paper, the performances of multilayer perceptrons (MLPs) initial-

ized by non-parametric discriminant analysis are compared to those of

randomly initialized MLPs using several synthetic and real-world bench-

mark learning tasks. Simulation results confirm that the proposed scheme

yields a better initial state, as compared to randomly initialized MLPs.

This leads to an improvement in the generalization performance and a

reduction in training time, especially for complex or ill-posed problems.

1 Introduction

Backpropagation is one of the most popular training algorithms for MLPs. How-
ever, it can be very slow in complex learning tasks. Over the last years, many
approaches have been developed in order to speed up the backpropagation algo-
rithm. One such approach consists in finding ways of providing the BP algorithm
with as good an initial state as possible. Several methods have been proposed,
such as the use of prototypes [2]. Recently, we have proposed a new method for
initializing the weights in MLPs, based on discriminant analysis (DA) techniques
[6]. Experiments have shown that, at least in some cases, the proposed scheme
allows better generalization and a reduction of training time, as compared to
random initialization. This study aims at carrying out a more thorough experi-
mental exploration of the proposed initialization procedure, using miscellaneous
synthetic and real-world datasets, in order to validate the previous results.

The rest of this paper is organized as follows. Section 2 starts with the
description of the weight initialization method. The datasets are described in
section 3. Simulation results are presented in section 4 and discussed in section 5.

2 Description of the method

The initialization method concerns feedforward networks with one hidden layer
and one output layer of sigmoidal units. The network is trained using the BP
algorithm with adaptive learning rates. The weight vectors in the hidden layer



are determined as discriminant vectors generated by discriminant analysis, of
dimension equal to the number d of inputs, and bias terms. The principle of this
weight initialization method can be described as follows:

1. Choose one DA technique.

2. Extract the nh best discriminant vectors τl, l = 1, . . . , nh

3. Initialize the weights of the first hidden layer as wl• = [ατl, bl] where α is a
control parameter and bl is the bias weight for unit l (at this stage, bl has an
arbitrary value).

4. Determine a value of bl that maximizes a measure of class separability in the
space spanned by the hidden units.

5. Initialize randomly the hidden-to-output weights.

6. Train the output units until no significant error reduction occurs.

7. Start the learning process of the whole network.

In this study, the determination of discriminant vectors in step 2 is done by
a particular DA technique called non-parametric discriminant analysis (NPDA)
[4]. This technique attempts to preserve the local data structure along the Bayes
classification boundary. If the data distributions are significantly non-normal,
it allows to find a mapping transformation that preserves the complex struc-
ture needed for classification. The number of discriminant vectors extracted by
NPDA is not linked to the number of classes and is generally equal to the number
of inputs. In step 4, the measure of class separability is defined as tr(G−1B),
where G and B are respectively the total and the between-class covariance ma-
trices of activations in the hidden layer, as suggested in [7]. A more detailed
description of the initialization method can be found in [6].

3 Datasets

In order to compare the performances of networks initialized randomly and using
our procedure, we have considered a set of 2 real-world and 5 artificial benchmark
data sets, the main characteristics of which are summarized in table 1. The
data sets T1 to T4 were generated from a family of parameterized normal data,
as suggested in [3]. These tasks were chosen to investigate the efficiency of the
method in the case of ill-posed problems (with few examples as compared to data
dimensionality). All the classes have diagonal covariance matrices. The diagonal
elements are defined by Di(a, b) = a + (b − a) i−1

d−1 , where a < b, i = 1, . . . , d.
Parameters a and b were fixed to 1 and 10, respectively. For the four tasks, the
mean vectors were m1 = (0, . . . , 0), m2 = (1, . . . , 1) and m3 = (1,−1, . . . , 1,−1)
for the three classes, respectively.

4 Results

For each classification task, we varied the number of hidden units nh from 2 to
nmax

h (nmax
h ≤ d). The weights were initialized as explained in section 2, and



Table 1: dataset description

task input # classes # training # test references
dimension samples samples

T1 10 3 30 3000 [3]
T2 10 3 300 3000 ”
T3 30 3 60 3000 ”
T4 30 3 900 3000 ”

waveform 21 3 300 300 [1]
vowel 10 11 528 462 [8]
sonar 60 2 104 104 [5]

Table 2: misclassification rates
data initialization number of error rates (std) (%)
sets technique hidden units training test

vowel NPDA 7 11.1 (0.7) 43 (2.9)
Random 5 17.9 (2.9) 51.4 (5.6)

sonar NPDA 12 0 (0) 9.81 (1.1)
Random 32 1 (0.7) 15.6 (3.6)

waveform NPDA 4 0.1 (0.1) 15.6 (0.4)
Random 10 0.4 (0.4) 18.4 (1.3)

with random numbers. At each learning cycle (epoch), the misclassification rate
(the percentage of misclassified examples) was computed over the training and
test data sets. For each number of hidden units and for each weight initializa-
tion method, the algorithm was run 10 times. The mean misclassification rates
as a function of time were computed over the 10 trials, for each value of nh.
Figures 1(a)-(c) show examples of the mean classification rates as a function of
time with a given nh for three of the classification tasks. The minimal value of
the mean misclassification rate was also deduced for each nh and for each weight
initialization method. Figures 2(a)-(c) show the evolution of minimal mean mis-
classification rates as a function of the number of hidden units nh. Finally, the
mean and the standard deviation of the error rates corresponding to the optimal
number of hidden units for each method are given in table 2. In the case of
normally distributed data, in addition to the mean misclassification rates, we
computed a 95% confidence interval on the error probability for each task Ti

(i=1,. . . , 4) and for each nh value (figures 3(a)-(d)).
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(b):sonar data / 5 hidden units
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(c):waveform data / 4 hidden units
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(a):vowel data / 7 hidden units

- : Random initialization

-- : NPDA initialization

Figure 1: Mean test misclassification rate as a function of training time (averages over
10 trials).
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(a):vowel data
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(b):sonar data
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(c):waveform data

- :Random initialization

--:NPDA initialization

Figure 2: Mean test misclassification rate as a function of the number of hidden units
(averages over 10 trials).



2 4 6 8 10

6

8

10

12

14

16

number of hidden units

m
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

(a):task T1:(d=10,N=10)

--:NPDA

-:Random
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(b):task T2:(d=10,N=100)

-:Random

--:NPDA
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(c):task T3:(d=30,N=20)

--:NPDA-:Random
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(d):task T4:(d=30,N=300)

-:Random
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Figure 3: Mean test misclassification rate and a 95% confidence interval as a function
of the number of hidden units (averages over 10 trials).

5 Discussion

In the vowel, sonar and waveform datasets, the number of learning samples is
relatively large as compared to dimensionality. In these experiments, the initial
misclassification rates of the networks initialized with discriminant vectors were
always smaller than those of the randomly initialized networks (figures 1(a)-
(c)). This better starting state resulted in faster convergence, and was also
associated with better generalization (figures 1 and 2). In the examples reported
in figures 1(a)-(c), the numbers of training cycles needed to obtain minimal test
error rates were respectively 272, 29 and 18 for the vowel, sonar and waveform
datasets with NPDA initialization, against 296, 190 and 60 for the same tasks
with random initialization. Additionally, the least generalization errors in the
sonar and waveform recognition tasks were obtained with significantly fewer
hidden units following initialization with NPDA (figure 2).

For the second group of data (T1 to T4), the initial misclassification rates
were also found to be smaller with NPDA initialization than with random ini-
tialization. However, the gain in generalization error was only significant in
tasks T1 and T3, for which the number of samples is very small as compared to
the number of inputs. The results shown in figures 3(a)-(c) show that the gain
is also more important in task T3 than in task T1. One conclusion that may
be drawn from these results is that the gain in generalization ability obtained
by initializing MLPs with NPDA seems to be particularly important when the
number of samples is small as compared to data dimensionality.



6 Conclusion

A scheme for initializing the hidden layer weights in MLPs has been studied on
two real world and five synthetic classification tasks. This method consists in us-
ing discriminant vectors extracted by NPDA as the initial weight vectors in the
hidden layer. Simulation results highlighted four advantages of the NPDA ini-
tialization method as compared to random initialization: better generalization,
especially in complex problems, acceleration of convergence during the learning
process, smaller number of hidden units and smaller sensitivity of generalization
error to the number of training samples. The proposed scheme allows to find
good initial weights for a given number of hidden units. To find the minimal
number of hidden units, one has to try several configurations and keep the best
one. Coupling this scheme to a strategy for optimal MLP construction is the
subject of our current research.
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from the UCI repository of machine learning databases.
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