
MULTI-LABEL CLASSIFICATION ALGORITHM DERIVED FROM
K-NEAREST NEIGHBOR RULE WITH LABEL DEPENDENCIES

Zoulficar Younes, Fahed Abdallah, and Thierry Denœux

Heudiasyc, UMR CNRS 6599/ Université de Technologie de Compiègne
Centre de recherche Royallieu, BP 20529 60205, Compiègne Cedex, France

phone: + (0033) 344234485, fax: + (0033) 344234477, email: firstname.lastname@hds.utc.fr

ABSTRACT
In multi-label learning, each instance in the training set is
associated with a set of labels, and the task is to output a
label set whose size is unknown a priori for each unseen
instance. Common approaches to multi-label classifica-
tion learn independent classifiers for each category, and
perform ranking or thresholding schemes in order to ob-
tain multi-label classification. In this paper, we describe
an original method for multi-label classification problems
derived from a Bayesian version of the K-nearest neigh-
bor (KNN), and taking into account the dependencies be-
tween labels. Experiments on benchmark datasets show
the usefulness and the efficiency of the proposed method
compared to other existing methods.

1. INTRODUCTION

Traditional single-label classification assigns an object to
exactly one class, from a set of Q disjoint classes. Multi-
label classification is the task of assigning an instance si-
multaneously to one or multiple classes. In other words,
the target classes are not exclusive: an object may belong
to an unrestricted set of classes instead of exactly one.
This task makes the multi-label classifier more difficult to
learn than the traditional single-label classifier.
Recently, multi-label classification methods have been in-
creasingly required by modern applications where it is
quite natural that some instances belong to several classes
at the same time. Typical examples for multi-label prob-
lems are text categorization, functional genomics or scene
classification. In text categorization, each document may
belong to multiple topics, such as arts and humanities [5]
[8] [4]; in gene functional analysis, each gene may be as-
sociated with a set of functional classes, such as energy,
metabolism and cellular biogenesis [3]; in natural scene
classification, each image may belong to several image
types at the same time, such as sea and sunset[1].
Few algorithms have been proposed for multi-label prob-
lems, and common approaches include the binary ap-
proach and the direct multi-class approach. In the bi-
nary approach, each binary classifier is trained to sepa-
rate one class from the others. The output of each bi-
nary classifier is compared to a threshold value in order

to decide if the class label will be included among those
assigned to the instance [9]. Binary classifiers tacitly as-
sume that labels can be assigned independently: when one
label provides information about another, the binary clas-
sifier fails to capture this effect. For example, if a news
article belongs to category music, it is very likely that the
article belongs to category entertainment. Thus, the bi-
nary approach has been criticized for dealing with asym-
metric problems and not considering the correlations be-
tween labels. In a different manner, the multi-class ap-
proach considers straightforwardly instances with multi-
ple labels as a new separate classes and builds models
for them. In [10], the authors present a Bayesian multi-
label K-nearest neighbor (ML−KNN) approach where,
in order to assign a set of labels to a new instance, a de-
cision is made separately for each label by taking into
account the number of neighbors containing the label to
be assigned. Thus, this method also fails to take into
account the possible dependencies between labels. In
this paper, and in the same spirit, we present a general-
ization of the ML−KNN based approach to multi-label
classification problems where the dependencies between
classes are considered. Thus, the proposed method is
called DML−KNN for dependent multi-label K-nearest
neighbor. The principle of the method is as follows. For
each unseen instance, we identify its KNNs in the training
set. According to the class membership of neighboring
instances, a global maximum a posteriori (MAP) princi-
ple is used in order to assign a set of labels to the new
unseen instance. Note that, in a different manner from
ML−KNN, and in order to decide if one should include
a label into the set of labels of the instance, the global
MAP rule takes into account the numbers of all labels in
the neighborhood instead of taking only the number of
neighbors of the label to be assigned.
The remainder of the paper is organized as follows. Sec-
tion 2 introduces notations and some basic evaluation cri-
teria for multi-label problems. Section 3 describes the
principle of DML−KNN and its implementation. Sec-
tion 4 presents the comparative experiments and discusses
the results, and finally Section 5 summarizes this work
and makes concluding remarks.

2. MULTI-LABEL CLASSIFICATION

2.1 Problem
In this paper we will generally adopt the same notations as
in [10]. Let X = Rd denote the domain of instances and
let Y = {1,2, . . . ,Q} be the finite set of labels. The multi-
label classification problem can be formulated as follows.
Given a set T = {(x1,Y1),(x2,Y2), . . . ,(xm,Ym)} of m
training examples, independently drawn from X × 2Y ,
and identically distributed, where xi ∈ X and Yi ∈ 2Y ,
the goal of the learning system is to output a multi-label
classifier h : X → 2Y which optimizes some pre-defined
criterion or specific evaluation metric. As for classical
classification problems, some algorithms used in multi-
label learning are designed to output a real-valued func-
tion f defined on X ×Y . Given an instance xi and its
associated label set Yi, a successful learning system pro-
duces a real-valued function f that tend to assign larger
values to labels in Yi than those not in Yi. i.e., f (xi,y1) >
f (xi,y2) for any y1 ∈Yi and y2 6∈Yi. Note that the corre-
sponding multi-label classifier h(·) can be derived from
the function f (·, ·) : h(xi) = {y ∈ Y | f (xi,y) > t(xi)},
where t(·) is a threshold function that is usually set to be
the zero constant function.
Some evaluation metrics evaluate the effectiveness of a
multi-label algorithm using the ranking function con-
structed from the real-valued function f (·, ·). In rank-
ing, the task is to order a set of labels Q, so that the top-
most labels are likely to be more related with the new in-
stance. Thus, a ranking function rank f (·, ·) maps the out-
puts of f (xi,y) for any y ∈ Y to {1,2, . . . ,Q} such that if
f (xi,y1) > f (xi,y2) then rank f (xi,y1) < rank f (xi,y2).
In the next section we introduce some evaluation metrics
based on the above definitions.

2.2 Evaluation metrics
The evaluation of multi-label learning system is differ-
ent from that of single-label learning system. There ex-
ist a number of evaluation criteria that evaluate the per-
formance of a multi-label learning system, given a set
S = {(x1,Y1), . . . ,(xn,Yn)} of n test examples. We give
hereafter some of the main evaluation measures used in
the multi-label literature [10].
Let Y∗i = h(xi) be the predicted label set for the test in-
stance xi, while Yi is the ground truth label set for xi.
Hamming Loss: Hamming Loss counts prediction errors
(an incorrect label is predicted) and missing errors (a true
label is not predicted).

hlossS(h) =
1
n

n

∑
i=1

1
Q

Q

∑
q=1

(δ (q ∈ Y∗i ∧q /∈ Yi)+

δ (q /∈ Y∗i ∧q ∈ Yi)). (1)

Note that δ is a function that outputs 1 if its content is true
and 0 otherwise. The smaller the value of hlossS(h), the

better the performance. In the ideal case, hlossS(h) = 0.
One-error: One-error evaluates how many times the top-
ranked label is not in the true set of labels of the instance:

one_errS(f) =
1
n

n

∑
i=1

δ ([argmax
y∈Y

f (xi,y)] /∈ Yi). (2)

The smaller the value of one−errS(f), the better the per-
formance. Note that, for single-label classification prob-
lems, the one-error is identical to ordinary classification
error.
Coverage: The goal of the coverage measure is to assess
the performance of a system for all the possible labels of
a sample, not only the top-ranked label as in the case of
the one-error. Coverage is defined as the average distance
to cover all the proper labels assigned to a test example:

coverageS(f) =
1
n

n

∑
i=1

max
y∈Yi

rank f (xi,y)−1. (3)

Note that coverageS(f) = 0 if the system does not make
any classification errors.
Ranking Loss: It calculates the average fraction of label
pairs that are reversely ordered for the instance:

rlossS(f) =
1
n

n

∑
i=1

1
|Yi||Yi|

|{(y1,y2) ∈ Yi×Yi |

f (xi,y1)≤ f (xi,y2)}| (4)

where Y denotes the complement of Y in Y . The smaller
the value of rlossS(f), the better the performance.
Average Precision: Coverage and one-error are not com-
plete measures for the multi-label case. We can achieve
low coverage but, at the same time, suffer high one-
error rates, and vice versa. To assess both aspects, non-
interpolated average precision may be used. Usually this
performance evaluation is used in information retrieval
systems to measure the document ranking performance of
a query. Adapted to multi-label classification problems,
this metric evaluates the effectiveness of the label rank-
ings. In other words, it measures the average fraction of
labels ranked above a particular label y ∈ Yi which actu-
ally are in Yi:

avgprecS(f) =
1
n

n

∑
i=1

1
|Yi| ∑

y∈Yi

|{y′ ∈ Yi | rank f (xi,y′)≤ rank f (xi,y)}|
rank f (xi,y)

. (5)

Note that avgprecS(f) = 1 for any real-valued function f
that ranks perfectly the labels for all the test samples.

3. METHOD DESCRIPTION

In order to present the method, we will introduce suitable
notations as in [10]. Given an instance x and its associ-
ated label set Y ∈ 2Y , let N(x) denote the set of the K
closest training examples of x, yx the Q-dimensional cat-
egory vector of x whose lth component (l ∈ Y) takes the
value 1 if l ∈Y and 0 otherwise, and cx the Q-dimensional
membership counting vector of x whose lth component in-
dicates how many samples amongst the KNNs of x belong
to the class l:

cx(l) = ∑
z∈N(x)

yz(l), l ∈ Y . (6)

Note that the Euclidean metrics can be used in order to
measure the distances between instances.
Let t be a test instance. Like in all KNN based meth-
ods, for each test instance t, N(t) should be firstly identi-
fied. Under the multi-label assumption, the counting vec-
tor ct is computed. Let H l

1 denote the event that t has
label l, H l

0 denote the event that t has not label l and
Eq

j (j ∈ {0,1, . . . ,K}) denote the event that there are ex-
actly j instances in N(t) which have label q. The goal is
to determine the category vector yt of the instance t using
the following maximum a posteriori principle (MAP):

yt(l) = argmax
b∈{0,1}

P(H l
b|{Eq

ct(q)}q∈Y)

= argmax
b∈{0,1}

P(H l
b|E l

ct(l),{Eq
ct(q)}q∈Y \{l}).

(7)

In contrast to the MAP used in [10], we can see in the
Equation (7) that the assignment of label l to test instance
t depends not only on the event that there are exactly ct(l)
instances having the label l in N(t), i.e. E l

ct(l)
, but also

on {Eq
ct(q)}q∈Y \{l} which is the set of events stating that

there are exactly ct(q) instances having the label q in N(t),
where q∈Y \{l}. Thus, it is obvious that the dependency
between labels is taken into account in (7) since all the
components of the counting vector ct are involved in the
assignment of the label l which is not the case in [10]. As
a consequence we call the method dependent multi-label
K-nearest neighbor (DML−KNN).
Note that, depending on the counting vector ct, there can
be at most KQ possible set of events {Eq

ct(q)}q∈Y . This
in fact means that, in addition to the problem complex-
ity, the estimation of (7) from a relatively small training
set will not be accurate. To overcome this difficulty, we
will adopt a fuzzy approximation for (7). This approxi-
mation is based on the event Fq

j , j ∈ {0,1, . . . ,K}, which
is the event that there are approximately j instances in
N(t) which have label q, i.e., Fq

j denote the event that the
number of instances in N(t) that have label q will be in

the interval [j− δq; j + δq], where δq ∈ {0, . . . ,K}. As a
consequence, we can derive a fuzzy MAP rule :

yt(l) = argmax
b∈{0,1}

P(H l
b|E l

ct(l),{Fq
ct(q)}q∈Y \{l}). (8)

The margin vector δ = (δ1, . . . ,δQ) characterizes the de-
pendency level between labels, e.g., taking δq = K where
q ∈ Y \{l} indicates that we suppose that the assignment
of the label l to the test instance t does not depend on la-
bel q. The smaller the value of δq, the more dependency
between l and q. Furthermore, the ML−KNN algorithm
introduced in [10] is a particular case of the DML−KNN
where δq = K for all q ∈ Y \{l}.
Using the Bayes’rule, Equation (8) can be rewritten as:

yt(l) = argmax
b∈{0,1}

P(H l
b)P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
b)

P(E l
ct(l)

,{Fq
ct(q)}q∈Y \{l})

= argmax
b∈{0,1}

P(H l
b)P(E l

ct(l),{Fq
ct(q)}q∈Y \{l}|H l

b).

(9)

To rank labels in Y , a real-valued vector rt can be
calculated. Component l of rt is defined as the posterior
probability P(H l

1|E l
ct(l)

,{Fq
ct(q)}q∈Y \{l}).

rt(l) = P(H l
1|E l

ct(l),{Fq
ct(q)}q∈Y \{l})

=
P(H l

1)P(E l
ct(l)

,{Fq
ct(q)}q∈Y \{l}|H l

1)

P(E l
ct(l)

,{Fq
ct(q)}q∈Y \{l})

=
P(H l

1)P(E l
ct(l)

,{Fq
ct(q)}q∈Y \{l}|H l

1)

∑b∈{0,1}P(H l
b)P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
b)

.

(10)

In order to determine the category vector yt and the real-
valuated vector rt of the instance t, we must compute
the prior probabilities P(H l

b) and the posterior probabili-
ties P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
b), where l ∈ {1 · · ·Q} and

b ∈ {0,1}. These probabilities can be estimated using the
training set.
Figure 1 shows the pseudo code of the DML−KNN al-
gorithm. The values in δ are selected through cross-
validation methods and given as input to the algorithm.
The first time, the prior probabilities P(Hq

b), b = {0,1},
for each class are calculated and the number of instances
belonging to each label is counted (steps from 1 to 3).
Note that s is a smoothing parameter that controls the
strength of uniform prior. Throughout the experiments,
the Laplace smoothing is used which means that s is
set to 1. Given a test instance, the KNNs are identi-
fied and the membership counting vector ct is determined

[yt,rt] = DML−KNN(T, t,K,s,δ)

%Computing the prior probabilities and the number of instances be-
longing to each class

1. For q = 1 · · ·Q
2. P(Hq

1) = (s+∑m
i=1 yxi

(q))/(s×2+m); P(Hq
0) = 1−P(Hq

1);
3. C[q] = ∑m

i=1 yxi
(q); C′[q] = m−C[q];

EndFor
%For each test instance t

4. Identify N(t) and ct
%Counting the training instances whose membership counting vec-
tors satisfy the constraints (11)

5. For q = 1 · · ·Q
6. V [q] = 0; V ′[q] = 0

EndFor
7. For i = 1 · · ·m
8. Identify N(xi) and cxi
9. If ct(q)−δq ≤ cxi (q)≤ ct(q)+δq,∀ q ∈ Y Then

10. For q = 1 · · ·Q
11. If cxi (q) == ct(q) Then
12. If yxi

(q) == 1 Then V [q] = V [q]+1;
Else V ′[q] = V ′[q]+1;

EndFor
EndFor
%Computing yt and rt

13. For l = 1 · · ·Q
14. P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
1) = (s+V [l])/(s×Q+C[l]);

15. P(E l
ct(l)

,{Fq
ct(q)}q∈Y \{l}|H l

0) = (s+V ′[l])/(s×Q+C′[l]);

16. yt(l) = argmax
b∈{0,1}

P(H l
b)P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
b)

17. rt(l) =
P(Hl

1)P(El
ct(l)

,{Fq
ct(q)}q∈Y \{l}|Hl

1)

∑b∈{0,1} P(Hl
b)P(El

ct(l)
,{Fq

ct(q)}q∈Y \{l}|Hl
b)

EndFor

Figure 1: DML−KNN algorithm.

(step 4). In order to assign or not the label l to the test
instance t, we should estimate also the posterior prob-
ability P(E l

ct(l)
,{Fq

ct(q)}q∈Y \{l}|H l
b) using training sam-

ples whose membership counting vectors satisfy the con-
straints
{

cxi(l) = ct(l)
ct(q)−δq ≤ cxi(q)≤ ct(q)+δq, q ∈ Y \{l}. (11)

This is illustrated in steps from 5 to 12. The number of
instances from the training set which verify these con-
straints, and containing the label l in their sets of labels is
stored in V [l]. The number of remaining instances which
verify the previous constraints and not having class l in
their sets of labels is stored in V ′[l]. Finally the category
vector yt and the real-valued vector rt to rank labels in Y
are calculated (steps from 13 to 17).

4. EXPERIMENTS

We report in this section the results on two datasets col-
lected from real world applications. These datasets con-

cern the problem of yeast gene functional analysis, and
natural scene classification. Using these datasets, au-
thors in [10] show the superiority of the ML − KNN
over other existing methods, namely BoosT EXT ER [8],
ADT BOOST.MH [2] [7] and RANK− SV M [3]. In the
following, we report a comparative study between the
DML−KNN and the ML−KNN methods.

4.1 Yeast data set

The gene dataset contains 2417 yeast genes, each
represented by a 103-dimensional feature vector [3] [6].
Functional classes of many genes have been already
determined and classified into a hierarchy of functions.
Each gene may have several functions at the same time.
Thus, the problem of Yeast classification is a multi-label
problem with 14 labels. In the available training set, the
maximum number of labels assigned to an instance is
11 and the average number of labels is 4.25± 1.57. As
in [10], ten-fold cross-validation was performed on the
Yeast dataset.
Table 1 reports the experimental results of DML−KNN
and ML− KNN methods for K = 8, 9, and 10. For
the DML− KNN method, the margin values in δ was
determined via cross-validation methods. As can be seen
in Table 1, for the different values of K, DML−KNN
outperform ML−KNN according to all criteria . The
values following ”± ” gives the standard deviations and
the best result for each criterion is shown in bold face.
It can be seen that taking into account the dependencies
between labels has improved the performance of the
KNN based multi-label learning rule.

4.2 Natural scene classification

This dataset contains 2000 natural scene images belong-
ing to the classes sea, sunset, trees, desert and mountains.
For each image, spatial color moments are used as fea-
tures. We divide the images into 49 blocks using 7×7 grid
and we compute the mean and the variance of each band,
corresponding to a low-resolution image and to compu-
tationally inexpensive texture features, respectively [1].
Each image is then transformed into a 49× 3× 2 = 294-
dimensional feature vector. In the available training set,
the maximum number of labels assigned to an instance is
3 and the average number of labels is 1.24. As in [10], ten-
fold cross-validation was performed on the natural scene
dataset.
Table 2 reports the experimental results of DML−KNN
and ML−KNN methods. δ was determined via cross-
validation methods. As can be seen in Table 1, DML−
KNN outperform ML−KNN, but the difference between
the performances is not very significant. This is due to the
fact that the average number of labels for the instances in
the available set is 1.24 (80% of the data have a single
label). In other words, most natural scene images in the
training set belong to only one class making it more dif-

DML−KNN ML−KNN
K 8 9 10 8 9 10

Hamming loss 0.193±0.006 0.195±0.007 0.193±0.008 0.196±0.010 0.196±0.009 0.195±0.009
One-error 0.224±0.017 0.226±0.018 0.225±0.022 0.235±0.033 0.231±0.040 0.231±0.033
Coverage 6.280±0.130 6.285±0.201 6.269±0.148 6.294±0.240 6.298±0.242 6.282±0.248

Ranking loss 0.168±0.005 0.167±0.011 0.167±0.008 0.172±0.017 0.169±0.016 0.168±0.017
Average precision 0.765±0.007 0.765±0.013 0.766±0.011 0.756±0.022 0.759±0.023 0.761±0.022

Table 1: Experimental results (mean±std) on the Yeast dataset for DML−KNN and ML−KNN methods.

DML−KNN ML−KNN
K 8 9 10 8 9 10

Hamming loss 0.191±0.011 0.193±0.007 0.192±0.010 0.198±0.012 0.199±0.010 0.199±0.011
One-error 0.393±0.043 0.411±0.022 0.408±0.021 0.393±0.045 0.412±0.024 0.408±0.029
Coverage 1.140±0.123 1.153±0.060 1.159±0.071 1.148±0.124 1.157±0.061 1.166±0.074

Ranking loss 0.217±0.028 0.222±0.010 0.223±0.014 0.219±0.028 0.224±0.011 0.224±0.016
Average precision 0.744±0.027 0.736±0.009 0.737±0.013 0.743±0.028 0.735±0.013 0.734±0.016

Table 2: Experimental results (mean±std) on the scene dataset for DML−KNN and ML−KNN methods.

ficult to capture the label dependencies from the training
set.
Remark: The results of the ML−KNN method on the two
datasets shown in this paper are not identical to the results
shown in [10] because, when performing ten-fold cross-
validation, the outputs of a classifier will depend on the
arrangement of the elements of the dataset.

5. CONCLUSION

In this paper, we proposed an original multi-label learn-
ing algorithm derived from the KNN rule, where the de-
pendencies between labels are taken into account. This
method generalizes the ML−KNN algorithm developed
for multi-label problems given in [10]. The proposed ex-
tension is particularly useful in practical situations where
the data are significantly multi-labelled. The experiment
results demonstrate this fact and prove the usefulness and
the effectiveness of the proposed method as compared to
the ML−KNN method.

REFERENCES

[1] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown,
"Learning multi-label scene classification," Pattern
Recognition, vol. 37, no. 9, pp. 1757-1771, 2004.

[2] F. D. Comité, R. Gilleron, and M. Tommasi, "learn-
ing multi-label alternating decison tree from texts and
data," in Proc. of the 3rd International Conference
on Machine Learning and Data Mining in Pattern
Recognition, Leipzig, Germany, July 5-7. 2003, pp.
35-49.

[3] A. Elisseeff and J. Weston, "Kernel methods for
multi-labelled classification and categorical regres-
sion problems," Advances in Neural Information Pro-
cessing Systems, vol. 14, pp. 681-687, 2002.

[4] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, "A max-
imal figure-of-merit learning approach to text cate-
gorization," in Proc. of the 26th Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrievel, Toronto, Canada,
2003, pp. 174-181.

[5] A. McCallum, "Multi-Label Text Classification with
a Mixture Model Trained by EM," in Proc. of
the AAAI’99 Workshop on Text Learning, Orlando,
Florida, July 18-22 1999.

[6] P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy,
"Combining microarray expression data and phyloge-
netic profiles to learn functional categories using sup-
port vector machines," in Proc. of the Fifth Annual
International Conference on Computational Biology,
Montréal, Canada, 2001, pp. 242-248.

[7] R. E. Schapire and Y. Singer, "Improved boost-
ing algorithms using confidence-rated predictions," in
Proc. of the 11th Annual Conference on Computa-
tional Learning Theory, New York, 1998, pp. 80–91.

[8] R. E. Schapire and Y. Singer, "BoosTexter: A
Boosting-based System for Text Categorization," Ma-
chine Learning, vol. 39, no. 2-3, pp. 135-168, 2000.

[9] Y. Yang, "An evaluation of statistical approaches to
text categorisation," Information Retrieval, vol. 1, no.
1-2, pp. 69-90, 1999.

[10] M.-L. Zhang and Z.-H. Zhou, "ML-KNN:A lazy
learning approach to multi-label learning," Pattern
Recognition, vol. 40, no.7, pp. 2038-3048, 2007.

