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Abstract
The conjunctive weight function is an equivalent repre-
sentation of a non dogmatic belief function. Denœux
recently proposed new rules of combination for belief
functions based on pointwise combination of conjunc-
tive weights. This paper characterizes the rules of com-
bination based on the conjunctive weight function that
have the vacuous belief function as neutral element. The
main result is that the unnormalized Dempster’s rule is
the least committed rule amongst those rules, for a par-
ticular informational ordering. A counterpart to this re-
sult is also presented for the disjunctive rule.

Introduction
The Transferable Belief Model (TBM) (Smets & Kennes
1994; Smets 1998) is a model for quantifying beliefs us-
ing belief functions (Shafer 1976). An essential mechanism
of the TBM is the unnormalized Dempster’s rule of combi-
nation. This rule, referred to as the TBM conjunctive rule
in this paper, allows the fusion of belief functions. Demp-
ster’s rule and the TBM conjunctive rule have been justified
by several authors. In particular, Dubois and Prade (1986a)
proved the unicity of Dempster’s rule under an independence
assumption. Klawonn and Smets (1992) took another path
and justified the TBM conjunctive rule as being the only
combination that results from an associative, commutative
and least committed specialization.

A limitation, which applies to both rules, is the require-
ment that the items of evidence combined be distinct, or in
other words, that the information sources be independent.
Recently, Denœux (2008) proposed a rule, called the cau-
tious rule of combination, which does not rely on the dis-
tinctness assumption. The term cautious is reminiscent of
the derivation of the rule, which is based on the least com-
mitment principle (LCP) (Smets 1993). The LCP stipulates
that one should never give more beliefs than justified by the
available information, hence it promotes a cautious attitude.
The cautious rule is based on the conjunctive weight func-
tion, an equivalent representation of a non dogmatic belief
function. The TBM conjunctive rule can also be expressed
using the conjunctive weight function, which makes it inter-
esting to study rules based on this function.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are important differences between the TBM con-
junctive rule and the cautious rule: the cautious rule is idem-
potent but does not have a neutral element, whereas the
TBM conjunctive rule has a neutral element, the vacuous
belief function, but is not idempotent. The lack of a neu-
tral element for the cautious rule can be somewhat disturb-
ing, hence the question: does there exist a rule based on the
conjunctive weight function, which is more “cautious” than
the TBM conjunctive rule and which admits the vacuous be-
lief function as neutral element? This paper shows that the
answer is no, which can be seen as a new justification of
the unnormalized Dempster’s rule as the rule thus respects a
central principle of the TBM.

Denœux (2008) further showed that the cautious rule be-
longs to an infinite family of combination rules. Besides,
the cautious rule is the least committed rule in this family.
Interestingly, this paper shows that a similar property holds
for the TBM conjunctive rule: it belongs to an infinite fam-
ily of rules that admits the vacuous belief function as neutral
element and it is the least committed rule in this family. The
fundamental difference between those families is the exis-
tence of a neutral element.

The rest of this paper is organized as follows. Neces-
sary notions, such as the canonical decomposition of a belief
function and the LCP, are first recalled in Section 2. Section
3 reviews existing rules of combination based on pointwise
combination of conjunctive weights. The main result of this
paper is given in Section 4. Section 5 presents results cor-
responding to the previous ones for rules based on the dis-
junctive weight function. Section 6 concludes the paper.

Fundamental Concepts of the TBM
Basic Definitions and Notations
In this paper, the TBM (Smets & Kennes 1994; Smets 1998)
is accepted as a model to quantify uncertainties based on
belief functions (Shafer 1976). The beliefs held by an agent
Ag on a finite frame of discernment Ω = {ω1, ..., ωK} are
represented by a basic belief assignment (BBA) m defined
as a mapping from 2Ω to [0, 1] verifying

∑
A⊆Ω m (A) = 1.

Subsets A of Ω such that m(A) > 0 are called focal sets
(FS) of m. A BBA m is said to be:
• normal if ∅ is not a focal set;
• subnormal if ∅ is a focal set;



• vacuous if Ω is the only focal set, this BBA is noted mΩ;

• dogmatic if Ω is not a focal set;

• categorical if it has only one focal set;

• simple if if has at most two focal sets and, if it has two, Ω
is one of those.

A simple BBA (SBBA) m such that m (A) = 1 − w for
some A 6= Ω and m (Ω) = w can be noted Aw. The vacuous
BBA can thus be noted A1 for any A ⊂ Ω. The advantage
of this notation will appear later.

Equivalent representations of a BBA m exist. In particu-
lar the implicability and commonality functions are defined,
respectively, as:

b (A) =
∑
B⊆A

m (B) ,

and

q (A) =
∑
B⊇A

m (B) ,

for all A ⊆ Ω. The BBA m can be recovered from any of
these functions, for instance:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B),

for all A ⊆ Ω and where |A| denotes the cardinality of A.
The negation (or complement) m of a BBA m is defined

as the BBA verifying m(A) = m(A), ∀A ⊆ Ω, where A de-
notes the complement of A (Dubois & Prade 1986b). It can
be shown that the implicability function b associated to m
and the commonality function q associated to m are linked
by the following relation:

b(A) = q(A), ∀A ⊆ Ω.

The TBM conjunctive rule is noted ∩©. It is defined as fol-
lows. Let m1 and m2 be two BBAs, and let m1 ∩©2 be the
result of their combination by ∩©. We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B) m2 (C) ,∀A ⊆ Ω.

This rule is commutative, associative and admits a unique
neutral element: the vacuous BBA. Let Aw1 and Aw2 be
two SBBAs. Their combination by ∩© is the SBBA Aw1w2 .
The TBM conjunctive rule also has a simple expression in
terms of commonality functions. We have:

q1 ∩©2(A) = q1 (A) · q2 (A) ,∀A ⊆ Ω.

A disjunctive rule ∪© also exists (Dubois & Prade 1986b;
Smets 1993). It is defined as:

m1 ∪©2 (A) =
∑

B∪C=A

m1 (B) m2 (C) ,∀A ⊆ Ω.

This rule, called the TBM disjunctive rule, has a simple ex-
pression in terms of implicability functions:

b1 ∪©2(A) = b1 (A) · b2 (A) ,∀A ⊆ Ω.

The TBM disjunctive rule is commutative, associative and
admits a unique neutral element: the BBA which assigns the
total mass of belief to the empty set, i.e. m(∅) = 1. This
BBA, which we note m∅, is the negation of the neutral BBA
mΩ of the TBM conjunctive rule.

The dual nature of ∩© and ∪© becomes apparent when one
notices that these operators are linked by De Morgan’s laws:

m1 ∪©m2 = m1 ∩©m2

m1 ∩©m2 = m1 ∪©m2

As remarked by Smets (1993), the TBM conjunctive rule
is based on the assumption that the belief functions to be
combined are induced by reliable sources of information,
whereas the TBM disjunctive rule only assumes that at least
one source of information is reliable, but we do not know
which one. Both rules assume the sources of information to
be independent (i.e., they are assumed to provide distinct,
non overlapping pieces of evidence).

Let us now assume that m1 ∩©2 has been obtained by com-
bining two BBAs m1 and m2, and then we learn that m2 is
in fact not supported by evidence and should be “removed”
from m1 ∩©2. This operation is called decombination in
(Smets 1995). It is well defined if m2 is non dogmatic. Let
6∩© denote this operator. We can write m1 ∩©2 6∩©m2 = m1.
Let q1 and q2 be the commonality functions of two non dog-
matic BBAs m1 and m2, the decombination is defined by:

q1 6∩©2 (A) =
q1(A)
q2(A)

, ∀A ⊆ Ω.

As the quotient of two commonality functions is not always
a commonality function, one should be aware that m1 6∩©m2

is not necessarily a BBA.

Canonical Decomposition of a Belief Function
In (Smets 1995), Smets proposed a solution to canonically
decompose any non dogmatic BBA. This decomposition
uses the concept of a generalized SBBA (GSBBA) which
is defined as a function µ from 2Ω to R by:

µ (A) = 1− w,

µ (Ω) = w,

µ (B) = 0 ∀B ∈ 2Ω\ {A,Ω} ,

for some A 6= Ω and some w ∈ [0,+∞). Extending the
SBBA notation, any GSBBA can be noted Aw. When w ≤
1, µ is a SBBA. When w > 1, µ is no longer a BBA; Smets
(1995) called such function an inverse SBBA.

Smets showed that any non dogmatic BBA m can be
uniquely represented as the conjunctive combination of gen-
eralized SBBAs:

m = ∩©A⊂ΩAw(A),

with w (A) ∈ (0,+∞) for all A ⊂ Ω. The weights w (A)
for each A ⊂ Ω are obtained as follows:

w (A) =
∏

B⊇A

q (B)(−1)|B|−|A|+1

.

If the weights are such that w (A) ≤ 1 for each A ⊂ Ω, then
m is said to be separable. The function w : 2Ω\ {Ω} →



(0,+∞) is called the conjunctive weight function. It is an-
other equivalent representation of a non dogmatic BBA m.

Using a similar reasoning, Denœux (2008) showed that
any subnormal BBA m can be uniquely represented as the
disjunctive combination of negative GSBBAs. A negative
GSBBA is a function from 2Ω to R assigning a mass v ≥ 0
to ∅, a mass 1 − v to A 6= ∅, and a zero mass for all B ∈
2Ω\ {A, ∅}; this function is noted Av . We have thus, for any
subnormal BBA m:

m = ∪©A 6=∅Av(A),

with v (A) ∈ (0,+∞) for all A 6= ∅. The weights v (A) for
each A 6= ∅ are obtained as follows:

v (A) =
∏

B⊆A

b (B)(−1)|A|−|B|+1

.

The function v : 2Ω\ {∅} → (0,+∞) is called the disjunc-
tive weight function. This function is related to the conjunc-
tive weight function w associated to the negation m of m by
the equation

v(A) = w(A), ∀A 6= ∅.

The TBM conjunctive and disjunctive rules have simple ex-
pressions in terms of weight functions (Denœux 2008). Let
m1 and m2 be two non dogmatic BBAs with conjunctive
weight functions w1 and w2. We have:

m1 ∩©2 = ∩©A⊂ΩAw1(A)·w2(A).

Now, let m1 and m2 be two subnormal BBAs with disjunc-
tive weight functions v1 and v2. We have:

m1 ∪©2 = ∪©A 6=∅Av1(A)·v2(A).

Informational Comparison of Belief Functions
The least commitment principle (LCP) of the TBM postu-
lates that, given a set of BBAs compatible with a set of con-
straints, the most appropriate BBA is the least informative
(Smets 1993). It is thus somewhat similar to the principle of
minimal specificity in possibility theory. The LCP becomes
operational through the definition of partial orderings allow-
ing the informational comparison of BBAs. Such orders,
generalizing set inclusion, were proposed by Yager (1986),
and Dubois and Prade (1986b). Recently, Denœux (2008)
proposed two new partial orderings. They are defined as fol-
lows:
• w-ordering: given two non dogmatic BBAs m1 and m2,

m1 vw m2 iff w1 (A) ≤ w2 (A) for all A ⊂ Ω;
• v-ordering: given two subnormal BBAs m1 and m2,

m1 vv m2 iff v1 (A) ≥ v2 (A) for all A 6= ∅;
A BBA m1 is said to be x-more committed than a BBA m2,
with x ∈ {w, v}, if we have m1 vx m2.

Rules Based on Weight Functions
We have seen that the TBM conjunctive and disjunctive rules
are based on pointwise multiplication of weights. Those
rules are justified only when it is safe to assume that the

items of evidence combined are distinct. When this assump-
tion does not hold, an alternative consists in adopting a cau-
tious, or conservative, attitude to the merging of belief func-
tions by applying the LCP (Dubois, Prade, & Smets 2001;
Denœux 2008; Destercke, Dubois, & Chojnacki 2007).

Let us recall the building blocks of the cautious con-
junctive merging of belief functions. Suppose we get two
reliable sources of information which provide two BBAs
m1 and m2. Upon receiving those two pieces of informa-
tion, the agent’s state of belief should be represented by a
BBA m12 more informative than m1 and m2. Let Sx (m)
be the set of BBAs m′ such that m′ vx m, for some
x ∈ {v, w}. Hence m12 ∈ Sx (m1) and m12 ∈ Sx (m2)
or, equivalently, m12 ∈ Sx (m1) ∩ Sx (m2). According to
the LCP, the x-least committed BBA should be chosen in
Sx (m1)∩Sx (m2). This defines a conjunctive combination
rule if the x-least committed BBA exists and is unique.

Choosing the w-ordering yields an interesting solution
(Denœux 2008, Proposition 4) which Denœux uses to de-
fine the so-called cautious rule.

Definition 1 (Definition 1 of (Denœux 2008)). Let m1 and
m2 be two non dogmatic BBAs, and let m1 ∧©2 = m1 ∧©m2

denote the result of their combination by the cautious rule.
The conjunctive weight function of the BBA m1 ∧©2 is:

w1 ∧©2(A) = w1(A) ∧ w2(A),∀A ⊂ Ω,

where ∧ denotes the minimum operator. We thus have:

m1 ∧©2 = ∩©A⊂ΩAw1(A)∧w2(A).

The cautious rule is idempotent, which makes it suitable
to combine belief functions induced by non distinct pieces
of evidence. The cautious rule is also commutative, asso-
ciative, and increasing with respect to the vw ordering: if
m1 vw m2, then m1 ∧©m vw m2 ∧©m for all m. These
properties are due to similar properties of the minimum.

A similar approach can also be applied for disjunctive
mergings in which case the resulting BBA m12 should be
the x-most committed BBA amongst the BBAs which are x-
less committed than m1 and m2, with x ∈ {v, w} (Denœux
2008). Denœux showed that using the v-ordering yields an
interesting solution, from which he defined an idempotent
rule called the bold rule.

Definition 2 (Definition 2 of (Denœux 2008)). Let m1 and
m2 be two subnormal BBAs, and let m1 ∨©2 = m1 ∨©m2 de-
note the result of their combination by the bold rule. The
disjunctive weight function of the BBA m1 ∨©2 is:

v1 ∨©2(A) = v1(A) ∧ v2(A),∀A 6= ∅.

We thus have:

m1 ∨©2 = ∪©A 6=∅Av1(A)∧v2(A).

The bold rule has similar properties as the cautious rule
since they are both based on the minimum.

This latter fact leads us to two related observations using
the following reasoning. It is well known that the minimum
is a triangular norm, i.e., it is a commutative, associative and
monotonic operator on [0, 1], which satisfies the “boundary



condition” (Klement, Mesiar, & Pap 2000, p.4), meaning
that the upper bound of [0, 1] serves as a neutral element.
Interestingly, the minimum satisfies the same properties on
(0,+∞], with +∞ serving as neutral element. This leads us
to introduce the following definition.

Definition 3. A t-norm on (0,+∞] is a binary operation on
(0,+∞], which is commutative, associative, monotonic, and
which admits +∞ as neutral element.

We can further remark that the minimum is the largest t-
norm on (0,+∞], much as it is the largest t-norm on [0, 1].

Lemma 1. The minimum is the largest t-norm on (0,+∞].

Proof. Let ? be any t-norm on (0,+∞]. For all x, y ∈
(0,+∞], we have x?y ≤ x?+∞ = x and x?y ≤ +∞?y =
y, so x ? y ≤ x ∧ y, .

From this later lemma and Lemma 2 immediately below,
it may easily be shown that there exists an infinite family of
combination rules based on pointwise combination of con-
junctive weights using t-norms on (0 + ∞]. Besides, the
cautious rule is the least committed element of this family.

Lemma 2 (Lemma 1 of (Denœux 2008)). Let m be a non
dogmatic BBA with conjunctive weight function w, and let
w′ be a mapping from 2Ω\Ω to (0,+∞) such that w′(A) ≤
w(A) for all A ⊂ Ω. Then w′ is the conjunctive weight
function of some BBA m′.

Similarly, from Lemma 3 below and Lemma 1, it may
easily be shown that the bold rule is the most committed el-
ement in the family of rules based on pointwise combination
of disjunctive weights using t-norms on (0,+∞].

Lemma 3. Let m be a subnormal BBA with disjunctive
weight function v, and let v′ be a mapping from 2Ω\∅ to
(0,+∞) such that v′(A) ≤ v(A) for all A 6= ∅. Then v′ is
the disjunctive weight function of some BBA m′.

Proof. The proof is similar to the proof of Lemma 1 of
(Denœux 2008).

Main Result
The TBM conjunctive rule has the vacuous BBA as neu-
tral element. This property is interesting in the context of
conjunctive merging, as the vacuous BBA represents total
ignorance. Rules that are based on t-norms on (0,+∞] do
not possess this property. Hence, the TBM conjunctive rule
does not belong to this latter family; it belongs to the fam-
ily of rules based on pointwise combination of conjunctive
weights and which admit the vacuous BBA as neutral ele-
ment. This section studies this family.

It is clear that a combination rule for belief functions
based on pointwise combination of conjunctive weights us-
ing a binary operator on (0,+∞), has the vacuous BBA as
neutral element iff 1 is a neutral element of the binary oper-
ator. We can further make the following remark. Let w1 and
w2 be the conjunctive weight functions associated to two
non dogmatic BBAs m1 and m2. For any binary operator ∗
on (0,+∞) with 1 as neutral element, such that x ∗ y ≤ xy
for all x, y ∈ (0,+∞), it may easily be shown from Lemma

2 that w1 ∗ w2 is the conjunctive weight function of some
non dogmatic BBA.

The remainder of this section aims at proving that the
TBM conjunctive rule is the w-least committed rule in the
family of rules based on pointwise combination of conjunc-
tive weights and having the vacuous BBA as neutral ele-
ment. This is achieved by showing that, for any binary op-
erator ∗ on (0,+∞) with 1 as neutral element, such that
x ∗ y > xy for some x, y ∈ (0,+∞), we can find two con-
junctive weight functions w1 and w2 such that w1 ∗w2 is not
a conjunctive weight function. Lemma 5 below is essential
for this study. Let us first give the following technical lemma
(due to the restricted space of this paper, the proof of Lemma
4 is omitted) in order to simplify the proof of Lemma 5.

Lemma 4. Let m be a BBA. For B ⊂ Ω, the following
holds: ∑

A⊆B

(−1)|A| q (A) =
∑

A∩B=∅

m (A) .

Lemma 5. Let m be a normal, non dogmatic BBA and such
that m(A) > 0, for a subset A ⊂ Ω. If the conjunctive
weight function associated to m is increased for any subset
B ⊆ Ā, then m is not a BBA any more.

Proof. Let m2 be a normal and non dogmatic BBA. Let
m1 = m2 6∩©Bw2(B) ∩©Bw2(B)+ε, with B ⊂ Ω, ε > 0 and
∃A ⊂ Ω such that A ∩ B = ∅ and m2(A) > 0. Remark
that m1 is a function obtained by increasing the conjunc-
tive weight function associated to a BBA m2 for a subset
B ⊆ Ā, with m2 verifying m2(A) > 0. The proof consists
in proving that m1 is not a BBA. This is done by showing
that m1(∅) < 0. We have:

m1(∅) =
∑
A⊆Ω

(−1)|A|
q2(A)
q0(A)

q′0(A),

where q0 and q′0 are the commonality functions associated
with Bw2(B) and Bw2(B)+ε, respectively. We have:

q0(A) =
{

1 if A ⊆ B,
w2 (B) otherwise, (1)

q′0(A) =
{

1 if A ⊆ B,
w2 (B) + ε otherwise. (2)

Using (1) and (2), one can obtain:

m1(∅) =
∑
A⊆B

(−1)|A|q2(A)

+
∑
A 6⊆B

(−1)|A|q2(A)
w2 (B) + ε

w2 (B)
.

As

m2(∅) =
∑
A⊆Ω

(−1)|A|q2(A)

=
∑
A⊆B

(−1)|A|q2(A) +
∑
A 6⊆B

(−1)|A|q2(A),



then

m1(∅) = m2(∅) +
ε

w2 (B)

∑
A 6⊆B

(−1)|A|q2(A). (3)

We can thus remark that m1(∅) is equal to m2(∅), which is
itself equal to 0, plus another term. Let us prove that this
term is always strictly smaller than 0.

(3) =
ε

w2 (B)

m2(∅)−
∑
A⊆B

(−1)|A|q2(A)


= − ε

w2 (B)

∑
A⊆B

(−1)|A|q2(A).

We thus have from Lemma 4:

m1(∅) = − ε

w2 (B)

∑
A∩B=∅

m2 (A) .

We have ε > 0 and w2 (B) > 0. Furthermore, m2 satis-
fies ∃A ⊂ Ω such that A ∩ B = ∅ and m2(A) > 0. Hence
m1(∅) < 0, thus m1 is not a BBA.

Theorem 1. Let ∗ be a binary operator on (0,+∞) with
1 as two-sided neutral element (i.e. 1 ∗ x = x ∗ 1 = x)
such that ∃x, y, x ∗ y > xy. There exist two non dogmatic
BBAs m1 and m2 on a frame Ω such that the function ob-
tained by pointwise combination using ∗ of the conjunctive
weight functions associated to m1 and m2 is not a conjunc-
tive weight function.

Proof. (Sketch) Let x, y be two numbers in (0,+∞) such
that x ∗ y = xy + ε for some ε > 0. It is always possi-
ble to find two logically consistent BBAs m1 and m2, i.e.
m1 ∩©2(∅) = 0, such that:

• ∃B ∈ 2Ω\ {Ω} such that w1 (B) = x and w2 (B) = y,
• ∀A ∈ 2Ω\ {Ω, B}, w1 (A) = 1 or w2 (A) = 1,
• ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅.

For those BBAs, we thus have:

w1 ∩©2(B) = w1(B) · w2(B),

w1 ∩©2(A) =
{

w1(A) if w2(A) = 1,
w2 (A) otherwise,

for all A 6= B, and

w1(B) ∗ w2(B) = w1 ∩©2(B) + ε,

w1(A) ∗ w2(A) = w1 ∩©2(A),

for all A 6= B.
We have:

∩©A⊂ΩAw1(A)∗w2(A) = m1 ∩©2 6∩©Bw1 ∩©2(B) ∩©Bw1 ∩©2(B)+ε,
(4)

and ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩ B = ∅. By
Lemma 5, (4) is not a BBA, hence w1 ∗w2 is not a conjunc-
tive weight function.

Corollary 1. The TBM conjunctive rule is the w-least com-
mitted rule in the family of rules based on pointwise combi-
nation of conjunctive weights and having the vacuous BBA
as neutral element.

Proof. From Theorem 1 and Lemma 2, it is clear that the
rules that are based on the conjunctive weight function and
which have the vacuous BBA as neutral element are based
on pointwise combination of conjunctive weights using bi-
nary operators ∗ on (0,+∞) with 1 as neutral element and
such that x ∗ y ≤ xy for all x, y ∈ (0,+∞), hence the
corollary.

Remark 1. Idempotence and having the vacuous BBA as
neutral element are incompatible properties for rules based
on pointwise combination of conjunctive weights.

Proof. From Theorem 1 and Lemma 2, a rule that is based
on pointwise combination of conjunctive weights and which
has the vacuous BBA as neutral element is based on a binary
operator ∗ having 1 as neutral element and satisfying x∗y ≤
xy, ∀x, y ∈ (0,+∞). Let z ∈ (0, 1). We have z ∗ z ≤ z2 <
z, hence ∗ is not idempotent.

The product on (0,+∞) is commutative, associative, and
increasing. It also has 1 as neutral element, which makes the
product a uninorm (Yager & Rybalov 1996) on (0,+∞). It
can be shown that there exists an infinity of uninorms on
(0,+∞). Hence, a consequence of the results presented in
this paper is that the TBM conjunctive rule is the least com-
mitted element in the family of uninorm-based combination
rules.

The Disjunctive Case
In this section, we present results corresponding to the pre-
vious ones for rules based on pointwise combination of dis-
junctive weights.

Corollary 2. The TBM disjunctive rule is the v-most com-
mitted rule amongst the rules based on pointwise combina-
tion of disjunctive weights and having the BBA m (∅) = 1
as neutral element.

Proof. (Sketch) Let ∗ be a binary operator on (0,+∞) hav-
ing 1 as neutral element. Let v1 and v2 be the disjunctive
weight functions associated to two subnormal BBAs m1 and
m2. Let w1 and w2 be the conjunctive weight functions as-
sociated to m1 and m2. We have:

∪©A 6=∅Av1(A)∗v2(A) = ∩©A 6=∅Av1(A)∗v2(A)

= ∩©A 6=∅Ā
w1(Ā)∗w2(Ā)

= ∩©A⊂ΩAw1(A)∗w2(A) (5)

From Theorem 1 and Lemma 2, (5) is a BBA iff ∗ is such
that x ∗ y ≤ xy. For any operator ∗ on (0,+∞) having 1
as neutral element and such that x ∗ y ≤ xy, m1 ∪©m2 vv

∪©A 6=∅Av1(A)∗v2(A), hence the corollary.



The TBM disjunctive rule has similar properties as the
TBM conjunctive rule since they are both based on the prod-
uct. It can thus be deduced from Corollary 2 that the TBM
disjunctive rule is the most committed element in the fam-
ily of rules based on pointwise combination of disjunctive
weights using uninorms.
Proposition 1 (De Morgan’s Laws). Let ∗ be an operator on
(0,+∞) with 1 as neutral element and such that x ∗ y ≤ xy
for all x, y ∈ (0,+∞). Further, let ∗©w denote a rule based
on pointwise combination of conjunctive weights using op-
erator ∗, and let ∗©v denote a rule based on pointwise com-
bination of disjunctive weights using operator ∗. Let m1 and
m2 be two subnormal BBAs. We have:

m1 ∗©vm2 = m1 ∗©wm2. (6)
Let m1 and m2 be two non dogmatic BBAs. We have:

m1 ∗©wm2 = m1 ∗©vm2. (7)
Proof. The proof of (6) is direct using the proof of Corollary
2. The proof of (7) is similar.

Conclusion
This paper has shown a new singular property of the unnor-
malized Dempster’s rule of combination in the context of
combination rules for belief functions based on the conjunc-
tive weight function. It was also put forward that the unnor-
malized Dempster’s rule of combination ∩© and the cautious
rule ∧© have fundamental different algebraic properties: the
former is based on a uninorm on (0,+∞) and has a neutral
element while the latter is based on a t-norm on (0,+∞] and
has no neutral element. Similarly the TBM disjunctive rule
∪© is based on a uninorm on (0,+∞) and has a neutral ele-
ment while the bold rule ∨© is based on a t-norm on (0,+∞]
and has no neutral element. Note also that the pairs of rules
∩©− ∪© and ∧©− ∨© are related by De Morgan laws.

In addition, it was revealed that to each of those four basic
rules corresponds one infinite family of combination rules.
Indeed, there exist two t-norm-based families that are based
respectively on the conjunctive and disjunctive weight func-
tions. There exist also two uninorm-based families that are
based respectively on the conjunctive and disjunctive weight
functions. Interestingly, this paper showed that the four ba-
sic rules occupy a special position in each of their respec-
tive family: the ∩© and ∧© rules are the least committed ele-
ments, whereas the ∪© and ∨© rules are the most committed
elements. This is summarized in the following table:

conjunctive weights disjunctive weights
uninorm ∩© ∪©
t-norm ∧© ∨©

least committed most committed
Future efforts will concentrate on the performance gains

for information fusion systems suggested by preliminary ex-
periments using those new families of rules. In particular, it
seems possible to define rules based on parameterized fami-
lies of t-norms or uninorms, and to tune these rules so as to
optimize the performance of a fusion system. Finally, prop-
erties of these rules related to their use in valuation-based
systems (mainly, distributivity of marginalization over com-
bination (Shenoy & Shafer 1990)) will be investigated.
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