
Pairwise Classifier Combination in the Transferable Belief Model
Benjamin Quost Thierry Denœux Mylène Masson

UMR 6599 CNRS Heudiasyc UMR 6599 CNRS Heudiasyc UMR 6599 CNRS Heudiasyc
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Abstract – Classifier combination constitutes an interesting ap-
proach when solving multi-class classification problems. We pro-
pose to carry out this combination in the belief functions frame-
work. Our approach, similar to a method proposed by Hastie and
Tibshirani in a probabilistic framework, is first presented. The
performances obtained on various datasets are then analyzed,
showing a gain of classification accuracy using the belief func-
tions approach.
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1 Introduction

A generic pattern recognition task can be formalized as fol-
lows. Let a training set T be composed of a set X =
{x1, . . . ,xn} of patterns xi ∈ R

p. Each pattern xi is as-
sociated with a label yi, which represents its actual class
ωk ∈ Ω = {ω1, . . . , ωK}.

A classifier can be trained to identify the relationships
between the input space R

p and the label space Ω, on the
basis of the training set; generalizing them to new – and
unknown – data should then enable to predict the label of a
test pattern x. The architecture of a designed classifier has
to fit the complexity of the problem: the more complex the
situation to deal with, the more complex the classifier. Its
training cost can therefore become arbitrarily large in terms
of required time and training data.

In this article, we propose an approach to design clas-
sifiers of well suited complexity, in a rich and flexible
knowledge-representation framework, which allows to rep-
resent various types of imprecision and uncertainty. This
framework provides an adequate theoretical basis for clas-
sifier combination; moreover, it appears to increase the ac-
curacy and robustness of the classification process.

We first present the problem of classifier combination,
along with a short review of existing methods. We then de-
scribe the Transferable Belief Model, and more precisely
the tools used in our method. Motivations for its choice are
given, from which we derive and formalize our approach.
Results obtained by various methods are then presented and
analyzed. We eventually conclude on perspectives concern-
ing future work.

2 Pairwise classifier combination

2.1 Motivations of classifier combination

The case of polychotomous classification of a test pattern x
is considered here: the actual class of x has to be chosen
among K > 2 different classes.

2.1.1 Direct multiclass classification

A single classifier can be taught to recognize all the classes:
computing decision boundaries between them enables to
evaluate the actual class of x. According to the training
cost of the classifier used, this direct multiclass approach
can be burdensome.

Furthermore, some classifiers are best-suited to handle
two-class problems. Another approach, involving classifier
combination, has therefore been proposed to handle multi-
ple classes.

2.1.2 Decomposition into simpler problems

This alternative approach consists in decomposing Ω into
subsets; a classifier then learns to separate the classes of
each subset. Pattern x is evaluated by each classifier, and
assigned to a class according to a decision rule combining
these evaluations. In the case of binary decomposition, bi-
nary classifiers separate two classes; the complexity of the
problem, and its computational training cost, may then be
reduced.

Classifier combination aiming at improving the perfor-
mances of multiclass classifiers by taking advantage of their
complementarity [1], will not be considered here.

2.2 Different decompositions of a multiclass
problem

Dichotomous classification problems can be built by vari-
ous ways. The one-against-all decomposition consists in
opposing each class to all the others: K binary classifiers
are trained from the whole set of training patterns. Al-
ternatively, each class can be opposed to each other one
(one-against-one or pairwise decomposition): K(K−1)/2
pairwise classifiers are trained from training patterns corre-
sponding to two classes. Fewer classifiers are used in the
former case, but the global training cost is lower in the lat-
ter [2].
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The decomposition of Ω in pairs of classes can also be
hierarchical [3]. A binary classifier learns to separate class
ωi from the set of classes Ω � {ωi}; another one, class ωj

(ωj �= ωi) from the set Ω � {ωi, ωj}; and so on. A test
pattern is successively evaluated by the classifiers, until its
actual class is found. This evaluation must be here sequen-
tial, whereas it can be parallelized in the previous cases.

Error-Correcting Output Codes (ECOC) [4] provide an-
other framework for binary decomposition. N binary func-
tions f1, . . . , fN : fi : R

p → {0, 1},∀i ∈ {1, . . . , N}, are
defined. These functions are learnt, such that they take the
same value for all the patterns of a same class: the con-
canetation of these values, for each class, defines then a
N -bit long codeword. The codeword associated with x is
computed by concatenating the fi(x), and x is assigned to
the class whose codeword is the nearest, according to some
measure of similarity.

This article presents a way of combining pairwise classi-
fiers.

2.3 Different ways of combining pairwise
classifiers

Let the pairwise classifiers evaluate the actual class of a test
pattern x, among two classes ωi and ωj .

2.3.1 Voting rule [5]

Each classifier outputs a decision about the actual class of
x, for example a class label; x is assigned to the class re-
ceiving the largest number of votes.

2.3.2 Iterative pairwise coupling of posterior probabili-
ties [6]

Let pi = P(ωi|x) be the posterior probability of class ωi,
µij = P(ωi|ωi or ωj ,x) the conditional probability of class
ωi given {ωi, ωj} (µij = pi/(pi + pj)), nij the number of
training patterns in classes {ωi, ωj}. The pairwise classi-
fiers are assumed to provide estimates rij of µij .

Trying to determine the probabilities pi such that µij =
rij , under the constraints 0 ≤ pi ≤ 1,

∑
pi = 1, is an

overdetermined problem with K−1 unknown variables and
(K − 1)K/2 constraints; it has usually no exact solution.
The pi can then be estimated, such that the µij are close to
the rij .

It is proposed in [6] to use the negative weighted
Kullback-Leibler divergence between the µij and the rij

(Equation (2)) to compute iteratively the estimates p̂i of the
pi (Equation (1)). Let p and p̂ be the respective vectors of
pi and p̂i, and nij be the total number of patterns in classes
ωi and ωj :

p̂ = arg minL(p), (1)

L(p) =
∑
i<j

nij

(
rij log

rij

µij
+ (1 − rij) log

1 − rij

1 − µij

)
.

(2)
Another non iterative method for computing estimates p̃i

was also proposed:

p̃i =
2
K

∑
j �=i rij

(K − 1)
. (3)

Although crude estimates, the p̃i have the same ordering as
the p̂i; they can be used as starting values in the iterative
procedure, or for decision purposes.

2.3.3 Non-iterative pairwise coupling of posterior proba-
bilities [7]

In [7], two non-iterative methods for estimating the pi, such
that the conditional probabilities µij are close to the esti-
mates rij , are proposed.

Considering that:

pi =
∑
j:j �=i

(
pi + pj

K − 1

)(
pi

pi + pj

)
, ∀i

=
∑
j:j �=i

pi + pj

K − 1
µij , ∀i,

it is proposed to estimate the pi by solving:

pi =
∑
j:j �=i

pi + pj

K − 1
rij , ∀i (4)

under constraints
∑K

i=1 pi = 1, pi ≥ 0,∀i. It can be shown
that the unique solution to this problem is the same, with
or without the positivity constraints. It can therefore be ob-
tained by solving a simple linear system:

Q p = p, (5)

subject to:
K∑

i=1

pi = 1, (6)

where Q(i, j) =
{

rji/(K − 1) if i �= j∑
s:s �=i ris/(K − 1) if i = j

.

Alternatively, Equation (4) may be rewritten as:∑
j:j �=i

rjipi −
∑
j:j �=i

rijpj = 0, i = 1 . . . K.

Motivated by this formulation, the authors propose another
method to compute the pi, by solving:

p∗ = arg min
p

1
2

K∑
i=1

∑
j:j �=i

(rjipi − rijpj)2,

under constraints
∑K

i=1 pi = 1, pi ≥ 0,∀i. It can be shown
again that the positivity constraints are redundant; there-
fore, the problem may be rewritten as a quadratic convex
problem with linearity constraints:

min
p

1
2

pT Q p,

subject to:
K∑

i=1

pi = 1,

where Q(i, j) =
{

−rjirij if i �= j∑
s:s �=i r2

si if i = j
.



Using the Karush-Kuhn-Tucker optimality conditions en-
ables to find the solution by solving a linear system:(

Q e
eT 0

) (
p
b

)
=

(
0
1

)
, (7)

where e is a (K × 1)-vector of ones, 0 is a (K × 1)-vector
of zeros, and b is the Lagrange multiplier associated with
the equality constraint

∑K
i=1 pi = 1.

2.3.4 Improved pairwise coupling classification with cor-
recting classifiers [8]

The above methods propose to estimate the pi, such that
the µij are close to the rij . However, as pointed out in [6],
the actual class of x is unknown to most of the classifiers,
which were trained to separate two classes only, and ignore
all the others; their estimates rij of the µij might hence be
erroneous.

It is therefore proposed in [8] to train additional correct-
ing classifiers, which evaluate whether x belongs either to
ωi or ωj , or not: they separate {ωi, ωj} from Ω � {ωi, ωj}.
The probabilities qij = P̂({ωi, ωj}|x) are estimated using
Equation (3), and the probabilities quantifying the knowl-
edge of the actual class of x may be computed:

P̂({ωi}|x) = rij P̂({ωi, ωj}|x). (8)

Although correcting the estimated conditional proba-
bilities can give more robust probabilities estimates, this
approach involves training (K − 1)K/2 additional pair-
wise classifiers on the whole training set. It is therefore
much more complex than both the one-versus-one and one-
versus-all approaches.

3 The Transferable Belief Model

3.1 A flexible framework of knowledge
representation

The need to manage various types of ignorance has led to
define new knowledge representation frameworks. One of
them, the theory of evidence [9] or theory of belief func-
tions, has been declined into several approaches, among
which the Transferable Belief Model (TBM) [10].

Stating the actual class of a test pattern x in a precise way
may not always be possible; instead of compelling classi-
fiers to give precise information, modelling the ignorance
or imprecision of their statements is likely to improve the
results of their combination. Hence the use of the TBM,
which is particularly well-suited for representing, manipu-
lating and combining imprecise knowledge.

3.2 Representing knowledge

3.2.1 Assessing the knowledge of the value taken by a
variable

The TBM aims at modelling the knowledge of the actual
value of a variable y, which belongs to a set of atoms
Ω = {ω1, . . . , ωK} refered to as the frame of discernment
or frame. In a classification problem, y depicts the class of
a test pattern x.

3.2.2 Quantifying knowledge with belief functions

Knowledge is quantified by basic belief assignments (bba).
A bba m satisfies:{ ∑

A⊆Ω m(A) = 1,
0 ≤ m(A) ≤ 1, ∀A ⊆ Ω.

The certainty that y ∈ A is quantified by m(A); any subset
A ⊆ Ω to which m gives belief is called a focal element of
m. A bba m defined on a frame Ω is written mΩ.

3.2.3 Particular belief functions

Categorical belief functions quantify total support given to
a proposition A ⊆ Ω:

mΩ(A) = 1.

The vacuous belief function, defined by mΩ(Ω) = 1, is the
categorical belief function expressing total lack of knowl-
edge.

Bayesian belief functions quantify precise knowledge;
the focal elements are atoms only:

mΩ(A) �= 0 ⇒ |A| = 1.

3.2.4 Exhaustiveness of the frame

The empty set ∅ can be given some belief. The mass m(∅)
can be interpretated as the belief that the actual value of y
lies outside the frame (open-world assumption).

If the frame is considered to be exhaustive (closed-world
assumption), the actual value of y has to be in Ω, and the
belief functions are systematically normalized:

m∗(A) =
m(A)

1 − m(∅) , ∀A ⊆ Ω, A �= ∅;

m∗(∅) = 0.

Clearly, m∗ is not defined whenever m(∅) = 1. Another
normalization procedure defined by Yager [11] consists in
transfering m(∅) to Ω:

m′(A) =




m(A) if A �= ∅, A �= Ω
m(A) + m(∅) if A = Ω
0 if A = ∅

. (9)

3.3 Manipulating knowledge

3.3.1 Combining belief functions

Two belief functions m1 and m2 can be combined, using a
suitable operator; the most common is the conjunctive rule
of combination (CRC), symbolized by ∩©:

m1 ∩©m2(A) =
∑

X∩Y =A

m1(X)m2(Y ),∀A ⊆ Ω.



3.3.2 Conditioning belief functions

Conditional belief functions quantify knowledge which are
valid provided that an hypothesis is satisfied. Let m be a
bba, B ⊆ Ω an hypothesis and mB the categorical bba de-
fined by mB(B) = 1; the conditioning m[B] of the bba m
on B can be obtained by combining m with mB :

m[B] = m ∩©mB .

Hence, any belief formerly assigned to A ⊆ Ω is trans-
fered to A ∩ B. The mass m[B](∅) quantifies the belief
given by m to hypotheses incompatible with B, or equiv-
alently the belief that the actual value of y lies outside the
new frame B.

3.4 Decision making

In the TBM framework, pignistic probabilities are com-
puted from belief functions when a decision has to be made.
The pignistic transformation [10] consists in equally redis-
tributing the amount of belief, formerly given to a focal el-
ement A ⊆ Ω, to the atoms ωk ∈ A, after a normalization
step:

BetP (ωk) =
∑

{A⊆Ω:ωk∈A}

m∗(A)
|A| , ∀ωk ∈ Ω. (10)

4 Combining pairwise classifiers within the
TBM

4.1 Evaluating the actual class of x in Ω

Let a pattern x be observed, whose actual class is ωk ∈ Ω;
the information about the class of x may be quantified by
a bba mΩ. Conditioning mΩ on restricted frames Ωij =
{ωi, ωj} would give conditional bbas m[Ωij ], which quan-
tify the knowledge of the actual class of x assuming that it
is in Ωij .

The pairwise classifiers are assumed to estimate the ac-
tual class of x in the restricted frames Ωij . The outputs
of these classifiers, that will be refered to as pairwise es-
timates, quantify partial knowledge of this class; they may
be seen as estimates of the conditional bbas m[Ωij ].

An estimate of the bba mΩ, quantifying the knowledge
of the actual class of x in the general frame Ω, may then be
obtained by combining the estimates provided by the pair-
wise classifiers, as will be detailed in Section 4.1.4.

4.1.1 Estimating the actual class of x in various restricted
frames Ωij

Pairwise classifiers are trained on two classes only, and
hence ignore the others; thus, the pairwise estimates are
considered to be computed under a closed-world assump-
tion: they can be seen as normalized estimates of the con-
ditionings m[Ωij ]. For all A ⊆ Ωij , A �= ∅:

m∗
ij(A) =

m̂[Ωij ](A)
1 − m̂[Ωij ](∅)

. (11)

If the pairwise classifiers compute probabilities, the pair-
wise estimates are then Bayesian belief functions:{

m∗
ij({ωi}) = rij

m∗
ij({ωj}) = 1 − rij .

Figure 1 shows the contour plot of posterior probabili-
ties computed with logistic regression, when separating two
classes drawn from a synthetic two-dimensional dataset of
4 classes.
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Fig. 1: Contour plot of the posterior probabilities r34,
obtained when separating class 3 (crosses) from class 4
(points).

4.1.2 Estimating the validity of the pairwise estimates

As pointed out in Section 2.3.4, a classifier compelled to
assess the actual class of x can give erroneous information.
Hence, we propose to assess the validity of such an assess-
ment. A classifier, which evaluates a test pattern x, provides
valid information if the actual class of x may be one of the
classes of its training set.

Let fi(x) be the density of class ωi at point x; we propose
to evaluate the possibility that x belongs to ωi. A possibility
distribution representing this knowledge may be built:

f̂i(x) =
fi(x)

maxxk∈ωi
fi(xk)

. (12)

The possibility that x belongs to the frame Ωij can be ob-
tained by combining f̂i(x) and f̂j(x) with the max rule:

f̂ij(x) = max
(
f̂i(x), f̂j(x)

)
. (13)

The belief that the actual class of x may lie outside the
restricted frame Ωij is then estimated:

mij(∅) = m̂[Ωij ](∅) = 1 − f̂ij(x). (14)

Figure 2 shows the contour plots of the estimated pos-
sibilities f̂3, f̂4 to belong to the classes ω3 and ω4 of the
synthetic dataset, respectively.
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Fig. 2: Contour plot of the estimated possibilities to belong
to the classes 3 and 4 of the training set.

4.1.3 Processing the unnormalized pairwise estimates

The knowledge of the validity of the pairwise classifiers
may then be used in Equation (11) to process the unnor-
malized pairwise estimates mij . For all A ⊆ Ωij , A �= ∅:

m̂[Ωij ]∗(A) =
m̂[Ωij ](A)

1 − m̂[Ωij ](∅)
;

therefore, for all A ⊆ Ωij , A �= ∅:

mij(A) = m̂[Ωij ](A)
= (1 − m̂[Ωij ](∅)) m̂[Ωij ]∗(A),

which leads to:

mij({ωi}) = f̂ijrij , (15)

mij({ωj}) = f̂ij(1 − rij), (16)

mij(∅) = 1 − f̂ij . (17)

4.1.4 Retrieving original information from conditional in-
formation

The bba mΩ, quantifying the knowledge of the actual class
of x in Ω, has to be retrieved from the unnormalized pair-
wise estimates. We propose, in a manner somewhat similar
to that used in [6], to compute an estimate m̂Ω of mΩ, such
that its conditionings m̂[Ωij ] are as close as possible to the
unnormalized pairwise estimates.

Let the vectors m, mij (∀i, j) correspond to m̂ and mij

(∀i, j), respectively; let their elements be put in binary order
[12]. Let the 2|Ω| × 2|Ω| matrix Γij of conditioning on Ωij

be defined by:
m[Ωij ] = Γij · m.

Let k and l be the indices corresponding to elements B and
C, respectively. The coefficients Γij(k, l) are defined by:

Γij(k, l) = 1 if C ∩ Ωij = B,

= 0 otherwise.

We propose to retrieve m̂Ω by solving:

m̂Ω = arg min
m

∑
j>i

‖Γij · m − mij‖2, (18)

subject to:

{ ∑
A⊆Ω m(A) = 1,

0 ≤ m(A) ≤ 1, ∀A ⊆ Ω;
(19)

where ‖ · ‖ denotes the euclidean norm.
As proposed in [6], the unnormalized pairwise estimates

may be weighted according to the number nij of patterns in
classes ωi and ωj ; Equation (18) then becomes:

m̂Ω = arg min
mΩ

∑
j>i

nij‖Γij · m − mij‖2. (20)

Figures 3 and 4 show the pignistic probabilities of ob-
serving respectively classes 3 and 4, computed from the
combined bbas. The masses were normalized using Yager’s
procedure (Equation (9)).
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Fig. 3: Contour plot of the pignistic probabilities of observ-
ing class 3.
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Fig. 4: Contour plot of the pignistic probabilities of observ-
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4.2 Reducing the complexity of the method

The number of subsets of Ω grows exponentially with K.
Problems with high K are hence intractable: for example,
the bbas computed when solving a letter recognition prob-
lem with 26 classes may have 226 = 67108864 focal ele-
ments. We propose to reduce this complexity by restricting
the set of possible focal elements when computing the bba
mΩ.

4.2.1 Cardinal restriction of the set of possible elements

Analyzing the estimates m̂Ω leads to notice that subsets of
high cardinality are usually given few belief. This is not
particularly surprising: the pairwise estimates mij , whose
combination gives m̂Ω, have {ωi}, {ωj} and ∅ as focal ele-
ments.

The size of the set of focal elements may therefore be re-
stricted, by removing the focal elements, whose cardinality
exceeds a threshold, from the set of possible elements of
the bba mΩ.

4.2.2 Coarsened restriction of the set of possible elements

The membership of x to the supports of the classes of Ω
(Equations (12,13)) allows to compute the validity of the
classifiers in the frames Ωij . It can also be used to restrict
the frame in which the membership of x is evaluated.

A new frame Θ may be obtained, by aggregating the
classes, to which x most likely does not belong, into a sin-
gle one. The frame Θ is by definition a coarsening of Ω:
each θl ∈ Θ corresponds to a subset A ⊆ Ω. The new set
2Θ of possible focal elements in Θ is then of cardinality 2L,
with L = |Θ|.

This coarsening can be used to select the focal elements
to which some belief could be given, and therefore to re-
strict the set of possible elements of mΩ to these focal ele-
ments.

5 Experiments

5.1 Procedure

5.1.1 Classification methods and parameterization

Five combination methods were compared:

• the evidential method developped in this article, with
and without weighting (method TBMW, Equation
(20), and method TBM, Equation (18), respectively);

• the method presented in Section 2.3.2, with and with-
out weighting (methods PCPLW and PCPL, respec-
tively);

• the methods presented in Section 2.3.3 (methods
PEST1 and PEST2, respectively);

• the method presented in Section 2.3.4 (PCORR).

The same conditional posterior probabilities estimates were
used to compare the methods. The performance criterion
was the recognition rate.

The posterior probability estimates were processed us-
ing a logistic regression method [13]. The densities of the
classes (methods TBM and TBMW) were evaluated with
Parzen windows; kernel bandwidths were learnt by com-
puting the bandwidths with a method proposed by Koontz
and Fukunaga [14], averaging them and multiplying this
average by a factor. The correcting probabilities (method
PCORR) were computed by combining the estimates of the
densities with the Bayes’ rule.

5.1.2 Datasets description

Table 1 presents the features (dimension, number of
classes, total number of patterns for training and test-
ing) of the datasets with which the methods were tested.
The Satimage dataset was used partially: training and
test sets were chosen randomly, the training set in
the same proportions as in the original dataset. The
Glass, Vowel and Satimage datasets are used with cour-
tesy of the UCI Machine Learning database repository
(http://www.ics.uci.edu/˜mlearn/).

Table 1: Datasets features

dataset dim. nb. cl. nb. pat. nb. pat.
/ train. / test

Iris 4 3 90 60

Glass 9 6 139 75

Satimage 36 6 2850 1200

Vowel 10 11 528 462

In the Iris dataset, the training set numbers 30 patterns
per class, the test set 20 patterns per class. In the Vowel
dataset, the training set numbers 48 patterns per class, the
test set 42 patterns per class. The composition of the train-
ing and test sets, for the Glass and the Satimage datasets,
are presented in Tables 2 and 3, respectively.

Table 2: Glass dataset – composition of the training and
test sets (number of patterns)

cl. 1 cl. 2 cl. 3 cl. 4 cl. 5 cl. 6

training set 46 49 11 8 6 19

test set 24 27 6 5 3 10

It can be seen in Table 2 that the Glass dataset contains
few examples; the classifiers must therefore be trained with
very few patterns. The classes of the Vowel dataset are
intrinsically hard to discriminate; moreover, patterns come
from different sources, depending on whether they are used
for training or testing the classifiers. These datasets may
therefore be difficult to process.

The complexity of the method was reduced: the set of
possible focal elements was restricted to elements com-
posed of 4 atoms at most.



Table 3: Satimage dataset – composition of the training
and test sets (number of patterns)

cl. 1 cl. 2 cl. 3 cl. 4 cl. 5 cl. 6

training set 700 300 600 250 300 700

test set 200 200 200 200 200 200

5.2 Results and interpretations
5.2.1 Results

Table 4 summarizes the recognition rates performed by the
methods tested. The significance of the differences between
the methods TBM and TBMW and each of the others was
evaluated, by comparing the rates using a Mc Nemar test
[15] at level 5%. Significantly better results are printed in
bold in Table 4.

Table 4: Recognition rates (%)

Method Iris Glass Satimage Vowel

TBM 96.7 62.7 87.1 65.2

TBMW 96.7 65.3 87.0 65.2

PCPL 96.7 58.7 80.2 51.3

PCPLW 96.7 60 80.2 51.3

PEST1 96.7 58.7 80.8 50.9

PEST2 96.7 60 80.6 52.6

PCORR 96.7 60 85.9 60.6

5.2.2 Importance of the validity of the classifiers

Results show that methods TBM, TBMW and PCORR out-
perform the others for the Glass, Satimage, and Vowel
datasets. The significance of the results obtained with meth-
ods TBM and TBMW can be assessed for the Satimage,
and Vowel datasets; the method PCORR also outperforms
the methods PCPL, PCPLW, PEST1 and PEST2 for the
Satimage dataset.

These results highlight the importance of assessing the
validity of the classifiers to be combined. However, the way
of assessing the validity of a classifier, as well as combin-
ing this information with those provided by this classifier,
seems to have an influence on the results. Indeed, the meth-
ods TBM and TBMW produce significantly better results
than the method PCORR for the Vowel dataset, whereas this
difference cannot be assessed for the Satimage dataset.

This difference may be related to the way of evaluat-
ing the validity of the pairwise classifiers. In the case of
the method PCORR, correcting probabilities leads to de-
fine mutually exclusive domains of validity; whereas in the
case of the methods TBM and TBMW, the domains of rel-
evance of various classifiers may overlap, these domains
being evaluated by taking into account examples of the cor-
responding classes only.

5.2.3 Weighting the conditional information according to
the size of the classes

Out the four datasets on which the combination methods
were tested, two of them (Glass and Satimage) have
classes with different sizes.

The ratios between these sizes are much more impor-
tant in the case of the Glass dataset than in the case of the
Satimage dataset; moreover, the training set of the former
is much smaller than that of the latter.

Although the recognition rates obtained for the methods
involving weighting are higher for the Glass dataset, this
difference is not significant at the 5% level (obviously due
to the low number of test patterns); as for the Satimage
dataset, no difference between weighted and non-weighted
methods could be observed.

6 Conclusion and prospects

In this article, several methods for combining pairwise clas-
sifiers and computing estimates of posterior probabilities
were reviewed. The Transferable Belief Model appears to
be well suited to formalize pairwise classifier combination,
and particularly the underlying problems such as assessing
the validity of the classifiers to combine. The classifica-
tion results obtained definitely assess the relevance of this
framework to combine classifiers.

The flexibility of the TBM enables to adapt this combi-
nation method to a wide range of problems. Posterior con-
ditional probabilities may be combined without estimating
the validity of the classifiers (the results obtained are similar
to those of the method PCPL). Classifiers computing esti-
mates of posterior conditional belief functions in restricted
frames might also be combined, whatever the number of
classes in each restricted frame.

There are many directions of future research. First, fur-
ther work has to be done to assess the validity of a classi-
fier, in particular evaluating this validity without computing
the density of the classes. The supports of the distributions
underlying the classes could be estimated; one-class SVMs
[16] seem to provide powerful tools for such processings.

Reducing the complexity of the method by determining a
coarsening Θ of the original frame Ω also seems to be a very
promising approach, which needs to be further investigated.
New cost functions for computing a belief function, whose
conditionings are close to the pairwise estimates, may be
determined, and their impact on the accuracy of the result
may be studied. A non-iterative combination method might
then be deduced from this new iterative method, in a same
manner as that proposed in [7].
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