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Abstract— In this paper, we are interested in the fusion of
classifiers providing decisions which are organized in a hierarchy,
i.e., for each pattern to classify, each classifier has the possibility
to choose a class, a set of classes, or a reject option.

We present a method to combine these decisions based on
the Transferable Belief Model (TBM), an interpretation of the
Dempster-Shafer theory of evidence. The TBM is shown to
provide a powerful and flexible framework, well suited to this
problem. Special emphasis is put on the construction of basic be-
lief assignments, an important issue which has not yet been fully
explored in the literature. We propose an approach extending
a former proposal made by Xu, Krzyzak and Suen (1992) in a
simpler context. A rational decision modelling allowing different
levels of decision is also presented.

Finally, the proposed combination is compared experimentally
to several simpler alternatives.

Index Terms— Decision Fusion, multi-level decisions, belief
functions, Dempster-Shafer theory, Evidence theory, classifica-
tion.

I. I NTRODUCTION

Building highly reliable classifiers is an important objective
in pattern recognition. An interesting way to achieve this goal
consists in the combination of already existing classifiers.
Indeed, experimental results ([1], [2]) show that methods based
on multiple classifiers generally outperform each individual
classifier. As explained by Xu, Krzyzak and Suen in [3], the
combination of multiple classifiers includes several problems:
selecting the classifiers to combine (types, algorithms, number,
. . . ), choosing an architecture for the combination (parallel,
cascade, mixtures of both, . . . ), and combining the classifier
outputs in order to achieve better performance than each
classifier individually.

In this paper1, we focus on the problem of combining clas-

1This work is the result of a cooperation agreement between theHeudiasyc
laboratory at the Université de Technologie de Compiègne and the SOLYSTIC
company.

sifiers providing decisions which are organized as a hierarchy:
decisions can be expressed at different levels. For each pattern
to classify, each classifier has the possibility to choose either
a class, or a set of classes, or rejection.

We assume that the decisions are not associated with any
scoring vector, or posterior probabilities. It is a common
situation in real world applications.

Classifiers providing only class labels are calledabstract
level classifiersor classifiers of Type 1in [3]. To combine
such classifiers, various combination techniques were pro-
posed such as voting-based systems [3], [4], [5], plurality
[6], Bayesian theory [3], Dempster-Shafer theory [3], [7] or
classifier local accuracy [8].

Inspired by a former proposal by Xu, Krzyzak and Suen
(1992) [3], a combination of these decisions based on the
Transferable Belief Model (TBM) ([9], [10]) is proposed. Like
all Dempster-Shafer approaches, the assignment of masses is
an important task which often determines the success of the
combination. Therefore, different assignments are discussed. A
decision process allowing different levels of decision is also
presented.

This paper is organized as follows. The key points of
the TBM, an interpretation of the Dempster-Shafer theory of
evidence [11] well suited to information fusion, are recalled in
Section II. In Section III, we come back to an existing method
for combining belief functions in the case of non hierarchical
decisions. Then, in Section IV, a model based on the TBM is
presented for the combination of multi-level decisions. Finally,
Section V describes experimental results and compares the
proposed combination with voting-based schemes.

0-7803-9286-8/05/$20.00 © 2005 IEEE



II. T HE TRANSFERABLEBELIEF MODEL (TBM):
FOUNDATIONS

A. Information representation

Let X be a variable taking values in a finite setΩ, called the
frame of discernment(or frame). Ω is composed of mutually
exclusive elementsω1, . . . , ωK called atoms. The knowledge
held by a rational agentY , regarding the actual valueω0 taken
by X, can be quantified by a belief function defined from the
power set2Ω to [0, 1].

Belief functions can be expressed in several forms: the
basic belief assignment (BBA)m, the credibility function
bel and theplausibility functionpl, which are in one-to-one
correspondance. We recall thatm(A) quantifies thepart of
belief that is restricted to the propositionω0 ∈ A ⊆ Ω and
satisfies: ∑

A⊆Ω

m(A) = 1. (1)

Thus, a BBA can support a setA ⊆ Ω without supporting
any subproposition ofA, which allows to account for partial
knowledge.

Some particular belief functions often used, are defined as
follows:

Definition 1: The vacuous belief functionquantifies total
ignorance:

mΩ(Ω) = 1.

Bayesian belief functionsquantify perfect knowledge onX ’s
value:

mΩ(A) 6= 0 ⇒ |A| = 1.

B. Handling the knowledge

Two distinct pieces of evidence, quantified by BBAsm1

andm2, may be combined, using a suitable operator. The most
common are theconjunctive rule of combination(CRC) and
the disjunctive rule of combination(DRC), defined, respec-
tively, as:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C),∀A ⊆ Ω;

m1 ∪©m2(A) =
∑

B∪C=A

m1(B)m2(C),∀A ⊆ Ω.

If the two distinct pieces of evidence are trustful enough, the
CRC is used. Otherwise, if at least one piece of evidence is
reliable, the DRC can be used.

C. Decision making

When an agent has to select an optimal action among
an exhaustive set of actions,rationality principles [12], [13]
justify the strategy that consists in choosing the one that
minimizes theexpected risk(or expected cost). This principle
leads to the use of a probability measurePΩ : 2Ω → [0; 1] and
a cost functionc : A×Ω → IR, whereA is the set of possible
actions. The optimal action is then the one that minimizes the
expected cost (risk) defined by:

ρ(α) =
∑

ω∈Ω

c(α, ω)PΩ({ω}). (2)

Therefore, when a decision has to be made, the BBA
obtained after the combination must be transformed into a
probability measure. One solution proposed in [14] consists
in using thepignistic transformation[15], [16] to compute
the pignistic probability:

BetP ({ω}) =
∑

{A⊆Ω,ω∈A}

m(A)

| A | (1 − m(∅))
. (3)

Most of the time, classification algorithms do not directly
compute a BBA. Thus, to apply the TBM or any model based
on the Dempster-Shafer theory, each classifier’s output hasto
be converted in the form of a BBA. This task is very important
as each BBA is supposed to represent all the knowledge
provided by a classifier. In particular, BBAs should reflect
each classifier’s strenghs and weaknesses. The following sec-
tion aims at representing the information produced by each
classifier through the best possible BBA.

III. M ASS ASSIGNMENT THROUGH THETBM

In this paper, decisions are assumed to be the only pieces
of information available on each individual classifier. In par-
ticular, we will not use the feature vector of patternx used
in others approaches [7], [17]. The BBAs representing the
knowledge on each classifier can be built from the decisions
already proposed in a learning set. For this task, confusion
matrices will be used. First, some definitions are given.

A. Definitions

Let C = {C1, . . . , CN} be a set ofN classifiers, and let
Ω = {ω1, . . . , ωK} be a set ofK class labels.

In this section, a classifier is viewed as a functionC taking
as input a patternx from a set of patternsP and outputting a
class labelC(x) = ωk ∈ Ω ∪ {ωK+1}, where by convention
ωK+1 denotes the rejection class.

Definition 2: The confusion matrix Mi =
(ni

kl){k∈{1,...,K+1} l∈{1,...,K}} (Table I) of classifier Ci,
computed from test data, allows to sum up the correct
answers and the errors of classifierCi for each classωl. Each
row k corresponds to the decisionCi(x) = ωk. Each column
l corresponds to the actual classωl. ni

kl is the number of
patterns of actual classωl which have been classified byCi in
classωk. For all k ∈ {1, . . . ,K + 1}, let ni

k· =
∑K

l=1 ni
kl be

the number of patterns classified byCi in ωk. For example,
ni

(K+1)· is the number of rejections made by classifierCi.

Let ni =
∑K+1

k=1

∑K

l=1 ni
kl be the total number of patterns

classified byCi.
Definition 3 (performance rates):The performance of each

classifierCi will be measured by therecognition rate(correct
answer rate), theerror rate (or substitution rate) and the
rejection ratenoted, respectively,Ri, Si andTi. Performance
rates of classifierCi are computed from its confusion matrix:

• the recognition rateof classifierCi

Ri =

∑K

k=1 ni
kk

ni
, (4)



TABLE I

ILLUSTRATION OF A CONFUSION MATRIXMi .

ACTUAL
ω1 . . . ωK

D ω1 ni

11 . . . ni

1K

E
...

...
. . .

...
C ωK ni

K1 . . . ni

KK

I ωK+1 ni

(K+1)1
. . . ni

(K+1)K

• the substitution rateof classifierCi

Si =

∑K

k=1

∑K

l=1;l 6=k ni
kl

ni
, (5)

• the rejection rateof classifierCi

Ti =
ni

(K+1)·

ni
. (6)

Thus∀i ∈ {1, . . . , N}, Ri + Si + Ti = 1.
Another rate, allowing to measure the reliability of a clas-

sifier without regarding the rejection rate, is defined by:

Ri =

∑K
k=1 ni

kk∑K
k=1

∑K
l=1 ni

kl

=
Ri

1 − Ti

, (7)

and is called thereliability rate of classifierCi.
Definition 4 (classifiers comparison):One classifierCi is

said tooutperformanother classifierCj if and only if :

• Ci has a better recognition rate thanCj and a lower
substitution rate:Ri > Rj andSi < Sj .

• Or, Ci has a better recognition rate thanCj with the same
substitution rate:Ri > Rj andSi = Sj .

• Or, Ci has a lower substitution rate thanCj with the same
recognition rate:Si < Sj andRi = Rj .

This relation defines a partial order.
The performances of each classifier can be represented in a

graph with the recognition rate on thex-axis and the error rate
on they-axes. This graph allows to visualize in a simple way
which classifier has the best performance and which classifiers
are not comparable.

Example 1:Figure 1 represents the performances of 4 clas-
sifiersC1, C2, C3 andC4. ClassifierC2 outperforms all others.
ClassifiersC1 andC3 are not comparable.

B. Mass assignment for the combination of non-hierarchical
decisions

1) Bayesian assignment:The confusion matrix allows to
take into account each classifier’s performance with respect
to each class. WhenCi(x) = ωk, the Bayesian BBAmi

representing information coming from classifierCi, supports
eachωl ∈ Ω with a mass equal to the ratio of number of
patterns in classωl which have been classified byCi in class
ωk, to the total number of patterns classified byCi in class
ωk:

∀ωl ∈ Ω, mi({ωl}) =
ni

kl∑K

j=1 ni
kj

=
ni

kl

ni
k·

. (8)
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Fig. 1. Representation of the performances of classifiers.

Assignment (8) is calledBayesian assignmentas it leads
to Bayesian BBAs. With such an assignment, even a rejection
brings information on the actual class (it does not lead to
a vacuous BBA). However, for the ratiosni

kl/ni
k. to be

statistically significant, the learning set must be well chosen
and large enough. In particular, when the number of classes is
high, it is generally not possible to exploit the whole confusion
matrix. In this case, it is preferable to group someni

kl and to
build less precise BBAs.

2) Xu’s assignment: When Ci(x) = ωk with k ∈
{1, . . . ,K}, it is proposed in [3] to definemi by:

mi : 2Ω −→ [0, 1]
{ωk} 7−→ Ri

Ω \ {ωk} 7−→ Si

Ω 7−→ Ti

(9)

WhenCi(x) = ωK+1, mi(Ω) = 1 which means: whenCi

makes a rejection, assignment (9) leads to the vacuous belief
function.

This assignment is based on the following idea: the higher
the recognition rate, the greater the confidence on the classifier
decision. This assignment was tested in [3] on a digit recogni-
tion problem and provided good results. However, as shown by
the following example, the confidence in the classifier decision
should not depend only on the recognition rate.

Example 2:Let us consider two classifiersC1 andC2 with
the following performance rates:

Ri Si Ti

C1 90% 1% 9%
C2 20% 0.1% 79, 9%

Let us assume thatC1(x) = ωk andC2(x) = ωl, assignment
(9) yields m1({ωk}) = 0.9 and m2({ωl}) = 0.2. This
assignment is not what could be expected since classifierC2’s
decisions, when different from a rejection, are correct most
of the time. In factC2 is a very cautious classifier which
makes many rejections to have a minimum of errors. Thus,
as decisions coming from classifierC2 are more reliable than
C1’s decisions,m2({ωl}) should be higher thanm1({ωk}).



3) Reliability Assignment:Example 2 shows what can
happen when the behaviors of two classifiers are different. To
overcome this problem, we propose to use thereliability rate
Ri (7) of classifierCi. Indeed,Ri represents the percentage
of “good” classification knowingCi has decided a class label
different from a rejection. WhenCi(x) = ωk with k ∈
{1, . . . ,K}, we propose the assignment:

mi : 2Ω −→ [0, 1]
{ωk} 7−→ Ri

Ω 7−→ Ui,
(10)

whereUi is theunreliability rate of the classifierCi:

Ui = 1 −Ri = 1 −
Ri

1 − Ti

=
Si

1 − Ti

, (11)

WhenCi makes a rejection,mi(Ω) = 1 like assignment (9).
Assignment (10) only takes into account the reliability of

the classifiers when a class is chosen.
This assignment is a particular case of a more general

assignment that will be defined in the following section to
represent information coming from classifiers when decisions
are organized in a hierarchy.

Remark 1:Assignment (10) corresponds to the least com-
mitted mass [18] in agreement with the incomplete plausibility
function :

pli({ωk}) = 1
pli(A) = Ui, ∀A s.t. ωk 6∈ A.

Before having information coming from classifierCi, all
propositions are totally plausible. Then, when classifierCi

outputs a classωk, the proposition ”the actual class isωk”
remains entirely plausible, but each set which does not con-
tain ωk, becomes less plausible depending on the classifier
reliability.

A variant of the previous assignment consists in building a
more committed assignment:

mi : 2Ω −→ [0, 1]
{ωk} 7−→ Ri

Ω \ {ωk} 7−→ 1 −Ri = Ui,
(12)

Assignment (12) corresponds to the least committed mass
in agreement with the incomplete plausibility function

pli({ωk}) = Ri

pli(A) = Ui, ∀A s.t. ωk 6∈ A.

Unlike Assignment (10), the classifier reliability here influ-
ences the degree of belief in{ωk}, too. If the classifier is
unreliable, we are tempted to think the answer is not the
classifier decision. This assignment brings more conflicts than
the first one, that’s why we choose to generalize the flexible
Assignment (10) in the following section.

IV. A MODEL FOR THE COMBINATION OF MULTI-LEVEL

DECISIONS(CMLD) IN THE TBM

A. Problem formalization

¿From now on, we consider a set ofN classifiersCi, i ∈
{1, . . . , N}, selecting for each patternx from a set of patterns

P, either a class or a set of classes, according to a hierarchy of
Ω = {ω1, . . . , ωK}. This hierarchy is assumed to be common
to all the classifiers. For the sake of simplicity, only three
levels in the hierarchy are considered, but our approach could
be easily extended to more levels.

As classifiers can now select a set of classes, the rejection
class is equivalent to a decision for the whole universeΩ.
Consequently, rejection will from now on be notedCi(x) = Ω,
instead ofCi(x) = ωK+1 as before.

Example 3:Let us consider sensors that recognize flying
objects inΩ = {A1, A2,H1,H2, R1, R2, R3} of three types:
airplanesA = {A1, A2}, helicoptersH = {H1,H2}, and
rocketsR = {R1, R2, R3}.

According to the difficulty of the recognition task, each
sensor can either recognize an object (an element ofΩ) or
a type of object (A, H, or R). In case of high uncertainty it
can also select the reject option, which amounts to choosing
the whole universeΩ.

The corresponding hierarchical decision space is depicted
in Figure 2.

(3)Ω

(1)Ω

(2)Ω

{A
1
}    {A

2
}

 Ω

A                      H                          R

{H
1
}   {H

2
}    {R

1
}    {R

2
}    {R

3
}  

Fig. 2. A hierarchy of classifiers of example 3.

(1)Ω is the set of decisions of level 1:{{A1}, {A2}, {H1},
{H2}, {R1}, {R2}, {R3}}.

(2)Ω is the set of decisions of level 2:{A,H,R} with A =
{A1, A2}, H = {H1,H2}, andR = {R1, R2, R3}.

(3)Ω is the set of decisions of level 3:{Ω}.
The problem is then to fuse several decisions expressed at

different levels in the hierarchy. This problem is refered to as
combination of multi-level decisionsand noted CMLD.

Example 4 (continuation of Example 3):Let us have 4
classifiersC1, C2, C3, andC4. Knowing:

• C1 outputs “x is an airplane of model 1”:C1(x) = {A1},
• C2 outputs “x is an airplane”:C2(x) = A = {A1, A2}

(i.e. x is an airplane of any model),
• C3 outputs “x is a rocket”:C3(x) = {R1, R2, R3} (i.e.

x is a rocket of any model),
• C4 make a rejection “I don’t know the type ofx”:

C3(x) = Ω (i.e. x is a flying object of any types).
What decision at which level should be undertaken by the
combination of these classifiers?

We propose to model each classifier ouput by a belief func-
tion computed from a confusion matrix, using a generalization
of Assignment (10) introduced in Section III.

B. Mass assignment for the CMLD

The proposed assignment is based on the use of reliability
rates at each decision level.



Let u be a function assigning to each class or set of classes
(other thanΩ) the set of classes just above in the hierarchy.
For instance, in Example 3,u({A1}) = A, u(A) = Ω. Let us
denote the elements at each level as indicated in Figure 3.

(3)Ω

(1)Ω

(2)Ω

(1)ω
1
    (1)ω

2

(3)ω
1
 = Ω

(2)ω
1
                   (2)ω

2
                     (2)ω

3

(1)ω
3
 (1)ω

4
(1)ω

5
 (1)ω

6
 (1)ω

7

Fig. 3. Notation for a hierarchy.

Let ω0 denote the actual value of the precise class of pattern
x.

Assume that classifierCi outputs a decision other than
rejection. This decision is at a levelp of the hierarchy (p = 1
or p = 2 andCi(x) ∈ (p)Ω). Consider the following cases:

1) The actual valueω0 of x is in Ci(x). Ci(x) is then the
correct answer. The percentage of good recognition at
level p is notedRi[

(p)Ω]:

Ri[
(p)Ω] =

∑(p)K

k=1

∑
ωl∈ (p)ωk

(p)ni
kl

(p)ni
, (13)

where (p)K is the number of decisions at levelp. In
particular (1)K = K, (2)K is the number of set of
classes at level2. (p)ni

kl is the number of patterns of
actual classωl which have been classified byCi in class
(p)ωk. (p)ni =

∑(p)K

k=1

∑K

l=1
(p)ni

kl is the total number
of patterns classified byCi at levelp.

2) Ci(x) contains only one class (Ci(x) is a decision of
level 1) andω0 is in u(Ci(x)) \Ci(x) with u(Ci(x)) ⊂
Ω; this means that the class selected by the classifier
is not correct but is in the right set of classes. For
instance, the sensor has decided the wrong model of
airplane but the flying object was actually an airplane.
The percentage of these errors, considered as errors of
type 1, is notedU1

i [(1)Ω].

U1
i [(1)Ω] =

∑K

k=1

∑
ωl∈u(ωk); l 6=k

(1)ni
kl

(1)ni
. (14)

3) The true classω0 is in Ω \ Ci(x) if Ci(x) is a set of
classes, or inΩ\u(Ci(x)) if Ci(x) is a decision of level
1, which means that the actual value ofx is not in the
set of classes containing the output of the classifier. The
percentage of these errors considered as errors of type
2 is notedU2

i [(p)Ω]:

U2
i [(1)Ω] = 1 −Ri[

(1)Ω] − U1
i [(1)Ω], (15)

U2
i [(2)Ω] = 1 −Ri[

(2)Ω]. (16)

Consequently, when classifierCi outputs a decision at level
1, Ci(x) = {ωk} ∈ (1)Ω, the assignmentmi is defined by:

mi : 2Ω −→ [0, 1]
Ci(x) 7−→ Ri[

(1)Ω]
u(Ci(x)) 7−→ U1

i [(1)Ω]
Ω 7−→ U2

i [(1)Ω].

(17)

When classifierCi outputs a set of classes different from
Ω, Ci(x) is a decision of level(2)Ω, the assignment is the
following:

mi : 2Ω −→ [0, 1]
Ci(x) 7−→ Ri[

(2)Ω]
Ω 7−→ U2

i [(2)Ω]
(18)

If classifier Ci makes a rejection thenmi is the vacuous
belief function.

Example 5 (Continued from Example 3):Let us assume
that the confusion matrix of classifierC1 is the one shown
in Figure 4.

Fig. 4. Confusion matrix of classifierC1.

For instance, the number of patterns of actual classA1

which have been classified byC1 in class of level 1{A1}
is equal to36. The number of patterns of actual classA1

which have been classified byC1 in class of level 2{A1, A2}
is equal to35. And, the number of patterns of actual classA1

which have been classified byC1 in Ω is equal to2, which
means that classifierC1 rejected2 patterns from classA1.

Assume that classifierC1 outputs a decision of level 1 in the
hierarchy (Figure 2), withC1(x) = {A1} ∈(1) Ω. We have:

R1[
(1)Ω1] = (36 + 24 + 19 + 21 + 30 + 15 + 15)/200

= 0.80
U1

1 [(1)Ω1] = (2 + 4 + 1 + 5 + 2 + 2 + 2 + 4 + 8)/200
= 0.15

U2
1 [(1)Ω1] = (1 + 1 + 1 + 1 + 2 + 4)/200

= 0.05
(19)

Then:
m1({A1}) = 0.80
m1({A1, A2}) = 0.15
m1({Ω}) = 0.05

This use of the performances of classifiers to assign the
mass is close to the approach in [8], where the purpose was
to estimate the local class accuracy of each classifier. The



percentage of patternsx correctly assigned whenCi(x) = ωk

indicates the strengh of the belief in the fact that the class
of x is actuallyωk. We generalize this approach to the case
of a hierarchical decision space. However, in [8], the decision
with the maximum local class accuracy is selected, whereas
in our model all the BBAs coming from each classifier are
combined.

Remark 2 (No set of classes):With no decision composed
of sets of classes, the hierarchy contains two levels:(2)Ω1 =
{Ω} and (1)Ω1 = Ω, if C(x) is not a rejection (thenC(x) =
{ωk}, k ∈ {1, . . . ,K}), the assignment is the following:

m : 2Ω −→ [0, 1]
C(x) 7−→ R[(1)Ω1]

Ω 7−→ 1 −R[(1)Ω1]
(20)

whereR[(1)Ω1] is equal to the reliability rate ofC, thus this
assignment is the same as (10).

C. Combining the BBAs

Assuming that the classifiers constitute distinct reliable
pieces of evidence, the BBAs can be combined conjunctively.

Example 6 (Example 3 continuation):Let us consider
these results after the assignment:

m1({A1}) = 0.8 m2({A1, A2}) = 0.7
m1({A1, A2}) = 0.15 m2({Ω}) = 0.3
m1({Ω}) = 0.05

m3({R1, R2, R3}) = 0.6 m4({Ω}) = 1
m3({Ω}) = 0.4

Then, withm = m1 ∩©m2 ∩©m3 ∩©m4:

m({A1}) = 0.320 m({R1, R2, R3}) = 0.009
m({A1, A2}) = 0.074 m({Ω}) = 0.006
m({∅}) = 0.591

(21)

D. Rational multi-level decision

When a decision has to be made, the combination of multi
levels decisions (CMLD) has to compute an optimal actiona
among a set of actionsA. In our problem, the set of possible
actions is:

A =(3) Ω ∪ (2)Ω ∪ (1)Ω (22)

where “decideωk” is identified to “{ωk}”, and “decideΩ”
means rejection.

The optimal action is computed according to the following
costs:

• ∀k ∈ [1,K], c(Ω, ωk) represents the cost to decideΩ
(i.e. rejection) knowing that the actual class isωk. This
is the price to pay for total rejection, it will be called
total rejection costor general class rejection costand
notedCRGC

.
• ∀k ∈ [1,K] ∀l ∈ [1, L], c((2)ωl, ωk) represents the cost

to decide a set of classes(2)ωl knowing that the actual
class isωk. If ωk ∈ (2)ωl, this is the price to pay for the
decision of a set of classes instead of the precise class

contained in this set of classes, it will be called aprecise
class rejection costand notedCRP C

. Otherwise, this is
the price to pay for having committed an error of set of
classes, it will be called ageneral class error costand
notedCEGC

.
• ∀ωk ∈ Ω, c(ωj , ωk) represents the cost to decide class

ωj knowing that the actual class isωk. If ωj = ωk, this
is the price to pay for having the good answer and this
price is the lowest, so it assumed to be null. Otherwise,
this is the price to pay for having committed an error of
class, it will be called aprecise class error costand noted
CEP C

.

The following ordering between theses costs is assumed:

0 ≤ CRP C
≤ CRGC

≤ CEP C
≤ CEGC

. (23)

Remark 3: It is natural to assume thatCRP C
≤ CRGC

,
CEP C

≤ CEGC
, CRP C

≤ CEP C
, CRGC

≤ CEGC
, andCRP C

≤
CEGC

. In this paper, the assumptionCRGC
≤ CEP C

is made, in
accordance with the application of the last section. However,
this assumption is problem-dependent, in another application
it can be false. The main idea consists in choosing the right
costs according to the problem to be solved.

The risk associated with actionΩ is CRGC
, indeed:

ρ(Ω) =
∑

ωk∈Ω

c(Ω, ωk)BetP ({ωk})

= CRGC

∑

ωk∈Ω

BetP ({ωk})

= CRGC
.

Example 7 (Continued from Example 3):¿From (21) and
(3), the pignistic probability is computed:

BetP ({A1}) = 0.8750 BetP ({R1}) = 0.0094
BetP ({A2}) = 0.0926 BetP ({R2}) = 0.0094
BetP ({H1}) = 0.0021 BetP ({R3}) = 0.0094
BetP ({H2}) = 0.0021

(24)
Then:

ρ(A1) =
∑

ω∈Ω

c(A1, ω)BetP ({ω})

= CEP C
BetP ({A2})

+CEGC

∑

ω∈Ω\A

BetP ({ω}). (25)

As BetP ({A1}) > BetP ({ω}), ∀ω ∈ Ω \ {A1} (24) and
CEP C

≤ CEGC
(23), we can show that for allω ∈ Ω \ {A1}:

ρ(A1) ≤ ρ(ω). (26)

Which means that if a decison of level 1 must be made, the
decision will beA1. However possible actions are alsoA =
{A1, A2}, H = {H1,H2}, R = {R1, R2, R3} andΩ.

ρ(A) = CRP C
(BetP ({A1}) + BetP ({A2}))

+CEGC

∑

ω∈Ω\A

BetP ({ω}).



ρ(H) = CRP C
(BetP ({H1}) + BetP ({H2}))

+CEGC

∑

ω∈Ω\H

BetP ({ω}).

ρ(R) = CRP C

∑

ω∈R

BetP ({ω})

+CEGC

∑

ω∈Ω\R

BetP ({ω}).

Likewise by (24) and (23) (CRP C
≤ CEGC

), ρ(A) ≤ ρ(R),
and ρ(A) ≤ ρ(H). As already seen,ρ(Ω) = CRGC

. At last,
the value of costs will decide which action at which level will
be undertaken. With (24):

ρ(A1) = 0.0926 CEP C
+ 0.0324 CEGC

ρ(A) = 0.9676 CRP C
+ 0.0324 CEGC

ρ(Ω) = CRGC
. (27)

Thus with 0.0926CEP C
≤ 0.9676CRP C

and 0.0926CEP C
+

0.0324CEGC
≤ CRGC

, i.e. with a low error cost or a high
rejection cost, the decision will be made at level 1. Otherwise,
if the error cost is high and the rejection cost is low, a decision
of level 2 or 3 will be made.

Ideally, these costs are provided by experts of the considered
application, and reflect financial costs. They can also be learnt
from training data to obtain an expected behaviour of the
CMLD.

V. A PPLICATION

In this application, three classifiersC1, C2 and C3 are
available. They are considered as black boxes which provide
hard decisions in a hierarchical decision space. The aim of this
section is to compare the performances of CMLD with those
of two different voting schemes, for a particular application.

A. Voting schemes

When all classifiers have relatively good performances and
express their decisions on the same frame of discernment,
majority voting is a good candidate [5]. In this application,
only three classifiersC1, C2 andC3 are available and classifier
C2 is known to have the best performances. Thus a good
voting based strategy consists in selecting the decision ofthe
best classifier unless the other two models agree. In that case,
the output of the two other classifiers is chosen. This method
will be calledMajC2. In order to achieve a better recognition
rate, a variant of the previous method consists in choosing the
majority decision only if it is different from rejection. This
method will be calledMajC2++ .

Example 8: If C1(x) = Ω, C2(x) = (2)ωl andC3(x) = Ω,
thenMajC2(x) = Ω andMajC2 + + = (2)ωl.

If C1(x) = (1)ωk, C2(x) = (2)ωl and C3(x) = Ω, then
MajC2(x) = MajC2 + +(x) = (2)ωl.

B. Performance measures

Since classifiers produce decisions at different levels, new
definitions of recognition rates and error rates have to be in-
troduced. The performances of each individual and combined
classifier will be measured by recognition and substitution
(error) rates at two levels.

The recognition rateof classifierCi at level 1, noted(1)Ri,
is defined as the ratio of the number of good recognition at
level 1, to the total numbern of classified patterns:

(1)Ri =

∑K

k=1
(1)ni

kk

n
. (28)

The substitution rateof classifierCi at level 1, noted(1)Si,
is defined as the proportion of misclassifications at level 1,
plus the proportion of misclassifications at level 2 (i.e. the
proportion of decisions at level 2 which do not contain the
actual class):

(1)Si =

∑K

k=1

∑K

l=1;l 6=k
(1)ni

kl

n

+

∑(2)K
k=1

∑K
l=1;u(ωl) 6=(2)ωk

(2)ni
kl

n
. (29)

The recognition rateof classifierCi at level 2, noted(2)Ri,
is defined the proportion of decisions at level 1 which are
included in the same set of classes of the actual class,plus the
proportions of decisions at level 2 which contain the actual
class:

(2)Ri =

∑K

k=1

∑K

l=1;u(ωl)=u(ωk)
(1)ni

kl

n

+

∑(2)K

k=1

∑K

l=1;u(ωl)=(2)ωk

(2)ni
kl

n
. (30)

Each decision at level 1 is thus considered as a decision
at the upper level in the hierarchy. Finally, thesubstitution
rate of classifierCi at level 2, noted(2)Si, is defined as the
proportion of decisions at level 1 whose set of classes above
in the hierarchy does not contain the actual class, added to
the proportion of decisions at level 2 which do not contain
the actual class:

(2)Si =

∑K

k=1

∑K

l=1;u(ωl) 6=(ωk)
(1)ni

kl

n

+

∑(2)K

k=1

∑K

l=1;u(ωl) 6=(2)ωk

(2)ni
kl

n
. (31)

In this application, the costs were learnt from a learning
set containing half of the data, in order to achieve the best
recognition rate while maintaining the error rate inside an
interval centered around the error rate of classifierC2.

C. Results

All individual and combined classifiers are represented
Figure 5, in the two performance spaces((1)R, (1)S) and
((2)R, (2)S). The representation in the same figure allows to
compare the classifier perormances at different levels.



Fig. 5. Classifier performances at levels 1 (space((1)R, (1)S), filled
symbols, underlined classifiers’ names) and 2 (space((2)R, (2)S), blank
symbols).

At level 1, CMLD outperform all individual classifiers,
as well as majority based combinations. The combination
MajC2 + + increases the recognition but the price on error
rate is high.

At level 2, the performances of CMLD cannot be compared
to those of the voting schemes: CMLD, although having a
better recognition rate, also has a higher error rate. Indeed,
CMLD makes fewer rejections than majority voting schemes:
it can decide a solution proposed by only one classifier when
the two others make a rejection, or it can find a compromise
between two differents solutions provided by classifiersC1

andC3 while classifierC2 makes a rejection.
At both decision levels, the error rate of CMLD was con-

trolled to remain close to that of classifierC2. Such a behavior
cannot by obtained with the majority based combinations.

VI. CONCLUSION

In this paper, we tackled the problem of combining multi
level decisions and presented an approach based on the
Transferable Belief Model. The proposed approach allows
to express the output from each classifier (in a hierarchical
decision space) in the form a basic belief assignment computed
from a confusion matrix. Experiments with data from a real
application demonstrated the effectiveness of this approach, as
compared to simple voting schemes.

The presented method could be applied to single-level
decision problems by building a hierarchy on the set of classes.
Such a hierarchy could be based on proximities between
classes as revealed by the confusion matrix.

When the size of the universe is very large, it is also
possible to compute several reliability rates at each levelof
the hierarchy, based on a partition of decisions at that level.
Such a model is under construction. The selection of a “good”
partition remains to be studied.

Finally, individual classifiers usually provide, togetherwith
a hard decisions, additional information in the form of scores

(e.g., estimated posterior probabilities, degrees of membership,
etc.). Combining such scores with the confusion matrix to
define more informative belief functions is an interesting
problem which is left for further research.
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