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Abstract -
fault detection in a complex system made up of sev-
eral spatially dependent subsystems.
method consists of both detecting and localizing a de-

This paper addresses the problem of
The diagnosis

fect on the system by combining the outputs scores
of subclassifiers within the framework of belief func-
tion theory. This paper is focused on the coding and
the combination of classifier outputs that can reflect
In
the particular case of upstream/downstream depen-

the spatial relationship between the subsystems.

dency, two strategies of output coding are detailed.
The proposed methodology is illustrated on a railway
device diagnosis application. It will be shown that
the choice of an appropriate coding scheme improves
the classification results.

Keywords: Classification, data fusion, belief functions,
diagnosis, neural network, Dempster-Shafer theory.

1 Introduction

The diagnosis of a complex system consists in identify-
ing its working state from one or more measurements.
When a pattern recognition approach is adopted, the
goal is to assign any measurement signal represented by
a feature vector to one of the labelled classes [1]. In the
particular case when the system is composed of several
subsystems, the diagnosis also involves the isolation of
the defective subsystem. We can either choose to build
one global classifier or as many classifiers as subsys-
tems. In this case a fusion stage is required to com-
bine the individual classifier outputs. This partition-
ing approach is interesting because it allows to design
each classifier independently (choice of the structure,
input space, etc.). In addition, it seems to be suit-
able in the diagnosis applications involving spatially
dependent subsystems where the global approach fails.
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Figure 1 shows an example of upstream/downstream
spatial dependency: a presence of a defect on one sub-
system modifies the information related to downstream
subsystems.

defective Downstream

subsystem

AR A NS

measuring
process
unchanged

signature

Upstream

Physical
Subsystems

Inspection
information

modified signatures

Figure 1: Downstream spatial dependency

When the global diagnosis problem is split into sev-
eral subproblems, a coding scheme has to be chosen,
and classifier outputs have to be combined, taking into
account the spatial relationship between the subsys-
tems. The aim is first to assign the working state of
each subsystem to a reliable or a defective case and
then, to combine the individual classifier outputs to
determine the defective subsystem. A myriad of meth-
ods for fusing output classifiers have been proposed
(7], [5], [6]. The method investigated here is based on
the belief function theory in relation with a particular
output coding. The interest of the belief function the-
ory is that it makes it possible to handle problems of
uncertainty and conflicts between several classifiers.

This paper is organized as follows. First, the ba-
sics of belief function theory will be recalled. Then,
two coding schemes for the classifier outputs will be
presented, and fusion formulas associated to each one
of them will be given in the particular case of up-
stream /downstream dependency. In Section 4, this
approach will be applied to the diagnosis of the
track/vehicle transmission system called the track cir-



cuit, in the railway domain. The performance of the
approach will be presented in Section 5, and Section 6
will conclude the paper.

2 Belief Function Theory

In this section, we briefly recall the bases of Belief
Function Theory, first introduced by Dempster [4], and
formalized by Shafer [8]. The interest of this theory is
that it generalizes the probability theory, by introduc-
ing an explicit representation of uncertainty. A sub-
jectivist interpretation of Dempster-Shafer theory was
proposed by Smets, under the name of Transferable
Belief Model (TBM). In the TBM theory, there exists
a two-level structure composed of a credal level where
beliefs are entertained, and a pignistic level where de-
cisions are made. In this section, we only define the
concepts that are used in our diagnosis method. Fur-
ther details can be found in [2], [10], [11], and [12].

2.1 Representation of Beliefs: the

Credal Level
2.1.1 Frame of Discernment

In Dempster-Shafer theory, a problem is represented
by a set © of mutually exclusive and exhaustive hy-
potheses 6;. O is called the frame of discernment.

0 ={0,0o,...

O} (1)

2.1.2 Basic belief assignment (bba)

A Basic Belief Assignment (denoted bba) is a function
m from 2© to [0,1] that assigns a value to each con-
junction in the frame of discernment:

m: 29 —0,1],

(2)

such that

3)

The basic belief mass m(A) represents the measure of
the belief that is committed exactly to A, given the
available evidence, and that cannot be committed to
any strict subset of A because of lack of information.
Every A C © such that m(A) > 0 is called a focal
proposition. A bba verifying m(@) = 0 is said to be
normal. If m() # 0, m() can be interpreted as the
part of belief committed to the assumption that none
of the hypotheses in © might be true (open-world as-
sumption).

2.1.3 Combination of Several Bbas

To combine several bbas over the same frame of dis-
cernment, Smets introduced the conjunctive rule of
combination [10]. In order to use it, the different bbas
must be based upon distinct pieces of evidence. Let
my and my be 2 bbas, the bba that results from their

conjunctive combination, denoted mi@mes, is defined
for all A C © as:
mi@me(A) = m1(B)ms(C)

> (4)

B,CCO:BNC=A

Followed by a normalization step, this combination
rule is equal to Dempster’s rule of combination [4].

2.2 Decision making: pignistic level

In the TBM, when a decision has to be made, the
bbas are transformed into probabilities. To do that,
we build a pignistic probability function BetP from
the bba m, using the pignistic transformation defined
as [12],[9]:

|An B
Bl

BetP(A) =

BCO

where | X| denotes the cardinality of X

This definition relies on the idea that, in the absence
of additional information, m(A) should be equally dis-
tributed among the elements of A. This solution is
a classical probability measure from which expected
criteria can be computed in order to take optimal de-
cisions (for example, the maximum of pignistic proba-
bility criterion).

3 Combination of Classifier

Outputs

Considering a system X composed of N subsystems
that are spatially dependent, the global diagnosis prob-
lem can be split into N subproblems (N classifiers),
each one dedicated to the diagnosis of one subsystem.
The elementary classifier outputs are then combined
to assign the system to a nominal or defective working
state.

In this paper, we consider probabilistic classifiers,
whose outputs p;, are probabilities. The frame of dis-
cernment is ) = {1,..., N, N+1} where N is the num-
ber of subsystems. Each singleton {i}, i=1,...,N+1
corresponds to a possible position of the defect. The
virtual position NV 4 1 corresponds to the absence of
defect. In the following sub-sections, we describe two
output coding schemes and we detail the fusion formu-
las obtained for each one of them.

3.1 Output coding 1

In this standard coding, the classifier output related
to the defective subsystem is equal to 1 and the other
classifier outputs are 0. Let [ be the location of the de-
fective subsystem and Z; the output of the i classifier
(i € [1,N]):

7z, — { (1) if i #1

il (6)



3.2

Considering the coding described above, if the output
of the i*" classifier is 1, then the defect is on the sub-
system number 7. The i classifier gives a bba on each
singleton {i} and on its complementary subset Y\{i}

as follows:
mgj({l}) =Di (7)
my(W\{i}) =1-p;

These bbas are combined through the Dempster con-

junctive rule to obtain the bba associated to each sin-
gleton and to the empty set @ as follows:

Fusion formulas for coding 1

m¥({i}) = p[Ja-p) Vi=1....N
J#
N
m*(N+1}) = [[0-p)
=t N+1
m>(0) = 1= m({i})
- 8

Ezxample: Let us consider a system with N = 3 sub-
systems. Then, the frame of discernment is ) =
{1,2,3,4} and the different bbas are given by:

m%}({l}) =D
m%)({27374}) =1-p
m3 ({2}) =p2
mg({1’3’4}) =1-—po
m%i({3}) =p3

my ({1,2,4}) =1—ps.
Using Dempster’s rule of combination, we obtain:

mY({1})

=p1(1 —p2)(1 —ps3)

mY({2}) = p2(1—p1)(1 —p3)

m¥({3}) = ps(1—p1)(1 —pa2)

mY({4}) =1 —p1)(1 —p2)(1 —ps)
N41

mY (@) =1- Z m” ({i}).

We can notice that, if py = p3 = 1, and ps = 0, we
have a contradiction between classifier 1 and classifier
3. Then, applying the formula, we obtain mY({1}) =
mY({2}) = mY({3}) = 0 and m¥(®) = 1, which
means that the highest mass after fusion is attributed
to uncertainty.

3.3 Output Coding 2

The second coding uses the basic idea that when a de-
fect occurs on one subsystem, it modifies the informa-
tion obtained for all subsystems located downstream
from it. The information related to subsystems located
upstream from it are not affected. Let [ be the index
of the defective subsystem, and Z; the output of the
ith classifier (i € [1, N]):
0 ifi<li
Zi_{l if i > 1. ©)

Figure 2 illustrates the two coding schemes.
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Figure 2: Classifier output codings

Coding 2 is called thermometric code and has been
used into neural networks scheme [3]. It belongs to
the binary Gray codes family and it is often used in
analog-to-digital converters.

3.3.1 Fusion Formulas

Considering N subsystems Si,...,Sy, this coding
means that a desired output equal to 0 corresponds
to the fact that there is no defect between S; and S;,
whereas a desired output equal to 1 means that a de-
fect is located between S; and S;. So, classifier number
i gives a bba on each subset {1,...,i} on each subset
{i+1,...,N + 1} as follows:

mY{i+1,...,N+1}) =1-p;
We can then combine these bbas using the Dempster
conjunctive combination:

m¥ ({i}) = f[(l—pj)Hpk,i:L...,N
Jj=1 k=1
mY({N +1}) = H(l — i)
- (11)
m¥ (@) =1 - Zl:[(l—pj)npk
i=1j=1 k=i

N
#la-p|. (2

Ezxample: Let us consider a system with N = 3 sub-
systems. Then, the frame of discernment is ) =
{1,2,3,4} and the different bbas are given by:

my ({13) =p
m%)({27374}) =1-pm
my({1,2})  =p2
my({3,4})  =1-po
m%j({l,Q,?)}) =P3
m3 ({4}) =1-p;



mY({1})
mY({2})
m¥({3})

m¥({4})

= P1P2pP3
= (1 — p1)paps3
=(1—=p1)(1 —p2)p3

= (1 =p1)(1 = p2)(1 —p3)

N+1

=1- Z m” ({i}).

We can notice that, if p; = p3 = 1, and ps = 0, we
have a contradiction between classifier 1 and classifier
3. Then, applying the formula, we obtain mY ({1}) =
mY({2}) = mY({3}) = 0 and m¥(®) = 1, which
means that the highest mass after fusion is attributed
to uncertainty.

The decision rule is very simple and corresponds to
the maximum pignistic probability, that takes into ac-
count a normalization step. The position of the defect
is assigned to one of the N + 1 classes (N + 1 is used
when there is no defect).

m¥(0)

4 Railway Application

4.1 Track Circuit Principle

Track circuit is an essential element of automatic train
control. Its main function is to detect the presence
or absence of a train on a given railway section of
track. For the French high speed lines, track circuit
is also a fundamental element of track/vehicle trans-
mission system (TVM). It is used to transmit, over
a specific carrier frequency, coded data to the train
such as the maximum authorized speed on given sec-
tion with safety constraints.

The railway track is divided into different sections
by means of electrical separation joints. A track circuit
associated to a specific section, consists of the following
components (see Figure 3):

e a transmitter which supplies a FM alternating cur-
rent;

e the two rails that can be considered as a transmis-
sion line;

e a receiver that is connected to the opposite end
from the transmitter. It mainly consists of a trap
circuit used to avoid the transmission of informa-
tion to the neighboring section;

e trimming capacitors connected between the two
rails at constant spacing to compensate the in-
ductive behaviour of the track. An electric tun-
ing is then achieved that limits the attenuation
of the emitted current and improve the transmis-
sion level. The number of capacitors depends on
the carrier frequency and the length of the track
section.

Characteristics of track circuit equipment may
change because of aging, atmospheric conditions or
track maintenance operations, that induce an unfor-
tunate attenuation of the transmitted signal. If the
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Figure 3: Track circuit representation and inspection
signals.

carrier level becomes too low, the train automatically
stops, therefore it is important to detect system dys-
functions as soon as possible in order to maintain it at
required safety and availability levels.

For this purpose, an inspection car is able to deliver
a measurement signal linked to electrical track circuit
characteristics. Current track circuit inspection tech-
niques use relatively basic decision rules to activate the
maintenance procedures. Most of them are based on
thresholding of the specific recorded signal. This sim-
ple rule enables detection of major defects but it is
not suitable to give an accurate diagnosis for predic-
tive maintenance. The improvement of the diagnosis
system requires more complex techniques. Here, we
present an automatic diagnosis system dedicated to de-
tect and localize defects, especially trimming capacitor
defects (removed or resistive capacitors).

4.2 Description of the diagnosis

method

Figure 4 shows simulated signals (called I.. signals) in
the case of one resistive trimming capacitor.
Different observations can be made:

e cach position of a trimming capacitor coincides
with a discontinuity of the derivative curve. So,
between trimming capacitors the signal can be
considered as succession of catenarian curves (lo-
cal arches) that can be fitted by a second degree
polynomials;

e the presence of a defect on the system only af-
fects the signal between the defect and the receiver
while it is unchanged upstream.

Hence the idea to consider the track circuit as the
system ¥, and each of the NV trimming cells as a sub-
system S;. At first, we build one classifier per trimming
cell, taking into account the signal from the transmit-
ter up to the capacitor corresponding to the consid-
ered catenarian curve. According to the coding we use
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Figure 4: Example of simulated signal obtained when
the 9t" capacitor is defective

as shown in Figure 5, each classifier gives information
about the presence of a defect either on this capacitor
or between this capacitor and the transmitter. The re-
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Figure 5: Principle of the two coding schemes for an
experimental signal with and without defect.

sponses of all the classifiers are combined within the
TBM theory and a decision is made by computing the
pignistic probability. In the case of defective working
state, this method gives also the position of the de-
fect. Figure 6 presents the principle of the complete
diagnosis system.

5 Results and Discussion

To assess the performances of the above approach, we
considered a track circuit of N = 19 trimming cells,
and we built a data base of 4256 simulated noised sig-
nals obtained for different values of each capacitor re-
sistance, and for different values of global track para-
meters. Among these signals, 608 were reliable, and
3648 had one defective capacitor with a resistance be-
tween r =1 © and r = oo (removed capacitor).

As shown in Figure 6, a pattern recognition ap-
proach was used to design each subclassifier.

Starting with an experimental signal, a parametric
representation was obtained by means of polynomial

2
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Figure 6: Architecture of the diagnosis system.

approximations. Each local arch was fitted by a second
degree polynomial. The signal was thus described by
a total of 60 variables. The inputs of the i*" classifier
are the 3 x (i+1) parameters corresponding to the i+1
catenarian curves between the transmitter and the i*?
trimming capacitor. Its output gives information on
the presence (or not) of a defect on the i'" subsystem
if the coding 1 is chosen, or between S; and S; in the
case of coding 2.

The classification task was then performed by a 2-
layer neural network with tan-sigmoid hidden layer of
no more than 7 nodes and one output linear layer of one
neuron. The classifier performances were estimated by
splitting the whole data base into 3 subsets (training,
validation, test).

The analysis of the results was achieved by com-
puting the rates of good detections (GD), false alarms
(FA) and non detections (ND) on the whole data set
including both defective and reliable signals. When
a defect was detected, we distinguished between good
localizations (GL = GDy + GD;) and false localiza-
tions (GD3). A defect can indeed be well detected but
wrongly localized within the system. These definitions
are summarized in Table 1.

Table 1: Definition of good detection, false alame and
non detection rates.

Truth
Defect No
position ¢ | Defect
Position 1 GD, FA,
Decision | Position # i GD, FAs
No Defect ND GDy

If Ny denotes the number of reliable cases and N;
the number of defective cases within the database, the



different rates are estimated as follows:

GDy+GD1 +GD,

t f—

GD No+ N,

GDy + GDy
tar, =
GDg+ GDy + GDsy

; _ ND

ND = N,

; _ FA+FA

FA = N .

The results are reported in Table 2, as compared to a
reference method. This reference method is a regres-
sion (R) using a multilayer perceptron with one hidden
layer of 7 neurons. The inputs are the 60 parameters
of the I.. signals, and the output is the position of
the defect. Whatever the coding scheme chosen, the
results obtained when fusing local classifiers are much
better than those obtained by the regression method.
In terms of detection, the good detection rate is signif-
icantly improved ,while false alarms almost disappear.
Coding 1 leads to a higher non detection rate than cod-
ing 2. This can be explained by the unbalanced num-
ber of training instances from each class in the data-
base used to train subclassifiers. Indeed, when using
Coding 1, each subclassifier learns much more 0s (no
defect) than 1s. Moreover, when a defect is detected,
we have quite few false localizations for the two cod-
ings. In most cases, the localization error is equal to 1,
which is satisfactory. Discounting subclassifier outputs
before the fusion procedure was not found to bring any
significative improvement to these results.

Table 2: Performances of the different coding schemes.

Rates (%) R Coding1 Coding 2
tap 92.69 94.27 99.15
tar 63.04 99.8 93.14
tra 42.18 1.97 0.66
tND 2.30 6.36 0.88

6 Conclusions

In this paper, the application of the TBM to the diag-
nosis of a complex system made up by several subsys-
tems with upstream/downstream spatial relationship
has been investigated. When the global classification
task is performed by combining the individual classi-
fier responses, it has been shown that an appropriate
coding scheme and classifier output fusion mechanism
allows one to take into account this kind of dependency.
This approach was applied to the diagnosis of rail-
way infrastructure components. Good results were ob-
tained on noisy simulated signals, which demonstrates
the efficiency of the method. Satisfying tests were also
achieved on real signals, but the problem is that very
few signals are labelled. Further studies are carried
out to compare this TBM approach with other fusion
methods, and also to take into account the presence

of multiple defects and assess their seriousness, which
can be useful in a predictive maintenance context.
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